• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonequilibrium effects of reactive flow based on gas kinetic theory*

    2022-03-23 02:21:16XianliSuandChuandongLin
    Communications in Theoretical Physics 2022年3期

    Xianli Su and Chuandong Lin

    Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082,China

    Abstract How to accurately probe chemically reactive flows with essential thermodynamic nonequilibrium effects is an open issue.Via the Chapman–Enskog analysis, the local nonequilibrium particle velocity distribution function is derived from the gas kinetic theory.It is demonstrated theoretically and numerically that the distribution function depends on the physical quantities and derivatives,and is independent of the chemical reactions directly as the chemical time scale is longer than the molecular relaxation time.Based on the simulation results of the discrete Boltzmann model, the departure between equilibrium and nonequilibrium distribution functions is obtained and analyzed around the detonation wave.In addition,it has been verified for the first time that the kinetic moments calculated by summations of the discrete distribution functions are close to those calculated by integrals of their original forms.

    Keywords: discrete Boltzmann method, reactive flow, detonation, nonequilibrium effect

    1.Introduction

    Chemical reactive flow is a complex physicochemical phenomenon which is ubiquitous in aerospace, energy and power fields,etc[1,2].It exhibits multiscale characteristics in temporal and spatial scales, incorporates various hydrodynamic and thermodynamic nonequilibrium effects [3].The nonequilibrium effects exert significant influences on fluid systems especially in extremely complex environments [3],such as the spacecraft reentry into the atmosphere [4], multicomponent reactive flow in porous media [5, 6], fuel cells[7, 8], phase separation [9], hydrodynamic instability [10],and detonation [11, 12].At present, how to accurately probe,predict and analyze chemical reactive flows with essential nonequilibrium effects is still an open issue.

    Actually, there are various classes of methodologies to retain the information of velocity distribution functions for fluid systems.For example, on the basis of the distribution function, Nagnibeda et al established the kinetic theory of transport processes and discussed the features of complex system strongly deviating from the thermal and chemical equilibrium [3].Besides, on the microscopic level, the distribution function can be obtained by using the direct simulation Monte Carlo [13, 14], or molecular dynamics [15, 16].As a kinetic mesoscopic methodology, the discrete Boltzmann method (DBM) is a special discretization of the Boltzmann equation in particle velocity space, and has been successfully developed to recover and probe the velocity distribution functions of nonequilibrium physical systems[11,17–20].

    In fact, the DBM is based on statistical physics and regarded as a variant of the traditional lattice Boltzmann method (LBM) [21–24].Compared to standard LBMs, the DBM can address more issues, in particular to simulate the compressible fluid systems with significant nonequilibrium effects [17, 20, 25–30].At present, there are two means to recover the velocity distribution functions.One relies on the analysis of the detailed nonequilibrium physical quantities to obtain the main features of the velocity distribution function in a qualitative way [11, 17, 18].The other is to recover the detailed velocity distribution function by means of macroscopic quantities and their spatio derivatives quantitatively,which can be derived by using the Chapman–Enskog expansion[19,20].The two methods are consistent with each other [20].

    In the rest of this paper,we firstly derive the nonequilibrium velocity distribution function of reactive fluid based on the Boltzmann equation in section 2.In section 3, we give a brief introduction of the DBM for compressible reactive flows.In section 4,we verify the consistency of theoretical and numerical results of the equilibrium or nonequilibrium manifestations of reactive flows.The nonequilibrium and equilibrium distribution functions as well as their differences are obtained and analyzed in section 5.Finally, section 6 concludes.

    2.Derivation of velocity distribution function of reactive fluid

    Now, let us introduce the popular Bhatanger–Gross–Krook(BGK) Boltzmann equation

    where τ denotes the relaxation time, t the time, f the velocity distribution function.The equilibrium distribution function[31, 32] is

    where D=2 denotes the dimensional translational degree of freedom, I stands for extra degrees of freedom due to vibration and/or rotation, and η represents the corresponding vibrational and/or rotational energies.Here n is the particle number density, u the hydrodynamic velocity, T the temperature, m=1 the particle mass, and ρ=nm the mass density.

    On the right-hand side of equation (1),R is the chemical term describing the change rate of the distribution function due to chemical reactions, i.e.

    To derive the explicit expression of the chemical term, the following qualifications are assumed [26]: tmr<tcr<tsys, where tmr, tcrand tsysrepresent the time scale of molecular relaxation,the time scale of chemical reaction and the characteristic time scale of the system, respectively.Under the condition tmr<tcr,equation (3) can be approximated by

    as feqis the function of ρ, u, and T, respectively.Furthermore,the assumption tcr<tsysleads to the following conclusion: the chemical reaction results in the change of temperature directly,as the density and flow velocity remain unchanged during the rapid reaction process.Consequently, equation (4) can be reduced to

    Substituting equation (2) into equation (5) gives

    where Q indicates the chemical heat release per unit mass of fuel,λ′ is the change rate of the mass fraction of chemical product.Additionally, a two-step reaction scheme is employed to mimic the essential dynamics of a chain-branching reaction of detonation in this paper [33].

