• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface Embedding of Non-Bipartite k-Extendable Graphs

    2022-03-18 12:36:58HongliangLu,DavidG.L.Wang
    Annals of Applied Mathematics 2022年1期

    Abstract.For every surface,we find the minimum number k such that every non-bipartite graph that is embeddable in that surface is not k-extendable.In particular,we construct a family of 3-extendable graphs which we call bowtie graphs.This confirms the existence of an in finite number of 3-extendable non-bipartite graphs that are embeddable in the Klein bottle.

    Key words:Non-bipartite graph,matching extension,surface embedding.

    1 Introduction

    A matchingMof a graphGis said to be extendable ifGhas a perfect matching containingM.A graph isk-extendable if it has a matching consisting ofkedges and every matching consisting ofkedges is extendable,where

    Much attention to the theory of matching extension has been paid since it was introduced by Plummer[17]in 1980.We recommend Lov′asz and Plummer’s book[11]for an excellent survey of the matching theory,and[21,27]for recent progress.Interests in the matching extensions of graphs embedded on surfaces began with the charming result[19]that no planar graph is 3-extendable.We refer the reader to Gross and Tucker’s book[5]for basic notions on topological graph theory;see also[2].

    Plummer[18]considered the problem of determining the minimum integerksuch that every Σ-embeddable graph is notk-extendable.Based on some partial results of Plummer,Dean[3]found the complete answer to this problem.

    Theorem 1.1(Dean,Plummer).LetΣbe a surface of characteristic χ.Let μ(Σ)be the minimum integer k such that everyΣ-embeddable graph is not k-extendable.Then we have

    Its proof made a heavy use of the Euler contribution technique,which dates back to Lebesgue[8],developed by Ore[14],and flourished by Ore and Plummer[15].

    In a previous paper[12],we extended Theorem 1.1 by finding the minimum integerksuch that there is no Σ-embeddable(n,k)-graphs,where an(n,k)-graph is a graph whose subgraph obtained by removing anynvertices isk-extendable.This paper continues the study of this embeddable-extendable type of problems.We dig a little deeper by concentrating on non-bipartite graphs.Here is our main result.

    Theorem 1.2.LetΣbe a surface of characteristic χ.Let μ′(Σ)to be the minimum integer k such that everyΣ-embeddable non-bipartite graph is not k-extendable.Then we have

    Non-bipartite graphs differ from bipartite graphs in many aspects,even if we are concerned with only matching problems.For instance,Knig theorem states that the maximum size of a matching in a bipartite graph equals the minimum size of a vertex cover;see Rizzi[24]for a short proof.Taking a triangle as the graph under consideration,one may see immediately that non-bipartite graphs do not admit this beautiful property in general.

    Another example is on the algorithmic complexity.Lakhal and Litzler[7]discovered a polynomial-time algorithm for the problem of finding the extendability of a bipartite graph.It is still unknown that whether the same extendability problem for non-bipartite graphs can be solved in polynomial time or not;see Plummer[20].

    The sharp distinction between the appearances of Eqs.(1.1)and(1.2),also supports the above difference between bipartite and non-bipartite graphs in the theory of matching extensions.

    A big part of the proof of Theorem 1.2 is to show the 3-extendability of some so-called bow-tie graphs.We think the family of bow-tie graphs is interesting also on its own right.We will confirm the infinity of the number of 3-extendable graphs which can be embedded onto the Klein bottle,and which are non-bipartite.An infinity number of such,but bipartite,graphs,were constructed recursively by Aldred,Kawarabayashi,and Plummer[1].

    This paper is organized as follows.In the next section we list necessary notion and notation,as well as necessary known results in the field of surface embedding and matching extension of graphs.The stand-alone Section 3 is devoted to the extendability of the two families of Cartesian product graphs of paths and cycles,and of the bow-tie graphs denoted asC6??Pnfor oddn≥5.We also pose a conjecture for the 3-extendability of the general bow-tie graphs.In Section 4 we establish Theorem 1.2 with the aid of these extendability results.

    2 Preliminaries

    This section contains an overview of necessary notion and notation.LetG=(V,E)be a simple graph.We denote the number|V(G)|of vertices by|G|for short.Denote byδ(G)the minimum degree ofG,and byκ(G)the connectivity.

