• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mid-infrared-perturbed molecular vibrational signatures in plasmonic nanocavities

    2022-03-19 09:27:18RohitChikkaraddyAngelosXomalisLukasJakobandJeremyBaumberg
    Light: Science & Applications 2022年1期

    Rohit Chikkaraddy,Angelos Xomalis,Lukas A.Jakob and Jeremy J.Baumberg

    1NanoPhotonics Centre,Cavendish Laboratory,Department of Physics,JJ Thompson Avenue,University of Cambridge,Cambridge CB3 0HE,UK.

    2Present address:Empa,Swiss Federal Laboratories for Materials Science and Technology,Laboratory for Mechanics of Materials and Nanostructures,Thun,Switzerland

    Abstract Recent developments in surface-enhanced Raman scattering (SERS) enable observation of single-bond vibrations in real time at room temperature.By contrast,mid-infrared (MIR) vibrational spectroscopy is limited to inefficient slow detection.Here we develop a new method for MIR sensing using SERS.This method utilizes nanoparticle-on-foil(NPoF)nanocavities supporting both visible and MIR plasmonic hotspots in the same nanogap formed by a monolayer of molecules.Molecular SERS signals from individual NPoF nanocavities are modulated in the presence of MIR photons.The strength of this modulation depends on the MIR wavelength,and is maximized at the 6-12 μm absorption bands of SiO2 or polystyrene placed under the foil.Using a single-photon lock-in detection scheme we time-resolve the rise and decay of the signal in a few 100 ns.Our observations reveal that the phonon resonances of SiO2 can trap intense MIR surface plasmons within the Reststrahlen band,tuning the visible-wavelength localized plasmons by reversibly perturbing the localized few-nm-thick water shell trapped in the nanostructure crevices.This suggests new ways to couple nanoscale bond vibrations for optomechanics,with potential to push detection limits down to single-photon and single-molecule regimes.

    Introduction

    Optical detection methods in the mid-infrared regime(MIR,3-15μm) with single-photon sensitivity have wide implications in astrophysics and molecular nanoscience.Molecules and polar dielectric systems have characteristic bond vibrations and phonon modes across MIR wavelengths1-6.For ultrasmall sample volumes,optical detection(or pumping)of these modes gives low signals and is challenging due to the weak far-field coupling of these vibrations and low quantum efficiencies of MIR detectors7,8.Fourier transform infrared spectroscopy methods with photoconductive detectors (MCT) remain the workhorse for MIR detection,but they are slow,often require cryogenic cooling,and cannot approach the quantum limit.Upconverting low-energy MIR photons to high-energy visible photons would significantly benefit from single-photon-sensitive semiconductor (CCD,CMOS) technologies9-14.However,the poor conversion efficiencies and small spatial overlap of MIR and visible photons pose significant challenges15.

    Recent developments have circumvented the limitations associated with optical diffraction at long wavelengths by using near-field tip scanning (s-SNOM),photothermal infrared (PTIR)16,17and far-field mid-infrared photothermal microscopy (MIP)18.s-SNOM still relies on MCT-based detection schemes but can overcome diffraction limits from near-field scanning tips.Near-field(PTIR)and far-field(MIP)photothermal methods instead utilize efficient detection in the visible.The modulated MIR laser beam changes the reflection/transmission of a visible beam due to thermal expansion,pressure waves,refractive index changes or Grüneisen changes in the medium,which are efficiently detected through lock-in methods18.Even though the visible detectors used are fast and efficient,the signals obtained in PTIR and MIP are limited by thermal diffusivities on millisecond timescales.

    These challenges can be addressed by upconversion which utilizes cavity optomechanical approaches for efficient MIR detection.When MIR light impinges on an optical resonator it can excite mechanical resonances which are read out optically,allowing measurement at room temperature with low noise19-22.Here the detection limits are set by optomechanical coupling strengths (g),proportional to the quality factor of the mechanical mode.However,the diffraction-limited size of such cavities limitsgto less than 1 MHz and thus functions worse than conventional MCT-based detectors.Intriguingly,the mechanical motion can now be replaced by vibrating bonds in molecules (Fig.1a),opening clear avenues for molecular optomechanics and photochemistry23,24.This landscape of detection speed and resolution towards single-photon and single-molecule sensitivity shows how these diverse detection methods compare (Fig.1b).

    Fig.1 Coupling MIR and visible light into plasmonic nanogaps.

    Here we develop a MIR-perturbed surface-enhanced Raman scattering (SERS) method which uses singlemolecule-sensitive metal nanocavities.The system is constructed using gold nanoparticles (AuNP) on a thin foil of planar Au with vibrating molecules assembled in the gap formed between them (Fig.1c).The strong visible-light confinement in the nanogap provides enhanced (>109) Raman scattering from the molecules in the gap,acting as a near-field probe.In this detection scheme,MIR light is absorbed in molecular bonds on the foil significantly altering the Stokes and anti-Stokes Raman signals at visible wavelengths,which can easily be detected (Fig.1a).The interaction of light and matter in these sub-nm mode volumes allows extreme sensitivity to (in principle) single MIR photon with resolution down to a single molecule (Fig.1b).