    Via the Chapman–Enskog analysis, we derive the firstorder approximation formula of the velocity distribution function of reacting flows through the macroscopic quantities and their spatial and temporal derivatives

    in terms of

    and

    Note that the change rate of temperature consists of two parts,i.e.

    on the right-hand side of which the first term describes the part caused by the heat release of chemical reactions

    and the other two terms reflect the parts due to the spatial gradients of velocity and temperature.

    Therefore, equation (7) can be simplified as

    with

    It can be found from equations (11), (12), (14) and (15)that the temporal derivatives can be expressed by the spatial derivatives.Those formulas are obtained from the Chapman–Enskog expansion.In fact,there are two ways to calculate the simulation results ofor.One method is to calculate the temporal change rate directly.For example

    The other method is to use equation(11),(14)and(15)where the spatial derivatives can be computed by the finite difference scheme.The results given by the two methods are similar to each other.

    Moreover, it can be inferred from equation (13) that the chemical reaction term is eliminated,so it has no contribution to the velocity distribution function directly.This is due to the aforementioned assumption that the chemical time scale is longer than the molecular relaxation time.The case where the chemical time scale is close to or less than the molecular relaxation time is not considered in this work.

    3.Discrete Boltzmann method

    In this work, the BGK DBM is used to mimic and measure the nonequilibrium reactive flows [34].The discretization of the model in particle velocity space takes the form

    where fiandrepresent the discrete distribution function and its equilibrium counterpart, respectively.videnotes the discrete velocity with i=1,2,3,…,N,and N=16 is the total number of discrete velocities.Here a two-dimensional sixteen-velocity model is employed, see figure 1.

    Figure 1.Sketch for the discrete velocity model.

    Physically, the DBM is approximately equivalent to a continuous fluid model plus a coarse-grained model for discrete effects.Meanwhile,the DBM is roughly equivalent to a hydrodynamic model plus a coarse-grained model of thermodynamic nonequilibrium behaviors.For the sake of recovering the NS equations in the hydrodynamic limit, the discrete equilibrium distribution functionsare required to satisfy the following relationship

    Furthermore, one merit of the DBM is to capture nonequilibrium information described by the following (but not limited to) high-order kinetic moments

    where M2,M3,1, M3and M4,2are the kinetic moments of the distribution functions,anddenote the corresponding equilibrium counterparts, Δ2, Δ3,1, Δ3and Δ4,2are the differences between them.Here, Δ2represents the viscous stress tensor and disorganized momentum flux,Δ3,1and Δ3are relevant to the disorganized energy fluxes.Δ4,2is related to the flux of unnorganized energy flux.

    4.Verification and validation

    To verify the consistency of theoretical and numerical results of the nonequilibrium manifestations of reactive flows,firstly,we simulate a reaction process in a uniform resting system.The specific-heat ratio is γ=5/3, the chemical heat release Q=1, the space step Δx=Δy=5×10-5, the time step Δt=2×10-6, and the discrete velocities (va, vb, vc, vd, ηa,ηb, ηc, ηd)=(3.7, 3.2, 1.4, 1.4, 2.4, 0, 0, 0), respectively.In order to possess a high computational efficiency, only one mesh grid (Nx×Ny=1×1) is used, and the periodic boundary condition is adopted in each direction, because the physical field is uniformly distributed.It is found that all simulated nonequilibrium physical quantities (including Δ2,Δ3,1, Δ3, and Δ4,2) remain zero during the evolution.Therefore, in the process of the chemical reaction, the deviation of velocity distribution function f from its equilibrium counterpart feqis zero,i.e f=feq.Besides,all physical gradients are zero in the simulation process due to the uniform distribution of physical quantities.Consequently, it is numerically verified that the chemical reaction does not contribute to the nonequilibrium effects directly1It should be mentioned that the chemical reaction may change the physical gradients which make an impact on the nonequilibrium effects.In other words,the chemical reaction plays an indirect role in nonequilibrium effect of the reactive flows..This result is consistent with the aforementioned theory that the distribution function depends on the physical quantities and derivatives,and is independent of chemical reactions directly,see equation (13).

    For the purpose of further validation, the one-dimensional (1D) steady detonation is simulated.The initial configuration, obtained from the Hugoniot relation, takes the form

    where the subscript L indicates 0 ≤x ≤0.00555, and R indicates 0.00555 <x ≤0.555.The Mach number is 1.96.To ensure the resolution is high enough, the grid is chosen as Nx×Ny=11 100×1, other parameters are the same as before.Furthermore, the inflow and/or outflow boundary conditions are employed in the x direction, and the periodic boundary condition is adopted in the y direction.