    2.1 The surface embedding

    A surface is a connected compact Hausdorffspace which is locally homeomorphic to an open disc in the plane.If a surface Σ is obtained from the sphere by adding some numbergof handles(resp.some numberof cross-caps),then Σ is said to be orientable of genusg(resp.non-orientable of non-orientable genus).We shall follow the usual convention of denoting the surface of genush(resp.non-orientable genusk)bySh(resp.Nk).

    A 2-cell embedding of a graphGonto a surface is a drawing of the graphGon the surface such that the edges ofGcross only at the vertices ofG,and that every face is homeomorphic to an open disk.In this paper,we wording “embedding”always means 2-cell embedding.We say that a graphGis Σ-embeddable if there exists an embedding of the graphGon the surface Σ.The minimum valuegsuch thatGisSg-embeddable is said to be the genus ofG,denotedg(G).Any embedding ofGonSg(G)is said to be a minimal(orientable)embedding.Similarly,the minimum valuesuch thatGisN-embeddable is said to be the non-orientable genus ofG,denoted(G).For a general surface Σ,letg(Σ)be the genus of Σ.The Euler characteristicχ(Σ)is defined by

    Any embedding ofGonN(G)is said to be a minimal(non-orientable)embedding.Working on minimal embeddings,one should notice the following two fundamental results,which are due to Youngs[26]and Parsons et al.[16]respectively.

    Theorem 2.1(Youngs).Every minimal orientable embedding of a graph is2-cell.

    Theorem 2.2(Parson,Pica,Pisanski and Ventre).Every graph has a minimal non-orientable embedding which is2-cell.

    The formula of non-orientable genus of complete graphs was found by Franklin[4]in 1934 forK7,and by Ringel[22]in 1954 for the otherKn.Early contributors include Heawood,Tietze,Kagno,Bose,Coxeter,Dirac,and so on;see[22].The more difficult problem of finding the genus of complete graphs has been explored by Heffter,Ringel,Youngs,Gustin,Terry,Welch,Guy,Mayer,and so on.A short history can be found in the famous work[23]of Ringel and Youngs in 1968,who settled the last case.These formulas are as follows.

    Theorem 2.3.Let n≥5.We have

    2.2 The Euler contribution

    LetG→Σ be an embedding of a graphGon the surface Σ.Euler’s formula states that

    whereeis the number of edges ofG,andfis the number of faces in the embedding.Letxidenote the size of theith face containingv,i.e.,the length of its boundary walk.The Euler contribution ofvis defined to be

    where the sum ranges over all faces containingv.One should keep in mind that a face may contribute more than one angle to a vertex.This can be seen from the embedding ofK5on the torus.From Euler’s formula,in any embedding of a connected graphG,we have

    Thus there exists a vertexvsuch that

    Such a vertex is said to be a control point of the embedding.This definition implies the following lemma immediately,see also[18,Lemma 2.5]or[3,Lemma 2.5]for its proof.

    Lemma 2.1.Let G be a connected graph of at least3vertices.Let G→Σbe an embedding.Let v be a control point which is contained in x triangular faces.Then we have

    2.3 The matching extension

    LetGbe a graph andk≥0.Ak-matching ofGis a collection ofkpairwise disjoint edges.Perfect matchings are|G|/2-matchings.A near perfect matching of the graphGis a perfect matching of the graphG-vfor some vertexvofG.The most basic result for perfect matchings is Tutte’s theorem[25].

    Theorem 2.4(Tutte).A graph G has a perfect matching if and only if for every vertex subset S,the subgraph G-S has at most|S|connected components with an odd number of vertices.

    The graphGis said to bek-extendable if

    ·it has a perfect matching,and

    ·for anyk-matchingM,the graphGhas a perfect matching containingM.

    The following basic property on the connectivity of extendable graphs can be found in[17].

    Theorem 2.5(Plummer).Let k≥0and let G be a connected k-extendable graph.Then G is(k+1)-connected and δ(G)≥k+1.

    Liu and Yu[9]found the following result for the extendability of Cartesian product graphs.

    Theorem 2.6(Liu and Yu).Let G1be a k-extendable graph and G2be a connected graph.Then the Cartesian product G1×G2is(k+1)-extendable.

    Plummer[19]also gave the famous result that no planar graph is 3-extendable.The next deeper result is due to Lou and Yu[10,Theorem 7];see also[27,Chapter 6].

    Theorem 2.8(Lou and Yu).If G is a k-extendable graph of order at most4k,then either G is bipartite or the connectivity κ(G)of G is at least2k.