    Results

    Coherent electron oscillations coupled with light(plasmon polaritons) trap electromagnetic (EM) fields around metal nanostructures giving a resonant optical response in the visible and broad weaker optical response spanning from visible to MIR wavelengths25-30.While single metal nanoparticles do not provide sufficient field enhancement needed for robust single-molecule SERS,nanogap confinement improves this greatly.Here we exploit a multilayer nanoparticle-on-foil (NPoF) cavity that resonantly enhances the near-field at visible wavelengths in addition to giving a broad MIR optical response from lighting rod effects31,32.This structure consists of a faceted gold nanoparticle placed~1.3 nm above a thin Au film (10 nm) deposited on a SiO2substrate (Fig.1c).The gap distance between the AuNP and Au film is set by the monolayer height of biphenyl-4-thiol (BPT) molecules preassembled from solution onto the film before AuNP deposition.The resulting NPoF structure supports plasmonic (lm)=(10) and (20) cavity resonances at 850 nm and 650 nm withE/E0>100 (Fig.1e)33-35.This gives strong SERS and a broad uniform near-field enhancement across the MIR absorption wavelengths of 5-15μm(Fig.1d).The NPoF is designed for optimal spatial overlap of visible and MIR light which is vital for MIRperturbed SERS.

    To study the MIR-perturbed SERS from these cavities,we direct a tunable MIR pump beam (500μW average power) and 633 nm SERS probe (150μW average power)onto individual NPoF cavities (Fig.2a).The 633 nm laser is focused through the SiO2substrate while the MIR pump is focused via a Cassegrain objective from the airside,with estimated spot diameters on the sample of 1 μm for 633 nm and 20 μm for the MIR beam atλ=10 μm(Supporting Information,Fig.S1).Both beams are coaligned onto the sample and the back-scattered SERS from BPT molecules is collected through the SiO2substrate and routed to the spectrometer.The NPoF supports a unique dual configuration with metal-insulator-metal(MIM) gap mode at the AuNP-foil junction coupling to the insulator-metal-insulator (IMI) mode at the air-foil-glass interface,resulting in tightly confined MIMI modes which radiate SERS light predominately into the glass medium36.

    Fig.2 MIR pump and visible SERS probe.

    The NPoF cavities provide stable SERS signals upon laser illumination at 633 nm,with characteristic BPT vibrational lines at 1080 cm-1and 1585 cm-1(Fig.2b).37The spectral intensity variation obtained from time-series spectra over a period of 30 s from an individual NPoF cavity is <1% (Supporting Information Fig.S2).Upon irradiating with MIR light at 1100 cm-1,the SERS intensity is found to decrease by Δζ >20% (Fig.2b).This strong decrease in SERS signal is observed across all the vibrational lines of BPT as well as the Stokes background from the electronic Raman scattering (Fig.2c).The observed intensity change immediately recovers once the MIR light is turned off (Fig.2d).

    To understand the MIR energy dependence we collect SERS spectra while tuning the MIR energy between 800 and 1600 cm-1(in steps of 20 cm-1).SERS spectra are also collected both before and after the sample is illuminated with MIR light for reference.Scans with large variations (>30%) in the SERS spectra before and after MIR illumination either due to the alignment drift or diffusion of Au-adatoms in NPoF gaps are not considered38-40.Perturbed changes Δζ in SERS Stokes and anti-Stokes signals upon tuning the MIR illumination energy(Fig.3a)show a broadband response.Line profiles extracted from BPT at two different vibrational lines (1080 cm-1and 1585 cm-1,Fig.3b-e) show the maximum decrease occurs when the MIR is tuned around 1100 cm-1.Electronic Raman signals extracted from the Stokes background exhibit similar line profiles,with a lower magnitude(grey).This characteristic MIR-perturbed peak at 1100 cm-1corresponds to the SiO2phonon absorption(see below).

    Fig.3 MIR energy-dependent SERS change.

    It is important to note that we never observe an increase in SERS,even when using AuNPs with different lower facet size which tunes their plasmon resonances with respect to the 633 nm probe wavelength (Supporting Information,Fig.S10).The measured scattering resonances match our simulations for AuNPs with average facet sizes of 20 nm,which is consistent with scanning electron microscope images(Supporting Information,Fig.S9).In addition,experiments performed on the foil away from the AuNP do not show any signature of MIRperturbed SERS,which confirms that the perturbed SERS signals are observed only from the nanogap,and not from the foil on its own.

    To confirm the origin of MIR-perturbed signals from the influence of vibrations of the support material underneath the foil,we constructed NPoF systems with polystyrene replacing SiO2under the foil (Fig.4a).The MIR energy dependence on polystyrene-NPoFs show a different spectral dependence and weaker signal intensity compared to SiO2samples.Here a smaller MIR frequency range is scanned with a finer resolution of 5 cm-1.The MIR-perturbed SERS spectrum displays sharp peaks matching the vibrational absorption lines of bulk polystyrene,clearly indicating that the signal must originate from interactions with the material underneath the foil.The perturbed SERS signal varies across different NPoF structures which is a characteristic signature of nanoscale inhomogeneities,depending on the exact molecular geometry of polymer underneath the NPoF.

    Fig.4 MIR-perturbed SERS for polystyrene NPoF.