    Figure 2 displays the kinetic moments of velocity distribution function (M2,xx, M2,xy, M2,yy, M3,1,x, M3,1,y), the equilibrium counterpartsand the nonequilibrium quantities (Δ2,xx, Δ2,xy, Δ2,yy, Δ3,1,x,Δ3,1,y) around the detonation front.Here Δ2,xxrepresents twice the disorganized energy in the x degree of freedom,and Δ2,yytwice the disorganized energy in the y degree of freedom.Δ3,1,xand Δ3,1,ydenote twice the disorganized energy fluxes in the x and y directions, respectively.The legends are in each plot, where the dashed line is located at the position x=0.50375.

    Next, let us verify that the kinetic moments calculated by the summations of the discrete distribution functions are close to those calculated by integrals of their original forms at the location x=0.50375.The kinetic moments calculated by the summations of the discrete distribution functions are (Δ2,xx, Δ2,xy,Δ2,yy, Δ3,1,x, Δ3,1,y) = (0.48449, 0, -0.35844, 2.891 23, 0),while the results of the corresponding integration counterparts are(Δ2,xx,Δ2,xy,Δ2,yy,Δ3,1,x,Δ3,1,y)=(0.56488,0,-0.27255,2.801 81, 0).The relative errors are (17%, 0%, 24%, 3%, 0%),which is roughly satisfactory.For the first time, this test demonstrates the accuracy of the nonequilibrium manifestations measured by the DBM, and validates the consistence of the DBM with its theoretical basis.

    Figure 2.The nonequilibrium and equilibrium kinetic moments, and the differences between them.Plots (a)–(d) show the independent variables of M2 (, M3,1 Δ2, and Δ3,1, respectively.

    5.Recovery of velocity distribution function around detonation wave

    To further perform a quantitative study of the nonequilibrium state around the detonation wave, figure 3(a) displays the velocity distribution function at the peak of Δ2,xx,which is on the vertical dashed line in figure 2.It is clear that the velocity distribution function has a peak in the two-dimensional velocity space.Actually, due to the nonequilibrium effects,the velocity distribution function deviates from its local equilibrium counterpart, i.e.the Maxwellian velocity distribution function.

    In order to have an intuitive study of the local velocity distribution function, figure 3(b) shows its contours in the velocity space, which is in line with figure 3(a).Clearly, the peak is asymmetric in the vxdirection and symmetric in the vydirection.The contour lines are close to each other near the peak (especially on the left side), and becomes sparse away from the peak(especially on the right side).That is to say,the gradient is sharp near the peak (especially on the left side),and smooth far from the peak (especially on the left side).

    To have a deep understanding of the deviation of the velocity distribution function from the equilibrium state,figure 3(c) depicts the difference between the nonequilibrium and equilibrium distribution functions in the two-dimensional velocity space.It is obvious that there are both positive and negative deviations around the detonation wave.Along the vxdirection, a high positive peak first appears, then decreases to form a valley, and then increases to a low positive peak.

    As can be seen in figure 3(d), the deviation is symmetric about vy=0, and asymmetric about vx=ux.The contour plot consists of three segments along the vxdirection.The leftmost segment is in the region of the first peak, where the contour lines are approximately elliptical.The middle part is in the low valley area that seems like a‘moon’ shape.And the rightmost one is in the low peak area, which likes a ‘cobblestone’.The contour lines between the high peak and the valley are closer to each other than those between the valley and low peak,because the gradients between the leftmost and middle parts are sharp than those between the middle and rightmost regions.

    Finally, let us investigate the one-dimensional distribution functions and the corresponding deviations from the equilibrium states.Figures 4(a) and (b) depict the velocity distribution functions in the vxand vydirections,respectively.The solid lines represent the velocity distribution functions f(vx)=∫∫fdvydη and f(vy)=∫∫fdvxdη, the dashed curves express the equilibrium counterparts feq(vx)=∫∫feqdvydη and feq(vy)=∫∫feqdvxdη, respectively.Figures 4(c) and (d) show fneq(vx)=f(vx)-feq(vx) and fneq(vy)=f(vy)-feq(vy) which indicate the departures of distribution functions from the equilibrium state in the vxand vydirections,respectively.The following points can be obtained.

    (I) In figures 4(a)–(b), there is a peak for each curve of f(vx),feq(vx),f(vy),and feq(vy).In figures 4(c)–(d),there are two peaks and a trough for fneq(vx), while a peak and two troughs for fneq(vy).Along the vxdirection,fneq(vx) forms a positive peak firstly, then decreases to form a valley, and then increases to a second positive peak.Because f(vx)is first greater than feq(vx),then less than feq(vx), and finally greater than feq(vx) again.Similarly, the relation f(vy)>feq(vy) or f(vy)<feq(vy)in figure 4(b) leads to the results fneq(vy)>0 or fneq(vy)<0 in figure 4(d).