    We also need the following result,whose proof can be found in[3,12].

    Lemma 2.2.Let k≥1.Let G be a connected k-extendable graph embedded on a surfaceΣ.Let v be a vertex of G which is contained in x triangular faces in the embedding.Then we have

    3 The matching extension of special product graphs

    In this section,we shall establish the 3-extendability for some special graphs,which will be used in handling some sporadic cases in proving Theorem 1.2.

    Denote byPmthe path havingmvertices.Denote byPm×Pn,as usual,the Cartesian product graph of the pathsPmandPn.We label its vertices byvi,j(or byvijif there is no confusion),from the northwest to the southeast,wherei∈[m]andj∈[n].We use the notationRito denote the vertex set{vi1,···,vin}of thei-th row;and use the notationTjto denote the vertex set{v1j,···,vmj}of thej-th column.We say that any edge in a row is horizontal,and that any edge in a column is vertical.For convenience,we consider the first subscriptiof the notationvijas modulom,and consider the second subscriptjas modulon,i.e.,

    Figure 1:The bow-tie graph C6??P5is N2-embeddable.

    It follows thatRi+m=Rifor alli,and thatTj+n=Tjfor allj.Denote byCnthe cycle havingnvertices.We use the same way to label the vertices of the graphsPm×CnandCm×Cn.

    For any positive integersmandn,we define the bow-tie graphCm??Pnto be the graph obtained from the graphCm×Pnby adding the edgesvi1vm+2-i,nfor alli∈[m].From Fig.1,it is easy to see that the graphCm??PnisN2-embeddable.

    In the subsequent three subsections,we will explore the matching extension of the following graphs respectively:

    Precisely speaking,we will show that the graphPm×Cnis 2-extendable,and the other two graphs are 3-extendable,subject to some natural conditions on the integersmandn.

    Here we describe a combinatorial idea,which will be adopted in all the proofs uniformly.LetGbe a graph with a matchingM.We say thatGis separable by a subgraphG′(with respect toM),if

    · the matchingMhas at least one edge in the subgraphG′;and

    ·no edge of the matchingMhas ends in both of the subgraphsG′andG-V(G′).We call the subgraphG′anM-separator ofG,if

    ·the subgraphG′has a perfect matching containing the edge setM∩E(G′);and

    ·the subgraphG-V(G′)has a perfect matching containing the edge setM∩E(G-V(G′)).

    In particular,the subgraphG-V(G′)has a perfect matching even if the setM∩E(G-V(G′))is empty.From the above definition,it is direct to see that the extendability of a matchingMcan be con firmed by finding anM-separator.We call this approach the separator method.We will use it uniformly by choosing the separator to be a subgraph induced by consecutive rows or columns.

    3.1 The 2-extendability of the graph Pm×Cn

    This subsection is devoted to establish the following result.It is basic and will be used in the proof of Lemma 3.1 and Theorems 1.2 and 3.2.

    Theorem 3.1.Let m,n≥4.The Cartesian product graph Pm×Cnis2-extendable if and only if the integer m or n is even.

    Proof.The necessity is clear from the definition.Whennis even,the cycleCnis 1-extendable.Thus the sufficiency is true from Theorem 2.6.It suffices to show the sufficiency for oddn.

    Letn≥5 be an odd integer.Then the integermis even.LetGbe the graphPm×Cn,with a 2-matchingM={e1,e2}.Note that every column of the graphGis isomorphic to the pathPm,which has a perfect matching.We will adopt the separator method by finding some columns,whose induced subgraph has a perfect matching containing the matchingM.We have 3 cases to treat.

    Case 1.There are two disjoint pairs of adjacent columns,such that one pair contains the vertex setV(e1),and the other pair contains the vertex setV(e2).Since the subgraph induced by any two adjacent columns is 1-extendable,the four columns form anM-separator.

    Case 2.The vertex setV(M)is contained in two adjacent columns,and Case 1 does not occur.Then the two adjacent columns form anM-separator.In fact,when both the edgese1ande2are vertical and in distinct columns,the previous possibility happens,a contradiction.In other words,either the vertex setV(M)is contained in one column,or one of the edges in the matchingMis horizontal.

    Case 3.Otherwise,the vertex setV(M)intersects with exactly three consecutive columns,and both the edgese1ande2are horizontal.

    We proceed by induction onm.Form=4,we have 2 sub-cases to treat.