    To characterize the dynamics of the MIR-perturbed SERS signal originating from the phonons underneath the foil,we develop a time-correlated single-photon lock-in method to time-resolve the signal.The Stokes part of the SERS signal is routed to a single-photon avalanche diode(SPAD) detector (Fig.5a).The arrival of each SERS photon is time-correlated to the MIR trigger signal from the quantum cascade laser (QCL).This allows us to resolve the MIR-perturbed signal with a time resolution of 100 ps41.The QCL is triggered at 0.32 MHz with MIR pulses of width 100 ns.The MIR-perturbed SERS rapidly decreases immediately after the MIR pulse (Fig.5b),with a timescale of~300 ns consistently obtained across multiple NPoF cavities(not limited by the MIR pulsewidth of 100 ns).Subsequently,the SERS signal recovers with a longer decay time of >500 ns.This temporal response is fit with the single exponential rise and decay times using experiments on >25 NPoF cavities.The rise time is narrowly distributed around 290±50 ns whereas the decay time is more variable spanning 700±250 ns (Fig.5c).We find a positive correlation between the rise and decay times (τdecay~3.9τrise),suggesting they are intrinsically linked to the origin of the MIR-perturbed SERS signature.

    Fig.5 Time-resolved single-photon lock-in measurements.

    Discussion

    The maximum decrease in SERS signal observed at MIR energies~1100 cm-1is consistent across different NPoFs;however,the magnitude of signal varies between Δζ=10-25%.The spectral response of the perturbed SERS does not match with Raman or IR vibrational lines of BPT.This indicates that MIR absorption in BPT is not the dominant contribution to the observed signal.Instead,this characteristic peak at 1100 cm-1corresponds to the SiO2phonon absorption.This is also evidenced in the reflection dip that exhibits a typical Reststrahlen band42,43and confirmed by simulations of the MIR absorption at the Au-SiO2interface(Fig.6a,b).Within a band between 900 and 1150 cm-1,the real part of the SiO2dielectric function is negative (Re(ε)<0).The reduced SERS signal must therefore arise from a decrease in near-field intensity of the 633 nm probe,somehow caused by MIR excitation of this confined mode at the Au-SiO2interface.This results in a linear response with MIR power(Fig.6c).

    Direct heating of the Au interface from the 2 mW average power MIR pump contributes only a minimal change of <1°C in temperature (Fig.6d,e),which is fully consistent with the unchanged anti-Stokes background of SERS signals observed.The change in refractive index of SiO2needed to account for a 20% decrease in SERS is rather high (Δn>0.2) for the pump powers used here(Supporting Information,Fig.S5),corresponding to temperatures >1000°C.As a result,simple thermal effects are not sufficient to account for these observations.Further,conventional photothermal signals possess slow timescales (ms)44,45as the induced deflection of visible light requires strong deformations of the substrate underneath.Thermal expansion of Au or SiO2for a 10 K increase in local temperature is far too small to modulate the visible probe as required (Supporting Information,Table.S1).Similarly,reversible reconstruction of grain boundaries or polycrystallinity in the Au-foil on SiO2seems also unlikely to explain this MIR-perturbed SERS.

    The decrease in the SERS signal is thus attributed to a shift in the plasmon resonance wavelength perturbed by the modulation of refractive index directly around the AuNP (Supporting Information,Fig.S6).Exciting the SiO2Reststrahlen band shifts the (10) NPoF plasmon by~1 nm and reduces the plasmon enhancement of SERS atλ=633 nm.We can identify very few possible routes for this modulation,but possibilities can be either from nmscale deformations in the NP surface or from the effects of a nanoscale shell of water in the crevices under the AuNP.This shell of water is always present for such nanoassemblies in ambient conditions,and extremely hard to remove due to the highly acute crevice angle.The experiments performed here are in ambient dry conditions.However,in such nanogap confined environments,trapped water rearranges into various phases and can never be driven off completely46.We perform additional experiments with NPoF samples immersed in water and ethanol where evaporation is absent,and this indeed gives undetectable perturbation of the SERS signal in the presence of MIR light (Supporting Information,Fig.S8).Modelling shows that changing the crevice water shell width by <5 nm is sufficient to induce a 20% decrease in the SERS signal (Fig.6f,g).While the weak direct absorption of MIR light is insufficient to induce this,the situation is very different in the spectral band where SiO2acts as a metal47(Re(ε)<0 from 900 to 1200 cm-1) which allows it to support surface-plasmon-polaritons (SPPs) that amplify the optical field near Au by >50.These MIR SPPs are excited only by scattering at the NP,leading to even higher fields directly in the crevices and thus heating trapped water in real time.Indeed,replacing the SiO2with Si3N4(which hasRe(ε) >0 throughout our spectral range) eliminates this effect,demonstrating the key role of resonant MIR SPPs22.The total absorbed energy from each MIR pulse is a hundred-fold larger than required to evaporate a 5 nm shell of water.This mechanism is also consistent with the sub-μs rise and decay times,which correspond to thermal diffusion times from the heated nanoparticle (Fig.6f).

    Fig.6 SERS attenuation due to SiO2 phonon absorption.

    Most dielectrics support vibrational mid-infrared-active phonon modes which interact with light and plasmons in the same fashion as described above48,49.These polariton modes are distributed across the MIR-visible regions and constrain the nanoscale geometries for producing upconverted SERS signals.Since MIR SPP excitation improves the MIR coupling into the gap,there is a tradeoff between enhanced SERS upconversion and enhanced thermally perturbed retuning of the plasmon resonances.Our work suggests that avoiding the substrate Reststrahlen band will be needed for observing SERS upconversion from molecules22.