    (II) f(vx) and fneq(vx) are asymmetric about the vertical dashed line located at vx=ux, while feq(vx) is symmetric.Physically, as the detonation evolves, the compressible effect plays a significant role in the front of the detonation wave,and the internal energy in the x degree of freedom increases faster than in other degrees of freedom, and there exists disorganized heat flux in the x direction.

    (III) In figures 4(b) and (d), each curve of f(vy), feq(vy) and fneq(vy) has a positive peak which is symmetric about vy=0.On the left and right parts of fneq(vy) are two identical troughs that are symmetrically distributed in figure 4(b).Because the periodic boundary condition is imposed on the y direction, the equilibrium and nonequilibrium velocity distributions for vy>0 and vy<0 are symmetrical.

    Figure 3.The velocity distribution function(a)and its corresponding contour(b),the deviation of the velocity distribution function from the equilibrium state (c) and its corresponding contour (d).

    Figure 4.One-dimensional nonequilibrium and equilibrium distribution functions in the vx (a) and vy (b) directions, and the differences between them in the vx (c) and vy (d) directions.

    (IV) The nonequilibrium manifestations in figures 2(a)–(d)are consistent with the deviations of distribution functions in figures 4(a)–(d).Specifically, the trend of fneq(vx) indicates that f(vx) is ‘fatter’ and ‘lower’ than feq(vx), which means the disorganized momentum flux Δ2,xx>0.The trend of fneq(vy) means that f(vy) is‘thinner’ and ‘higher’ than feq(vy), which indicates Δ2,yy<0.Meanwhile, the portion f(vx>ux) is ‘fatter’than the part f(vx<ux), which is named ‘positive skewness’ and indicates Δ3,1,x>0.And the symmetry of fneq(vy) means Δ3,1,y=0.

    6.Conclusions

    Via the Chapman–Enskog expansion,the velocity distribution function of compressible reactive flows is expressed by using the macroscopic quantities and their spatial derivatives.The equilibrium and nonequilibrium distribution functions in oneand two-dimensional velocity spaces are recovered quantitatively from the physical quantities of the DBM, which is an accurate and efficient gas kinetic method.The departure between the equilibrium and nonequilibrium distribution functions is in line with the nonequilibrium quantities measured by the DBM.Moreover, it is for the first time to verify that the kinetic moments measured by summations of the distribution function resemble those assessed by integrals of the original forms,which consists with the theoretical basis of the DBM.In addition, under the condition that the chemical time scale is longer than the molecular relaxation time, it is numerically and theoretically demonstrated that the chemical reaction imposes no direct impact on the thermodynamic nonequilibrium effects.