    Case 3-1 Assume that the edges in the matchingMlie in Row 1 and Row 2,or in

    Row 1 and Row 3.Since every row is isomorphic to a cycle,we can suppose

    without loss of generality that

    In this case,the subgraphG[T1,T2,T3,T4]has the perfect matching

    which contains the matchingM,see Fig.2.

    Figure 2:The extension of the matching M for Case 3-1.

    Case 3-2 Otherwise,the edges in the matchingMlie in Row 1 and Row 4,or in

    Row 2 and Row 3.We can suppose that

    In this case,the subgraphG[T1,T2,T3]has the perfect matching

    which contains the matchingM,see Fig.3.

    Figure 3:The extension of the matching M for Case 3-2.

    This completes the proof form=4.

    Now we can suppose thatm≥6,and that the graphPm-2×Cnis 2-extendable.Note that the subgraph induced by any two adjacent rows has a perfect matching.By induction,we are done if the matchingMshares no vertices with the first two rows.For the same reason,we are done ifMshares no vertices with the last two rows.Sincem≥6,we can suppose that the horizontal edgee1is in the first two rows,and that the horizontal edgee2is in the last two rows.On one hand,the subgraphG[R1,R2]is isomorphic to the graphP2×Cn,which is 1-extendable.On the other hand,the subgraphG-R1-R2is isomorphic toPm-2×Cn,which is 2-extendable by induction hypothesis.Hence,the subgraphG[R1,R2]is anM-separator.This completes the proof.

    3.2 The 3-extendability of the graph Cm×Cn

    In this subsection we study the extendability of the graphCm×Cn,which will be used in the proof of Theorem 1.2.

    A necessary condition for the graphCm×Cnto have a perfect matching is that one of the integersmandnis even.By symmetry,we can suppose that the integermis even.In virtue of Theorem 2.7,the graphCm×Cnis 3-extendable if the integernis also even.Therefore,we can suppose thatnis odd.The following lemma will be used for several times.

    Lemma 3.1.Let m≥6be an even integer,and let n≥5be an odd integer.Let G be the graph Cm×Cn,with a3-matching M.Then the matching M is extendable if G is separable by

    (i)a subgraph G[Ri,Ri+1]for some i∈[m],which contains exactly one edge of the matching M;or

    (ii)a subgraph G[Tj,Tj+1]for some j∈[n],which contains one or two edges of the matching M.

    Proof.We prove the validities of Condition(i)and Condition(ii)separately.Leti∈[m]andj∈[n].

    (i)The graphG[Ri,Ri+1]is isomorphic toP2×Cn,which is 1-extendable.The subgraphG-Ri-Ri+1is isomorphic toPm-2×Cn.Sincem-2≥4,the graphGRi-Ri+1is 2-extendable by Theorem 3.1.Hence,the matchingMis extendable inG.

    (ii)The graphG[Tj,Tj+1]is isomorphic toCm×P2,andG-Tj-Tj+1is isomorphic toCm×Pn-2.Both of them are 2-extendable by Theorem 2.7.Hence,the matchingMis extendable in the graphG.

    Here is the main result of this subsection.

    Theorem 3.2.Let m≥6be an even integer,and let n≥5be an odd integer.Then the Cartesian product graph Cm×Cnis3-extendable.

    Proof.Letm≥6 be an even integer,and letn≥5 be an odd integer.LetG=Cm×Cn,with a 3-matchingM={e1,e2,e3}.In order to show thatMis extendable,it suffices to find

    ·a row indexi*such that the subgraphG[Ri*,Ri*+1]is anM-separator,or

    ·a column indexj*such that the subgraphG[Tj*,Tj*+1]is anM-separator.

    Lethbe the number of horizontal edges in the matchingM.Then we haveh∈{0,1,2,3}.We treat these 4 cases individually.

    Case 1.h=0,that is,all edges inMare vertical.Note that each column of the graphGis isomorphic to the cycleCm,which is 1-extendable.If the 3 edges inMare in distinct columns,we are done immediately.If they are in the same column,then that column together with one of its adjacent columns form anM-separator.Otherwise,we can suppose that Columnjcontains the edgese1ande2,but not the edgee3.By virtue of Lemma 3.1,we can takej*=jife3is not in Column(j+1);and takej*=j+1 otherwise.

    Case 2.h=1.In this case,we can suppose thate1is horizontal,and thate2ande3are vertical.Since each row is isomorphic to a cycle,we can further suppose thate1=vi1vi2and it intersects with the first two columns.