    The efficiencies of MIR detection in this NPoF system are compared with state-of-the-art low-dimensional semiconductor heterostructures or graphene that have been implemented for THz detection in recent detection schemes50-53.From an application perspective,the relevant figure of merit is the noise equivalent power (NEP),which corresponds to the lowest detectable power in 0.5 s integration time.This is measured here as the MIR power-dependent perturbation to the SERS signal(Fig.6c);however,most of the incident MIR is reflected by the Au-foil and remains undetected instead of being absorbed in the substrate.Given the 100 nm2crosssection of NPoFs at MIR frequencies,the NEP is estimated to be 0.1 nW Hz-0.5,which is close to state-of-theart detectors.Carefully designed variants of the NPoF geometry with MIR antenna resonances supporting unity absorption of MIR light would greatly boost the NEP.Theoretically the noise level is limited by photon shot noise in the visible laser,although in current experiments the noise is limited by the stability of the SERS signal.Light-driven diffusion of adatoms38,54and fluctuations39of defects in the metal nanoparticle contribute to significant variation in SERS intensities.There exists an opportunity to significantly improve the noise reduction by developing more robust nanocavity systems.Further,we suggest additional improvements in MIR detection by deterministically creating adatom picocavities with light40,55.

    In summary,we show how molecular SERS signals are modified by irradiating with MIR light across a wide spectral bandwidth from 5.8 to 12 μm (24-51 THz,800-1700 cm-1).Our observations reveal that phonon resonances of the SiO2substrate trap intense MIR SPPs in the Reststrahlen band,which can temporarily retune the localized plasmons by perturbing the outer 5-nm-thick shells of water in the nanostructure crevices.This results in strong reductions in SERS intensity,but could also be used in other ways,for instance for tuning plasmons in real time,as well as for exciting the NPoM in the MIR through SPP waveguides or antenna coupling.This suggests new ways to access nanoscale chemical imaging3,MIR photothermal bolometers56,photoacoustic microscopy57and optomechanics58.

    Materials and methods

    Sample preparation

    To prepare the thin mirror,we deposit 10 nm of Au on a clean SiO2cover slip (150μm thick) with a deposition rate of 0.5 ? s-1(Moorfield nanoPVD-T15A thermal evaporator).The Au-coated SiO2substrates are dipped into a 1 mM solution of biphenyl-4-thiol (BPT,Sigma Aldrich,97%) in anhydrous ethanol (Sigma Aldrich,<0.003% H2O) for 12 h resulting in self-assembled molecular monolayers (SAMs).For NPoF optical cavities,80 nm faceted NPs (BBI Solutions) are deposited directly onto the BPT-assembled Au-coated SiO2substrates.The deposition time is kept below 30 s,resulting in well-dispersed NPs.Lastly,the samples are rinsed thoroughly with double distilled water to remove the excess AuNPs.

    Experimental setup

    All SERS and MIR spectroscopy measurements are performed in a custom-built dual-channel microscope.For SERS,a spectrally filtered 633 nm diode laser(Matchbox,Integrated Optics)with 150μWμm-2power on the sample is used as a probe and is filtered with two notch filters before routing it to a Shamrock i303 spectrograph and a Newton EMCCD.The 633 nm light is focused onto the sample with the aid of a ×100 0.8 NA long working distance microscope objective.For imaging,the reflected light collected through the same objective lens is directed to a camera (Lumenera Infinity3-1).For the MIR light source,a quantum cascade laser (QCL) from LaserTune IR source (Block)with wavelength range of 5.4-13 μm is used(1635-780 cm-1) and maximum average output of 500μW(~2×4 mm collimated)with 5%duty cycle.The pump (MIR light) is coaligned with the probe (visible light)using a 0.4 NA Cassegrain objective lens.For MIR detection,an external mercury-cadmium-telluride(MCT) IR detector is used along with a ZnSe beamsplitter and is synced with the AOM to modulate the 633 nm diode laser.This improves the pump and probe pulse temporal overlap by matching the repetition rate and pulse widths.The sample is placed on a fully automated motorized stage (Prior Scientific H101) which is controlled with code written in Python.

    For single-photon time-correlated measurements,arrival times of all photons at the detector (Micro Photon Devices PDM $PD-100-CTD) and reference signals (MIR laser trigger) are continuously recorded by a time-todigital converter on a field-programmable gate array(FPGA) board.Comparing the photon timestamps with the reference signal allows recreating the periodic perturbation of the SERS signal by the MIR laser in time,integrated over millions of modulation cycles.This singlephoton lock-in detection scheme is described in more detail elsewhere41.

    Acknowledgements

    The authors acknowledge support from European Research Council (ERC)under Horizon 2020 research and innovation programme PICOFORCE (Grant Agreement No.861950),THOR (Grant Agreement No.829067) and POSEIDON(Grant Agreement No.861950).We acknowledge funding from the EPSRC(Cambridge NanoDTC EP/L015978/1,EP/L027151/1,EP/S022953/1,EP/P029426/1,and EP/R020965/1).R.C.acknowledges support from Trinity College,University of Cambridge.

    Author contributions

    R.C and J.J.B conceived and designed the experiments.R.C.performed the experiments with input from A.X and L.A.J.R.C.carried out the simulation and the analytical modelling with input from A.X.R.C.,A.X.and J.J.B.analysed the data.R.C.and J.J.B.wrote the manuscript with input from all authors.

    Conflict of interest

    The authors declare no competing interests.

    Data availability

    Source data can be found at DOI link:https://doi.org/10.17863/CAM.79290.