    国产高清国产精品国产三级| 免费黄网站久久成人精品| 久久毛片免费看一区二区三区| 精品国产露脸久久av麻豆| 最新中文字幕久久久久| 丰满迷人的少妇在线观看| 热99国产精品久久久久久7| 国产深夜福利视频在线观看| 亚洲在久久综合| a级毛片在线看网站| 桃花免费在线播放| 亚洲av免费高清在线观看| 久久精品国产鲁丝片午夜精品| 精品少妇黑人巨大在线播放| 日韩中字成人| 欧美日韩视频高清一区二区三区二| 97精品久久久久久久久久精品| 国产色婷婷99| 久久久亚洲精品成人影院| 亚洲精品乱久久久久久| 国内精品宾馆在线| 女的被弄到高潮叫床怎么办| h视频一区二区三区| 色5月婷婷丁香| 少妇高潮的动态图| 日韩精品有码人妻一区| 久久国产亚洲av麻豆专区| 妹子高潮喷水视频| 日韩成人伦理影院| 亚洲天堂av无毛| 18禁在线播放成人免费| 极品教师在线视频| 久久女婷五月综合色啪小说| 色吧在线观看| 久久国内精品自在自线图片| h视频一区二区三区| 久久99一区二区三区| 久久久久视频综合| 曰老女人黄片| 欧美高清成人免费视频www| 久久免费观看电影| 99九九线精品视频在线观看视频| 男人狂女人下面高潮的视频| 国产成人精品福利久久| 美女主播在线视频| 丰满少妇做爰视频| 一级毛片aaaaaa免费看小| 国产精品一区二区性色av| 亚洲精品色激情综合| 亚洲欧美清纯卡通| 国产午夜精品一二区理论片| av天堂中文字幕网| 精品午夜福利在线看| 高清欧美精品videossex| 在线观看人妻少妇| 久久久久久久久久久免费av| 看非洲黑人一级黄片| 最近中文字幕高清免费大全6| 热re99久久精品国产66热6| 蜜桃在线观看..| 久久久午夜欧美精品| 伦理电影免费视频| 在线观看www视频免费| 国产又色又爽无遮挡免| 国产午夜精品久久久久久一区二区三区| 9色porny在线观看| 熟妇人妻不卡中文字幕| 你懂的网址亚洲精品在线观看| 国产成人91sexporn| av国产久精品久网站免费入址| 久久精品国产a三级三级三级| 色94色欧美一区二区| 一区二区av电影网| 男人爽女人下面视频在线观看| 国产淫语在线视频| 国产精品国产三级专区第一集| 狂野欧美激情性xxxx在线观看| 麻豆乱淫一区二区| 女人久久www免费人成看片| 最新中文字幕久久久久| 老司机亚洲免费影院| 成人综合一区亚洲| 久久99精品国语久久久| 美女福利国产在线| 午夜影院在线不卡| 高清黄色对白视频在线免费看 | 韩国av在线不卡| 国产又色又爽无遮挡免| 亚洲天堂av无毛| 91久久精品国产一区二区成人| 黑人巨大精品欧美一区二区蜜桃 | 麻豆成人av视频| 日本色播在线视频| 一区二区三区乱码不卡18| 一个人免费看片子| 纵有疾风起免费观看全集完整版| 国产精品女同一区二区软件| 又爽又黄a免费视频| 国产有黄有色有爽视频| a级毛片免费高清观看在线播放| 免费在线观看成人毛片| 亚洲av二区三区四区| 亚洲av男天堂| 在线免费观看不下载黄p国产| 在线播放无遮挡| 亚洲天堂av无毛| 美女福利国产在线| 久久久久久久亚洲中文字幕| 日韩av在线免费看完整版不卡| 久久影院123| 成人二区视频| 成人亚洲精品一区在线观看| 一边亲一边摸免费视频| 特大巨黑吊av在线直播| 纵有疾风起免费观看全集完整版| 久久久久人妻精品一区果冻| 香蕉精品网在线| 黄色日韩在线| 男女边吃奶边做爰视频| 在线亚洲精品国产二区图片欧美 | 中国三级夫妇交换| 曰老女人黄片| 少妇高潮的动态图| 国产精品三级大全| 亚洲精品中文字幕在线视频 | 国产精品女同一区二区软件| av在线老鸭窝| 国产精品成人在线| 婷婷色综合www| 成人综合一区亚洲| 欧美日韩精品成人综合77777| 国产精品久久久久久av不卡| 午夜免费观看性视频| 国产亚洲5aaaaa淫片| av在线播放精品| 久久精品国产鲁丝片午夜精品| 国产精品一区二区性色av| av天堂久久9| 特大巨黑吊av在线直播| 欧美精品一区二区大全| 亚洲情色 制服丝袜| 久久久久久人妻| 中文字幕人妻丝袜制服| 少妇裸体淫交视频免费看高清| 久久久久久人妻| 成年美女黄网站色视频大全免费 | 国产中年淑女户外野战色| 亚洲欧美成人精品一区二区| 日本午夜av视频| 最后的刺客免费高清国语| 男人添女人高潮全过程视频| 国产一区二区三区av在线| 热re99久久国产66热| 亚洲av成人精品一区久久| 