    If at most one of the edgese2ande3is in the first two columns,then we can takej*=1 by Lemma 3.1.Otherwise,both of them are in the first two columns.If the vertex setV(M)misses Row(i+1),then we can takei*=iby Lemma 3.1.For the same reason,we can takei*=i-1 ifV(M)misses Row(i-1).Otherwise,one of the edgese2ande3is immediately above the horizontal edgee1,and the other is immediately belowe1.In this case,we can takei*=i+1 by Lemma 3.1.

    Case 3.h=2.We can suppose thate1ande2are horizontal,and thate3is vertical.Furthermore,we can suppose that the horizontal edgee1intersects with the first two columns,the horizontal edgee2intersects with Columnjand Column(j+1),and that the vertical edgee3=vpqvp+1,q,wherep∈[m]andq∈[n].

    Ifj=1,to wit,the horizontal edgee2lies below the edgee1.In this case,we can takej*=1.In fact,sincee3is vertical,the graphGis separable by the subgraphG[T1,T2].On the other hand,it is easy to see that both of the subgraphs are 1-extendable.

    Ifj≥3,then the graphGis separable by the first two columns with respect to the matchingM.In this case,we can also takej*=1,by using Lemma 3.1.

    Otherwise,we havej=2,that is,the vertex set of the horizontal edgese1ande2intersects with exactly the first three columns.

    ·Ifq∈[3],i.e.,the edgee3is also contained in the subgraphG[T1,T2,T3],then we can takei*=p.In fact,the subgraphG′=G[Rp,Rp+1]contains the vertical edgee3,and possibly one of the edgese1ande2.In any case,the matchingM∩E(G′)is extendable in the subgraphG′.

    ·Ifq≥4,i.e.,the vertical edgee3has empty intersection with the first three columns.In this case,the subgraphG[Tq]is anM-separator.In fact,the subgraphG[Tq],which contains the edgee3,is isomorphic to the cycleCm,which is 1-extendable.On the other hand,the subgraphG-Tqis isomorphic to the graphCm×Pn-1,i.e.,the graphPn-1×Cm.Sincen-1≥4,it is 2-extendable by Theorem 3.1.

    Case 4.h=3.If all edges inMlie in the same row,by Lemma 3.1,we can takej*=jfor any edgevijvi,j+1∈M.Otherwise,there exists a rowRicontaining exactly one edge inMsuch that one of its adjacent rows has no edges inM.In other words,either

    By Lemma 3.1,we can takei*=i-1 in the former case,andi*=iin the latter case.This completes the proof.

    We remark that the graphC4×Cnis not 3-extendable whennis odd.This can be seen from the fact that the particular 3-matching

    is not extendable,see Fig.4.define

    We have|U|=2n-4.Note that the subgraphG-V(M)-Uconsists of 2n-2 isolated vertices.By Theorem 2.4,the subgraphG-V(M)has no perfect matchings.

    Figure 4:The graph C4×Cnis not 3-extendable when n is odd.

    3.3 The 3-extendability of the graph C6??Pnfor odd n≥5

    In this subsection,we will show the 3-extendability of the graphC6??Pnfor odd integersn≥5.It is easy to see thatC6??Pncan be drawn as in Fig.5,which is symmetric up and down.For convenience,we rename the vertices in the following way:

    and use capital letters to denote vertex subsets as follows:

    Let us keep in mind that the subscriptiin the symbolshiare considered modulon,and the subscriptiin the symbolsqiare modulo 2n,namely,

    Theorem 3.3.Let n≥5be an odd integer.Then the bow-tie graph C6??Pnis3-extendable.

    Proof.LetG=C6??Pn,wherenis an odd integer andn≥5.

    LetM0be a 3-matching of the graphG.We call an edge ofM0faithful if it is an edge of the subgraphG[J];co-faithful if it is an edge of the subgraphG[J′];and unfaithful otherwise,i.e.,if it is an edge of the formqjq′jfor somej∈[2n].Correspondingly,we call a vertex of the matchingM0faithful(resp.co-faithful,unfaithful)if it is a vertex of a faithful(resp.co-faithful,unfaithful)edge.

    Figure 5:The graph C6??Pn.

    Suppose that the matchingM0hasxfaithful edges,yunfaithful edges,andzco-faithful edges.Then we havex+y+z=3.By the symmetry of the graphG,we can suppose thatx≥z.Then we havez=0 orz=1.For each of them,we will construct a perfect matching of the graphGwhich extends the matchingM0.