    Supplementary informationThe online version contains supplementary material available at https://doi.org/10.1038/s41377-022-00709-8.

    日韩精品中文字幕看吧| 精品熟女少妇八av免费久了| 啦啦啦 在线观看视频| 无限看片的www在线观看| 精品乱码久久久久久99久播| 国产精品免费视频内射| 欧美黄色淫秽网站| www.自偷自拍.com| 国产日韩一区二区三区精品不卡| 亚洲熟妇中文字幕五十中出| 香蕉久久夜色| 18禁黄网站禁片午夜丰满| 日本精品一区二区三区蜜桃| 欧美日本视频| 一区二区三区精品91| 国产伦一二天堂av在线观看| 一级黄色大片毛片| 一个人观看的视频www高清免费观看 | 久久久国产欧美日韩av| 一区二区三区国产精品乱码| 国产欧美日韩综合在线一区二区| 欧美日韩亚洲综合一区二区三区_| 国产精品精品国产色婷婷| 成人18禁在线播放| 欧美黄色片欧美黄色片| 老汉色∧v一级毛片| 亚洲天堂国产精品一区在线| 国产欧美日韩精品亚洲av| 精品高清国产在线一区| 亚洲免费av在线视频| 日韩欧美免费精品| 悠悠久久av| 久久精品亚洲熟妇少妇任你| 亚洲av熟女| 国产日韩一区二区三区精品不卡| 99国产极品粉嫩在线观看| 久久久国产成人免费| 亚洲成人国产一区在线观看| 久久亚洲真实| 日韩中文字幕欧美一区二区| 欧美精品啪啪一区二区三区| 国产在线精品亚洲第一网站| 免费在线观看黄色视频的| 人成视频在线观看免费观看| 精品久久久久久久毛片微露脸| 黄色视频不卡| 久久中文看片网| 天堂动漫精品| 久久亚洲真实| 少妇被粗大的猛进出69影院| 久久人人97超碰香蕉20202| 动漫黄色视频在线观看| 国产一级毛片七仙女欲春2 | 久久久国产成人精品二区| 国产97色在线日韩免费| 久久久久久久久久久久大奶| 高清黄色对白视频在线免费看| 男女下面进入的视频免费午夜 | 黄色丝袜av网址大全| 国产精品美女特级片免费视频播放器 | 国产精品免费视频内射| 99国产精品99久久久久| 丰满人妻熟妇乱又伦精品不卡| 免费不卡黄色视频| 国产av又大| 大型av网站在线播放| 视频区欧美日本亚洲| 黄色女人牲交| 久久欧美精品欧美久久欧美| 99久久99久久久精品蜜桃| 桃色一区二区三区在线观看| 亚洲欧美激情综合另类| e午夜精品久久久久久久| 好男人在线观看高清免费视频 | 两人在一起打扑克的视频| 人人澡人人妻人| 精品久久久精品久久久| 国产精品免费视频内射| 久久人人97超碰香蕉20202| 亚洲美女黄片视频| 久久久久久久久中文| 亚洲国产精品合色在线| 老熟妇仑乱视频hdxx| 乱人伦中国视频| 日韩 欧美 亚洲 中文字幕| av有码第一页| 日韩三级视频一区二区三区| 天天添夜夜摸| 大香蕉久久成人网| 国产单亲对白刺激| 精品第一国产精品| 国产高清videossex| 最新在线观看一区二区三区| 午夜成年电影在线免费观看| 十分钟在线观看高清视频www| 亚洲免费av在线视频| 精品第一国产精品| 看片在线看免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 99久久久亚洲精品蜜臀av| 免费在线观看影片大全网站| 日韩免费av在线播放| 国产又爽黄色视频| 亚洲av日韩精品久久久久久密| 一区二区三区精品91| 一卡2卡三卡四卡精品乱码亚洲| 精品国产乱子伦一区二区三区| 欧美成人午夜精品| 男女做爰动态图高潮gif福利片 | 国产单亲对白刺激| 麻豆一二三区av精品| 午夜视频精品福利| 在线免费观看的www视频| 夜夜爽天天搞| 人人妻人人澡人人看| 亚洲欧美精品综合久久99| 一区二区三区国产精品乱码| 亚洲 欧美 日韩 在线 免费| 最好的美女福利视频网| 天堂√8在线中文| 欧美成人一区二区免费高清观看 | 国产精品野战在线观看| 国语自产精品视频在线第100页| 久久久久亚洲av毛片大全| 精品乱码久久久久久99久播| 男女下面插进去视频免费观看| 亚洲aⅴ乱码一区二区在线播放 | 中文字幕人成人乱码亚洲影| 天堂√8在线中文| 亚洲黑人精品在线| 国产精品美女特级片免费视频播放器 | 一卡2卡三卡四卡精品乱码亚洲| 黄色毛片三级朝国网站| 亚洲欧美精品综合一区二区三区| 午夜精品国产一区二区电影| 亚洲熟妇中文字幕五十中出| a在线观看视频网站| 午夜成年电影在线免费观看| 丝袜美腿诱惑在线| 丰满人妻熟妇乱又伦精品不卡| 在线观看www视频免费| 19禁男女啪啪无遮挡网站| 非洲黑人性xxxx精品又粗又长| 香蕉久久夜色| 亚洲第一青青草原| e午夜精品久久久久久久| 成人国产综合亚洲| 啦啦啦 在线观看视频| 99久久精品国产亚洲精品| 欧美日韩瑟瑟在线播放| 国产成年人精品一区二区| 热99re8久久精品国产| 又黄又粗又硬又大视频| 亚洲第一青青草原| 亚洲成国产人片在线观看| 国产精品一区二区精品视频观看| av有码第一页| www.