日韩一本色道免费dvd| 啦啦啦中文免费视频观看日本| 亚洲av在线观看美女高潮| 亚洲第一区二区三区不卡| 多毛熟女@视频| 极品教师在线视频| 精品熟女少妇av免费看| 国产综合精华液| 黑人巨大精品欧美一区二区蜜桃 | 熟女电影av网| 精品一区在线观看国产| 纯流量卡能插随身wifi吗| 国产有黄有色有爽视频| 丰满迷人的少妇在线观看| 久久久久久久久久久丰满| 亚洲精品aⅴ在线观看| 9色porny在线观看| 夜夜爽夜夜爽视频| 国产精品偷伦视频观看了| 99久久综合免费| 美女中出高潮动态图| 一区二区三区精品91| 六月丁香七月| 97超碰精品成人国产| 日本wwww免费看| 亚洲欧美中文字幕日韩二区| 久久国产精品大桥未久av | 国产在线视频一区二区| 午夜久久久在线观看| 亚洲精品456在线播放app| 国产熟女欧美一区二区| 天美传媒精品一区二区| 两个人免费观看高清视频 | 女性生殖器流出的白浆| 国产精品国产三级国产av玫瑰| 久久久久国产精品人妻一区二区| 精品国产一区二区三区久久久樱花| 成人特级av手机在线观看| 三上悠亚av全集在线观看 | 美女视频免费永久观看网站| 国产成人精品久久久久久| 美女xxoo啪啪120秒动态图| 成年av动漫网址| 男女免费视频国产| 人人妻人人添人人爽欧美一区卜| videos熟女内射| 久久久午夜欧美精品| 午夜91福利影院| 国产午夜精品一二区理论片| av又黄又爽大尺度在线免费看| 国产69精品久久久久777片| 一级毛片黄色毛片免费观看视频| 久久久久久久精品精品| 国产伦精品一区二区三区四那| 3wmmmm亚洲av在线观看| 国产乱来视频区| 精品国产一区二区三区久久久樱花| av天堂久久9| 国产日韩欧美亚洲二区| 精品久久久久久久久亚洲| 色婷婷久久久亚洲欧美| 欧美日本中文国产一区发布| 伦理电影免费视频| 夜夜爽夜夜爽视频| 亚洲av男天堂| 成年av动漫网址| 亚洲一区二区三区欧美精品| 国产精品久久久久成人av| 久久精品国产亚洲av涩爱| 亚洲国产欧美在线一区| 99久久人妻综合| 亚洲精品亚洲一区二区| 最后的刺客免费高清国语| 人妻一区二区av| 一级毛片 在线播放| a级毛色黄片| 精品国产一区二区三区久久久樱花| 国国产精品蜜臀av免费| 国产精品麻豆人妻色哟哟久久| 男的添女的下面高潮视频| 国产男人的电影天堂91| 老熟女久久久| 国产永久视频网站| 少妇裸体淫交视频免费看高清| 国产色爽女视频免费观看| 欧美日韩在线观看h| 在线 av 中文字幕| 99精国产麻豆久久婷婷| 精品少妇久久久久久888优播| 精品视频人人做人人爽| 国产伦精品一区二区三区视频9| 麻豆乱淫一区二区| 永久网站在线| av国产久精品久网站免费入址| 中文资源天堂在线| 一级a做视频免费观看| 老熟女久久久| 最黄视频免费看| 国产精品99久久99久久久不卡 | 亚洲精品乱久久久久久| 久久久久久久久久久丰满| 在线观看免费日韩欧美大片 | 国产欧美日韩精品一区二区| 亚洲一级一片aⅴ在线观看| 婷婷色av中文字幕| 汤姆久久久久久久影院中文字幕| 欧美日韩av久久| 人人妻人人澡人人爽人人夜夜| 狂野欧美激情性xxxx在线观看| 国产高清三级在线| www.色视频.com| 男人狂女人下面高潮的视频| 只有这里有精品99| 秋霞在线观看毛片| 伊人亚洲综合成人网| 一级毛片我不卡| 伊人久久精品亚洲午夜| 观看美女的网站| 秋霞伦理黄片| 国产亚洲欧美精品永久| 丝袜喷水一区| 国产欧美日韩综合在线一区二区 | 亚洲国产精品一区二区三区在线| 亚洲国产最新在线播放| 五月开心婷婷网| 日韩强制内射视频| 国产av一区二区精品久久| 一级毛片 在线播放| 狠狠精品人妻久久久久久综合| 久久99精品国语久久久| av女优亚洲男人天堂| 亚洲成色77777| 日本av手机在线免费观看| 日韩一区二区视频免费看| 我的女老师完整版在线观看| 国产精品蜜桃在线观看| 亚洲天堂av无毛| 亚洲精品成人av观看孕妇| 天堂中文最新版在线下载| 六月丁香七月| 黄色日韩在线| 热re99久久国产66热| 国产探花极品一区二区| 观看美女的网站| 国产又色又爽无遮挡免| 2018国产大陆天天弄谢| 成人综合一区亚洲| 国产亚洲欧美精品永久| 日韩精品免费视频一区二区三区 | 日本黄大片高清| 一区二区三区免费毛片| 黄色日韩在线| 久久午夜福利片| 国产欧美亚洲国产| 