    The following lemma serves for Lemma 3.3,by which we can solve the casez=0.The other casez=1 can be divided into the cases

    We will handle them by Lemmas 3.4 and 3.5 respectively.

    Lemma 3.2.Every3-matching of the subgraph G[J]can be extended to a matching covering the vertex set H.

    Proof.Suppose that the claim is false.LetM0be a 3-matching which is not extendable in this way.LetfMbe an extension ofM0,which covers the maximum number of vertices in the setH.Without loss of generality,we can suppose thath1/∈V(fM).Thenq1,qn+1∈V(M0),and we can write

    wheree2∈{qnqn+1,qn+1qn+2}.We will find a contradiction by constructing an extension ofM0,which coversH.It suffices to find a matchingMof the subgraphG[H]-V(M0)such that the subgraphG[H]-V(e3)-V(M)consists of paths of even orders.We proceed according to the number of vertices inHcovered by the edgee3.

    Case 1.IfV(e3)∩H=?,then we can define

    Case 2.If|V(e3)∩H|=1,then we can defineM=?.

    Case 3.If|V(e3)∩H|=2,then we havee3=hihi+1,wherei∈{2,···,n-1}.We can define

    This proves Lemma 3.2.Here is the lemma by using which the casez=0 can be solved.

    Lemma 3.3.Suppose that the matching M0has no co-faithful edges.Then the subgraph G[J]has a matching M such that M covers both the faithful edges and the vertex set H,and that M misses every unfaithful vertex.

    Proof.We proceed according to the numberxof faithful edges.The casex=3 is Lemma 3.2.

    Whenx=2,letbe the unfaithful edge,wherej∈[2n].Assume that the vertexqj-1is uncovered by the matchingM0.By Lemma 3.2,the 3-matchingcan be extended to a matchingM1,which covers the setH.Then the matchingM1-qj-1qjis a desired one.For the same reason,Lemma 3.3 holds true if the vertexqj+1is uncovered byM0.Now,we can suppose that both the verticesqj-1andqj+1are covered byM0.By Lemma 3.2,the matching

    can be extended to a matching,say,which covers the setH.Since all the three neighborsqj-1,qj+1andhj,of the vertexqjin the subgraphG[J],are in the matchingM2which misses the vertexqj,we infer that the unfaithful vertexqjis not covered byTherefore,is a desired one.

    Whenx=1,we can represent the matchingM0as

    where 1≤j<k≤2n.If the verticesqjandqkare not adjacent in the subgraphG[Q],then there exist two distinct verticesuandwsuch that

    By Lemma 3.2,the matching{uqj,wqk,e1}can be extended to a matching,say,M′3,which covers the setH.Then the matchingM′3-uqj-wqkis a desired matching.Otherwise,the verticesqjandqkare adjacent.By Lemma 3.2,the 2-matching{qjqk}∪{e1}can be extended to a matching,say,M′4,which covers the setH.Then the matchingM′4-qjqkis a desired matching.

    Whenx=0,the vertex setQcontains exactly three unfaithful vertices.Letqjbe a vertex inQwhich is not unfaithful.LetM5be the perfect matching of the pathH-hjof ordern-1.Then,the matchingM5∪{qjhj}is a desired matching.This completes the proof of Lemma 3.3.

    Now we deal with the first casez=0.LetMbe the matching obtained from Lemma 3.3.LetM′be the matching of the subgraphG[J′]which is symmetric toM.In other words,an edgeis in the matchingM′if and only if the edgehihi+1(resp.hjqj,qjqj+1)is inM.Then the set

    is a perfect matching of the graphGwhich covers the matchingM0,as desired.

    Next lemma is for the case(x,y,z)=(1,1,1).

    Lemma 3.4.For any edge e in the subgraph G[J],and for any vertex qkin the set Q-V(e),the subgraph G[J]-V(e)-qkhas a perfect matching.

    Proof.It suffices to find a matchingMof the subgraphG[J]-V(e)-qk,such that

    1.the pathG[H]-V(M)-V(e)is of even order;

    2.every path component of the subgraphG[Q]-V(M)-V(e)-qkis of even order.Below we will construct such a matchingMaccording to the position of the edgee.