熟女人妻精品国产| 人人妻,人人澡人人爽秒播| 日日干狠狠操夜夜爽| 在线观看日韩欧美| 国产精品乱码一区二三区的特点 | 日本撒尿小便嘘嘘汇集6| 在线国产一区二区在线| 精品国产美女av久久久久小说| 麻豆国产av国片精品| 91在线观看av| 91麻豆精品激情在线观看国产| 一级作爱视频免费观看| 女性被躁到高潮视频| 亚洲av美国av| 性欧美人与动物交配| 女同久久另类99精品国产91| 91成年电影在线观看| 精品午夜福利视频在线观看一区| 老司机靠b影院| 香蕉丝袜av| 国产高清videossex| 午夜福利高清视频| 大型av网站在线播放| 精品一区二区三区av网在线观看| 韩国精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 亚洲色图综合在线观看| 国产精品影院久久| 国产精品免费一区二区三区在线| 久久亚洲真实| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲精品av在线| 男人舔女人的私密视频| 国产成年人精品一区二区| 桃红色精品国产亚洲av| 国产成人欧美在线观看| 波多野结衣巨乳人妻| 麻豆久久精品国产亚洲av| 天堂√8在线中文| 国产色视频综合| www.熟女人妻精品国产| 手机成人av网站| 国产精品香港三级国产av潘金莲| 在线免费观看的www视频| 亚洲性夜色夜夜综合| 亚洲精品中文字幕一二三四区| 操美女的视频在线观看| 麻豆一二三区av精品| 精品国产超薄肉色丝袜足j| 免费av毛片视频| 亚洲aⅴ乱码一区二区在线播放 | 国产精品综合久久久久久久免费 | 一本久久中文字幕| 国产精品久久电影中文字幕| 韩国av一区二区三区四区| 人人妻,人人澡人人爽秒播| 99在线人妻在线中文字幕| 亚洲精品久久国产高清桃花| 欧美丝袜亚洲另类 | 91大片在线观看| 国产精品免费视频内射| 国产一区二区三区在线臀色熟女| 9色porny在线观看| 欧美在线黄色| 精品一区二区三区四区五区乱码| 国语自产精品视频在线第100页| av有码第一页| 天堂影院成人在线观看| 亚洲美女黄片视频| 成年人黄色毛片网站| 欧美绝顶高潮抽搐喷水| 中文字幕人妻丝袜一区二区| 中出人妻视频一区二区| 午夜精品国产一区二区电影| 视频在线观看一区二区三区| 成人精品一区二区免费| 欧美激情 高清一区二区三区| 免费不卡黄色视频| 欧美日韩黄片免| 黄频高清免费视频| 在线国产一区二区在线| 宅男免费午夜| 亚洲欧美精品综合久久99| 少妇粗大呻吟视频| 亚洲人成电影观看| 女性被躁到高潮视频| АⅤ资源中文在线天堂| 亚洲avbb在线观看| 乱人伦中国视频| 日韩大码丰满熟妇| 美女国产高潮福利片在线看| 免费高清在线观看日韩| 91老司机精品| 亚洲国产精品999在线| 如日韩欧美国产精品一区二区三区| 国产免费男女视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产熟女xx| 国产91精品成人一区二区三区| 欧美色欧美亚洲另类二区 | 99久久国产精品久久久| 久久香蕉精品热| 香蕉丝袜av| 精品一区二区三区av网在线观看| 涩涩av久久男人的天堂| 久久香蕉激情| 久久香蕉精品热| 香蕉丝袜av| 亚洲欧美日韩高清在线视频| 久久精品国产亚洲av香蕉五月| 黄色片一级片一级黄色片| 麻豆成人av在线观看| 亚洲人成77777在线视频| 欧美大码av| 亚洲国产精品999在线| 在线观看免费午夜福利视频| 国产99白浆流出| 国产高清有码在线观看视频 | 香蕉国产在线看| 色尼玛亚洲综合影院| 大型黄色视频在线免费观看| 日韩大码丰满熟妇| 亚洲专区国产一区二区| 久久精品国产亚洲av高清一级| 国产激情久久老熟女| 久久人人97超碰香蕉20202| a在线观看视频网站| 欧美激情久久久久久爽电影 | 亚洲av成人一区二区三| 亚洲精品粉嫩美女一区| 亚洲欧洲精品一区二区精品久久久| 午夜影院日韩av| 99在线视频只有这里精品首页| 亚洲专区国产一区二区| 国内毛片毛片毛片毛片毛片| 国产aⅴ精品一区二区三区波| 欧美日本亚洲视频在线播放| 国产极品粉嫩免费观看在线| 悠悠久久av| 丝袜人妻中文字幕| 熟妇人妻久久中文字幕3abv| 