色视频在线一区二区三区| av视频免费观看在线观看| 亚洲国产欧美在线一区| 成人综合一区亚洲| 国产国拍精品亚洲av在线观看| 内地一区二区视频在线| 国产极品粉嫩免费观看在线 | 伊人亚洲综合成人网| 2021少妇久久久久久久久久久| 成人亚洲精品一区在线观看| 嫩草影院入口| 成人亚洲精品一区在线观看| 精品卡一卡二卡四卡免费| 人妻制服诱惑在线中文字幕| 亚洲精品久久午夜乱码| 中文资源天堂在线| 一级毛片久久久久久久久女| 中国美白少妇内射xxxbb| 夫妻午夜视频| 中文字幕久久专区| 亚洲av福利一区| 精品亚洲成国产av| 一本色道久久久久久精品综合| 99久久人妻综合| 日韩精品有码人妻一区| 黑人巨大精品欧美一区二区蜜桃 | 国产精品国产三级专区第一集| 黄色视频在线播放观看不卡| 欧美三级亚洲精品| 亚洲情色 制服丝袜| 欧美精品高潮呻吟av久久| 两个人的视频大全免费| 少妇高潮的动态图| 大香蕉久久网| 国产爽快片一区二区三区| 不卡视频在线观看欧美| 婷婷色综合大香蕉| 春色校园在线视频观看| 人妻一区二区av| 免费播放大片免费观看视频在线观看| 色婷婷久久久亚洲欧美| 久久这里有精品视频免费| 少妇丰满av| 黄色视频在线播放观看不卡| 国产成人精品福利久久| 男女边吃奶边做爰视频| 精品99又大又爽又粗少妇毛片| 三级国产精品欧美在线观看| 久久综合国产亚洲精品| 高清在线视频一区二区三区| 日韩欧美 国产精品| 日日爽夜夜爽网站| 久久毛片免费看一区二区三区| 日韩制服骚丝袜av| 女性被躁到高潮视频| 岛国毛片在线播放| 久久久精品94久久精品| 欧美3d第一页| 亚洲欧美精品自产自拍| 国产精品久久久久成人av| 免费观看在线日韩| 在线 av 中文字幕| 亚洲精品乱码久久久久久按摩| 欧美xxxx性猛交bbbb| 日韩一本色道免费dvd| 亚洲人与动物交配视频| 国产精品福利在线免费观看| 极品教师在线视频| 日本wwww免费看| av黄色大香蕉| 777米奇影视久久| 日韩视频在线欧美| 亚洲精品国产色婷婷电影| 蜜桃在线观看..| 一级二级三级毛片免费看| 日韩成人伦理影院| 久久97久久精品| 国产精品.久久久| 在线观看免费高清a一片| av有码第一页| 国产在视频线精品| 亚洲av欧美aⅴ国产| 亚洲欧美中文字幕日韩二区| 蜜臀久久99精品久久宅男| 国产日韩欧美视频二区| 欧美日韩视频精品一区| 欧美成人午夜免费资源| 黑人高潮一二区| 精品久久久噜噜| 国产男人的电影天堂91| 另类亚洲欧美激情| 观看美女的网站| 黄色配什么色好看| 大片免费播放器 马上看| 精品国产一区二区三区久久久樱花| 人妻人人澡人人爽人人| 交换朋友夫妻互换小说| 天堂俺去俺来也www色官网| 如日韩欧美国产精品一区二区三区 | 国产乱人偷精品视频| 在线观看免费日韩欧美大片 | 久久这里有精品视频免费| a级毛片免费高清观看在线播放| 国产伦精品一区二区三区四那| 欧美国产精品一级二级三级 | av在线播放精品| www.av在线官网国产| 嫩草影院入口| 在线看a的网站| a 毛片基地| 国产亚洲5aaaaa淫片| 嘟嘟电影网在线观看| 又大又黄又爽视频免费| 国产一区有黄有色的免费视频| 少妇的逼好多水| 国产欧美日韩精品一区二区| 国产精品三级大全| 亚洲久久久国产精品| 国产免费视频播放在线视频| 久久人妻熟女aⅴ| 大香蕉97超碰在线| 婷婷色麻豆天堂久久| 亚洲欧美日韩另类电影网站| 哪个播放器可以免费观看大片| 国产精品蜜桃在线观看| 中国三级夫妇交换| 亚洲人成网站在线观看播放| 国产av国产精品国产| 色网站视频免费| 色婷婷久久久亚洲欧美| 亚洲精品,欧美精品| 在线亚洲精品国产二区图片欧美 | 人妻人人澡人人爽人人| 日韩人妻高清精品专区| 亚洲成人一二三区av| 人人妻人人澡人人看| 乱码一卡2卡4卡精品| 国产精品免费大片| 99re6热这里在线精品视频| 91精品伊人久久大香线蕉| 精品国产露脸久久av麻豆| 成年人午夜在线观看视频| 午夜日本视频在线| 欧美日韩亚洲高清精品| 18禁裸乳无遮挡动漫免费视频| 成年女人在线观看亚洲视频| 亚洲欧洲精品一区二区精品久久久 | 啦啦啦视频在线资源免费观看| 综合色丁香网| 色网站视频免费| 国产片特级美女逼逼视频| 这个男人来自地球电影免费观看 | 人人妻人人添人人爽欧美一区卜| 又黄又爽又刺激的免费视频.