    Case 1.IfV(e)?H,we can suppose thate=h0h1without loss of generality,and take the matching

    Case 2.IfV(e)∩H/=?andV(e)∩Q/=?,then we can suppose thate=h1q1without loss of generality,and take the matching

    Case 3.IfV(e)?Q,then we can supposee=q0q1without loss of generality,and take the matching

    This completes the proof.

    Now we are ready to solve the casex=y=z=1.By Lemma 3.4,the subgraphG[J]-V(M0)has a perfect matching.For the same reason,the subgraphG[J′]-V(M0)has a perfect matching.The union of these two matchings and the matchingM0form a desired perfect matching of the graphG.

    For the last case(x,y,z)=(2,0,1),we will need the following lemma.

    Lemma 3.5.Let e0be an edge of the subgraph G[Q].Then any2-matching of the subgraph G[J]can be extended to a near perfect matching of G[J],which covers the vertex set H∪V(e0).

    Proof.Let{e1,e2}be a 2-matching of the subgraphG[J].It suffices to show that the subgraph

    has a matchingMsuch that

    1.every path component of the subgraphG[H]-V(e1∪e2∪M)is of even order;

    2.at most one of the path components of the subgraphG[Q]-V(e1∪e2∪M)is of odd order;

    3.if the subgraph

    has an isolated vertex,then the isolated vertex is not an end of the edgee0.

    If such a matchingMexists,then the subgraphG[Q]-V(e1∪e2∪M)has a near perfect matchingM′,such that the matchingM∪M′∪{e1,e2}covers the setV(e0).The desired result follows immediately.Below we will seek the above matchingM.According to the positions of the edgese1ande2,we have six cases to treat.

    Case 1.Both the edgese1ande2are from the subgraphG[H].The subgraphG[H]-V(e1∪e2)consists of two paths of different parities of orders,in which the path of even order might be empty.Lethibe an end of the path of odd order.We can take the matchingM={hiqi}.

    Case 2.The edgee1is from the subgraphG[H],and the edgee2=hjqjfor somej∈[2n].We can suppose thate1=h0h1without loss of generality.Then we can take the matching

    Case 3.The edgee1is from the subgraphG[H],and the edgee2is from the subgraphG[Q].Without loss of generality,we can suppose that

    where 0≤i≤n-1.Moreover,by symmetry,we can suppose that 0≤i≤(n-1)/2 without loss of generality.We can take the matching

    Case 4.Both the edgese1ande2have the formhjqj,wherej∈[2n].Without loss of generality,we can suppose thate1=h1q1.Then we can take the matching

    Case 5.The edgee1has the formhjqjfor somej∈[2n],and the edgee2is from the subgraphG[Q].Without loss of generality,we can suppose thate2=q0q1andj∈[n],and take the matching

    Case 6.Both the edgese1ande2are from the subgraphG[Q].The subgraphG[Q]-V(e1∪e2)consists of two paths,where one of them might be empty.Since the sum 2n-4 of their orders is even,the two paths have the same parity of orders.Since 2n-4≥6,there is at most one path is of order 1.If such an isolated vertex exists,say,qj,then we can take the matchingMto be the edgehjqj.Otherwise,we can take the matchingMto be the edgehkqk,whereqkis an end of the path of larger order,or an end of any path when the two paths have the same orders.This completes the proof of Lemma 3.5.

    The last case(x,y,z)=(2,0,1)can be done as follows.Let

    where the edgese1ande2are faithful,and the edgee3is co-faithful.By Lemma 3.5,the subgraphG[J]has a near perfect matchingM1covering{e1,e2},such that the associated uncovered vertexqjsatisfies that its symmetric vertexis uncovered bye3.By Lemma 3.4,the subgraph

    has a perfect matchingM2.Hence the matching

    is a perfect matching ofGwhich extendsM0.This completes the proof of Theorem 3.3.

    Since the bow-tie graphC6??Pncan be embedded onto the Klein bottle,Theorem 3.3 implies immediately that there is an in finite number of 3-extendable graphs which areN2-embeddable.We further propose the following conjecture.

    Conjecture 3.1.The graphCm??Pnis 3-extendable for any integersmandnsuch thatmis even.

    4 Proof of Theorem 1.2

    Recall thatμ′(Σ)is the minimum integerksuch that there is no Σ-embeddablek-extendable non-bipartite graphs.It follows that

    This section is devoted to find outμ′(Σ).We will need the following lemma.