亚洲人成77777在线视频| 黄色a级毛片大全视频| 在线观看免费视频网站a站| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美精品综合一区二区三区| 国产成人精品久久二区二区91| 99国产精品99久久久久| 国产三级黄色录像| 亚洲 欧美一区二区三区| 午夜福利一区二区在线看| 亚洲成a人片在线一区二区| 亚洲国产欧美日韩在线播放| 禁无遮挡网站| 侵犯人妻中文字幕一二三四区| 黄频高清免费视频| 中文字幕精品免费在线观看视频| 99国产综合亚洲精品| 啦啦啦韩国在线观看视频| 黄色女人牲交| 欧美国产日韩亚洲一区| 在线观看免费视频网站a站| 亚洲成a人片在线一区二区| 大型黄色视频在线免费观看| 日本一区二区免费在线视频| 国产精品一区二区精品视频观看| 亚洲黑人精品在线| 777久久人妻少妇嫩草av网站| 丝袜美腿诱惑在线| 精品高清国产在线一区| 久久精品人人爽人人爽视色| 中文字幕高清在线视频| 久久久水蜜桃国产精品网| 国产精品一区二区在线不卡| 精品国产美女av久久久久小说| 欧美日韩亚洲国产一区二区在线观看| 一级a爱片免费观看的视频| 精品一区二区三区四区五区乱码| 伊人久久大香线蕉亚洲五| 麻豆国产av国片精品| 日本黄色视频三级网站网址| 久久久久九九精品影院| 日韩中文字幕欧美一区二区| 亚洲黑人精品在线| 又黄又爽又免费观看的视频| 69av精品久久久久久| 老司机深夜福利视频在线观看| 亚洲性夜色夜夜综合| 精品高清国产在线一区| 国产成人精品在线电影| 精品卡一卡二卡四卡免费| 天堂√8在线中文| 久久国产精品人妻蜜桃| 日本精品一区二区三区蜜桃| 午夜免费鲁丝| 亚洲精品美女久久av网站| 亚洲情色 制服丝袜| 在线永久观看黄色视频| 欧美大码av| 精品国产美女av久久久久小说| 欧洲精品卡2卡3卡4卡5卡区| 久热这里只有精品99| 亚洲精品国产一区二区精华液| 丁香欧美五月| 色综合欧美亚洲国产小说| 亚洲第一av免费看| 一卡2卡三卡四卡精品乱码亚洲| 嫩草影视91久久| 国产欧美日韩综合在线一区二区| 日韩欧美国产一区二区入口| 亚洲人成伊人成综合网2020| 无遮挡黄片免费观看| 欧美丝袜亚洲另类 | 亚洲欧美精品综合久久99| 波多野结衣av一区二区av| 两人在一起打扑克的视频| 波多野结衣高清无吗| 99久久国产精品久久久| av中文乱码字幕在线| av片东京热男人的天堂| 波多野结衣av一区二区av| 性欧美人与动物交配| 久久人人精品亚洲av| 国产97色在线日韩免费| 国产一区在线观看成人免费| 美女扒开内裤让男人捅视频| 日韩欧美一区二区三区在线观看| 成人18禁高潮啪啪吃奶动态图| 久久精品国产清高在天天线| 国产精品一区二区免费欧美| 亚洲精品美女久久av网站| 亚洲 欧美一区二区三区| 欧美日本中文国产一区发布| 国产成人精品久久二区二区免费| 国产精品自产拍在线观看55亚洲| 两性午夜刺激爽爽歪歪视频在线观看 | 少妇粗大呻吟视频| 国产成人av教育| www.自偷自拍.com| 国产区一区二久久| 久久人人精品亚洲av| www国产在线视频色| 亚洲国产精品999在线| 成年女人毛片免费观看观看9| 日本欧美视频一区| 日本三级黄在线观看| 色综合亚洲欧美另类图片| 在线播放国产精品三级| 日韩欧美三级三区| 亚洲精品av麻豆狂野| 90打野战视频偷拍视频| 欧美乱色亚洲激情| 啪啪无遮挡十八禁网站| 久久精品91蜜桃| 国产亚洲av嫩草精品影院| 亚洲一区二区三区色噜噜| 午夜精品久久久久久毛片777| ponron亚洲| 国产成人一区二区三区免费视频网站| 涩涩av久久男人的天堂| 亚洲精品国产一区二区精华液| 久热这里只有精品99| 级片在线观看| 天堂√8在线中文| 日日摸夜夜添夜夜添小说| 女性生殖器流出的白浆| av电影中文网址| 亚洲七黄色美女视频| 曰老女人黄片| 久久久久九九精品影院| 久久久久久人人人人人| 亚洲成a人片在线一区二区| 欧美在线一区亚洲| 性少妇av在线| 亚洲欧美日韩另类电影网站| 久久久久九九精品影院| 亚洲欧美激情在线| 一进一出抽搐动态| 涩涩av久久男人的天堂| 亚洲男人的天堂狠狠| 1024香蕉在线观看| 久久热在线av| 99在线人妻在线中文字幕| 成人精品一区二区免费| 日本a在线网址| 亚洲av五月六月丁香网| 欧美成人一区二区免费高清观看 | 精品欧美国产一区二区三| 色哟哟哟哟哟哟| 国产成人av教育| 亚洲自拍偷在线| 性少妇av在线| 国产精品久久久av美女十八| 国产片内射在线| 99精品欧美一区二区三区四区| 正在播放国产对白刺激| 国产又爽黄色视频| 久久久久精品国产欧美久久久| 