| 日韩中文字幕视频在线看片| a级片在线免费高清观看视频| 嫩草影院新地址| 亚洲成色77777| 最后的刺客免费高清国语| 日韩欧美 国产精品| 天堂俺去俺来也www色官网| 人人妻人人澡人人看| 精品久久久噜噜| 亚洲av电影在线观看一区二区三区| 少妇被粗大的猛进出69影院 | av免费观看日本| 成年av动漫网址| 大码成人一级视频| 人人妻人人爽人人添夜夜欢视频 | 日本黄色日本黄色录像| 国语对白做爰xxxⅹ性视频网站| 两个人的视频大全免费| 亚洲精品456在线播放app| av免费在线看不卡| 赤兔流量卡办理| 久久99热这里只频精品6学生| 精品国产一区二区三区久久久樱花| 国产精品一区www在线观看| 国产 一区精品| 乱人伦中国视频| 有码 亚洲区| 精品人妻熟女毛片av久久网站| 亚洲国产最新在线播放| 亚洲av国产av综合av卡| 国产深夜福利视频在线观看| 夫妻午夜视频| 日韩熟女老妇一区二区性免费视频| 五月天丁香电影| 国产黄频视频在线观看| 国产亚洲av片在线观看秒播厂| 一级毛片电影观看| h日本视频在线播放| 女性被躁到高潮视频| 欧美日韩在线观看h| 精品亚洲成a人片在线观看| 婷婷色麻豆天堂久久| 女的被弄到高潮叫床怎么办| 啦啦啦在线观看免费高清www| 国产毛片在线视频| 最近手机中文字幕大全| 国产亚洲5aaaaa淫片| 精品亚洲乱码少妇综合久久| 欧美少妇被猛烈插入视频| 伦理电影大哥的女人| 丰满少妇做爰视频| 日产精品乱码卡一卡2卡三| 免费黄网站久久成人精品| 亚洲国产欧美在线一区| 免费看不卡的av| 国产精品一区二区在线不卡| 中国美白少妇内射xxxbb| 嫩草影院新地址| 在线观看免费高清a一片| 亚洲国产成人一精品久久久| 免费播放大片免费观看视频在线观看| 又爽又黄a免费视频| 日韩中文字幕视频在线看片| 青春草视频在线免费观看| 搡老乐熟女国产| 国产成人一区二区在线| 天堂8中文在线网| 色5月婷婷丁香| 色视频在线一区二区三区| 99国产精品免费福利视频| 国产黄片视频在线免费观看| 国产成人精品福利久久| 午夜福利视频精品| 亚洲经典国产精华液单| 六月丁香七月| 老司机影院毛片| 大香蕉97超碰在线| 亚洲精品aⅴ在线观看| 国产成人aa在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲精品中文字幕在线视频 | 激情五月婷婷亚洲| 亚洲欧美成人精品一区二区| 色视频在线一区二区三区| 大香蕉久久网| 日韩欧美精品免费久久| 永久网站在线| 欧美日韩av久久| 最新的欧美精品一区二区| 91精品国产九色| 亚洲美女视频黄频| 午夜免费男女啪啪视频观看| 精品久久久精品久久久| 国产午夜精品久久久久久一区二区三区| 亚洲国产毛片av蜜桃av| 日本av手机在线免费观看| 我的老师免费观看完整版| 中文字幕制服av| 免费久久久久久久精品成人欧美视频 | 国产成人精品婷婷| 免费大片黄手机在线观看| 水蜜桃什么品种好| 美女国产视频在线观看| 欧美人与善性xxx| 中文乱码字字幕精品一区二区三区| 国产熟女午夜一区二区三区 | 午夜日本视频在线| 日本91视频免费播放| 天堂8中文在线网| 永久免费av网站大全| 自线自在国产av| 狂野欧美激情性xxxx在线观看| 一级毛片黄色毛片免费观看视频| 亚洲精品456在线播放app| 有码 亚洲区| 成人亚洲欧美一区二区av| 婷婷色av中文字幕| 色哟哟·www| 老司机影院毛片| 另类精品久久| 国产亚洲午夜精品一区二区久久| h日本视频在线播放| 国产视频内射| 国产一区亚洲一区在线观看| 女人久久www免费人成看片| 韩国av在线不卡| 日韩中文字幕视频在线看片| 大香蕉久久网| 麻豆精品久久久久久蜜桃| 爱豆传媒免费全集在线观看| av有码第一页| a级毛色黄片| 高清av免费在线| 久久久久久久久久人人人人人人| 国产69精品久久久久777片| 少妇的逼好多水| 99精国产麻豆久久婷婷| 亚洲国产欧美日韩在线播放 | 国产白丝娇喘喷水9色精品| 国产日韩欧美视频二区| 欧美精品国产亚洲| 老司机影院毛片| 美女视频免费永久观看网站| 成人特级av手机在线观看| 天堂中文最新版在线下载| 自线自在国产av| 欧美日韩视频高清一区二区三区二| 伊人亚洲综合成人网| 免费黄频网站在线观看国产| 啦啦啦中文免费视频观看日本| 婷婷色麻豆天堂久久| 欧美一级a爱片免费观看看| 王馨瑶露胸无遮挡在线观看|