国产成年人精品一区二区| 久久青草综合色| 亚洲久久久国产精品| 窝窝影院91人妻| 俄罗斯特黄特色一大片| 黄色成人免费大全| 波多野结衣一区麻豆| 乱人伦中国视频| 亚洲欧美精品综合久久99| 日本欧美视频一区| 天堂影院成人在线观看| 国产三级黄色录像| 久久精品亚洲熟妇少妇任你| 这个男人来自地球电影免费观看| 女人被躁到高潮嗷嗷叫费观| 免费不卡黄色视频| 一a级毛片在线观看| 日韩欧美国产在线观看| 视频区欧美日本亚洲| 国产精品亚洲美女久久久| 天天添夜夜摸| 国产精品98久久久久久宅男小说| 国产欧美日韩一区二区精品| 婷婷精品国产亚洲av在线| 久久久久国产一级毛片高清牌| av视频免费观看在线观看| 中文字幕久久专区| 国产av精品麻豆| 国产精品99久久99久久久不卡| 亚洲成av人片免费观看| 欧美一区二区精品小视频在线| 国产精品亚洲av一区麻豆| 黄色女人牲交| 国产成人免费无遮挡视频| 18禁美女被吸乳视频| 久久国产精品影院| 亚洲人成电影免费在线| 一级a爱片免费观看的视频| 黄色丝袜av网址大全| 久久香蕉国产精品| 国产精品乱码一区二三区的特点 | 此物有八面人人有两片| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看一区二区三区| 精品国产乱子伦一区二区三区| 久久中文字幕人妻熟女| 成年版毛片免费区| 99香蕉大伊视频| 亚洲国产精品sss在线观看| 中文字幕最新亚洲高清| 精品久久久久久久毛片微露脸| 国产精品国产高清国产av| 成人手机av| 亚洲av成人不卡在线观看播放网| 成人亚洲精品av一区二区| 中文字幕人妻丝袜一区二区| 国产伦一二天堂av在线观看| 男人的好看免费观看在线视频 | 激情视频va一区二区三区| 人人妻人人澡人人看| 男女下面进入的视频免费午夜 | av电影中文网址| 国产精品久久视频播放| 伊人久久大香线蕉亚洲五| 婷婷丁香在线五月| 国产精品一区二区三区四区久久 | 色老头精品视频在线观看| 国产亚洲av嫩草精品影院| 女人高潮潮喷娇喘18禁视频| 午夜久久久久精精品| 一个人免费在线观看的高清视频| 久热爱精品视频在线9| 99久久国产精品久久久| 一区二区日韩欧美中文字幕| 中文字幕av电影在线播放| 欧美成人性av电影在线观看| 老司机靠b影院| 精品久久蜜臀av无| 亚洲男人天堂网一区| 好看av亚洲va欧美ⅴa在| 这个男人来自地球电影免费观看| 99国产极品粉嫩在线观看| 午夜成年电影在线免费观看| 视频区欧美日本亚洲| 午夜激情av网站| 欧美日韩福利视频一区二区| 日韩精品免费视频一区二区三区| 日日夜夜操网爽| 搡老妇女老女人老熟妇| 妹子高潮喷水视频| 欧美黄色淫秽网站| 欧美黑人欧美精品刺激| 亚洲自偷自拍图片 自拍| 两性夫妻黄色片| 天天躁狠狠躁夜夜躁狠狠躁| xxx96com| 国产三级黄色录像| 一本综合久久免费| 最近最新免费中文字幕在线| 神马国产精品三级电影在线观看 | 大码成人一级视频| 91精品三级在线观看| 在线十欧美十亚洲十日本专区| 精品欧美国产一区二区三| 巨乳人妻的诱惑在线观看| 制服人妻中文乱码| 叶爱在线成人免费视频播放| 在线观看www视频免费| 国产成人欧美在线观看| 免费高清视频大片| 亚洲一区中文字幕在线| 18禁黄网站禁片午夜丰满| 国产蜜桃级精品一区二区三区| 亚洲国产欧美网| 久久久久国内视频| 色在线成人网| 免费观看精品视频网站| 色播亚洲综合网| 日韩精品青青久久久久久| 制服人妻中文乱码| 黄频高清免费视频| 纯流量卡能插随身wifi吗| 多毛熟女@视频| 国产午夜精品久久久久久| 国产精品一区二区精品视频观看| 老司机午夜十八禁免费视频| 亚洲男人天堂网一区| 欧美日韩瑟瑟在线播放| 无人区码免费观看不卡| 亚洲视频免费观看视频| 又黄又粗又硬又大视频| 在线观看日韩欧美| 国产精品久久久人人做人人爽| 国产亚洲精品一区二区www| 青草久久国产| 男女下面进入的视频免费午夜 | 中文字幕精品免费在线观看视频| 欧美色视频一区免费| 在线观看一区二区三区| 亚洲av成人一区二区三| 青草久久国产| 午夜a级毛片| 国产亚洲精品综合一区在线观看 | 久久亚洲真实| av中文乱码字幕在线| 我的亚洲天堂| 夜夜爽天天搞| 最好的美女福利视频网| 啦啦啦观看免费观看视频高清 | 欧美一区二区精品小视频在线| 日本在线视频免费播放| 香蕉丝袜av| 国产欧美日韩一区二区三区在线| 黄色丝袜av网址大全| 搡老妇女老女人老熟妇| 天天躁夜夜躁狠狠躁躁| 久久人妻av系列| 日日干狠狠操夜夜爽| 亚洲av成人不卡在线观看播放网| 精品一区二区三区av网在线观看|