    Lemma 4.1.Let k≥1.Any connected k-extendable graph of order2k+2is either the complete graph K2k+2,or the complete bipartite graph Kk+1,k+1.

    Proof.It is easy to show for the casek=1.Below we letk≥2.LetGbe a connectedk-extendable graph with|G|=2k+2.By Theorem 2.8,either the graphGis bipartite or we haveκ(G)≥2k.

    In the former case,any vertex in the part with larger order has degree at most the order of the other part,and thus,at most|G|/2=k+1.By Theorem 2.5,we haveδ(G)≥k+1.Therefore,both parts of the graphGhas orderk+1.Sinceδ(G)≥k+1,we infer thatG=Kk+1,k+1.

    In the latter case,we suppose to the contrary that the graphGis not complete.ThenGhas a pair(u,v)of non-adjacent vertices.Since the graphGisk-extendable and is of order 2k+2,we infer that the subgraphG′=G-u-vdoes not have a perfect matching.On the other hand,any graphHof even order withδ(H)≥|H|/2 has a Hamilton circuit;see Ore[13].Since

    we deduce that the subgraphG′has a Hamilton circuit,and a perfect matching in particular,a contradiction.This completes the proof.

    Now we are in a position to show Theorem 1.2.

    Proof.Let Σ be a surface of characteristicχ.Letμ′(Σ)be the minimum integerksuch that every Σ-embeddable non-bipartite graph is notk-extendable.

    First,we deal with the sporadic cases thatχ≥-1.For the sphereS0,by Ineq.(4.1),

    by Theorem 1.1.On the other hand,it is clear that the graphP4×C5is planar and non-bipartite.Since it is 2-extendable by Theorem 3.1,we deduce thatμ′(S0)=3.

    By Ineq.(4.1)and Theorem 1.1,μ′(N1)≤μ(N1)=3.Since every planar graph isN1-embeddable,we deduce thatμ′(N1)≥μ′(S0)=3.Therefore,we conclude thatμ′(N1)=3.

    For the torusS1,by Ineq.(4.1)and Theorem 1.1,

    On the other hand,it is clear that the graphC6×C5is toroidal and non-bipartite.Since it is 3-extendable by Theorem 3.2,we infer thatμ′(S1)=4.

    For the Klein bottleN2,we have

    by Theorem 1.1.On the other hand,theN2-embeddable non-bipartite graphC6??P5is 3-extendable by Theorem 3.3.Thusμ′(N2)=4.

    Along the same line,we haveμ′(N3)≤4.Sinceμ′(N3)≥μ′(N2)=4,we infer thatμ′(N3)=4.

    Below we can suppose thatχ≤-2.Write

    Sinceχ≤-2,one may estimate thatn≥4.By Theorem 2.3,it is direct to check thatK2nis Σ-embeddable.It is obvious thatK2nis both(n-1)-extendable and non-bipartite.Thusμ′(Σ)≥n.

    Suppose,by way of contradiction,thatμ′(Σ)>n.Then there exists a the graphG,which is Σ-embeddable,n-extendable,and non-bipartite.Then-extendability implies that|G|≥2n+2.If|G|=2n+2,thenG=K2n+2by Lemma 4.1.By computing the genus and the non-orientable genus ofK2n+2directly,we see thatK2n+2is not Σ-embeddable.Thus we have|G|≥2n+4.

    Letvbe a control point in an embedding of the graphGon Σ.Assume that|G|≤4n.By Theorem 2.8,we deduce that the connectivityκ(G)is at least 2n.It follows that

    Letxbe the number of triangles containingv.Lety=d(v).Wheny=2n,sinceGisn-extendable,we infer thatx≤2n-2.By Lemma 2.1,

    which implies thatχ>0,a contradiction.Otherwisey≥2n+1.By Lemma 2.1,

    which is same to Ineq.(4.3)and thus impossible.

    Now we are led to the case that|G|≥4n+2.Assume thatx≤2n-2.By Lemmas 2.1 and 2.2,

    Solving the above inequality we find thatχ∈{-6,-5,-4,-3,-2}.Substituting each of these five values ofχinto Ineq.(4.4),we obtain a contradiction.Otherwisex≥2n-1.Then Lemma 2.1 gives

    the same contradiction.This completes the proof of Theorem 1.2.

    At the end of this paper,we would like to share the approach of finding Eq.(1.2).Our previous result[12]on(n,k)-graphs is as follows.

    Theorem 4.1(Lu and Wang).LetΣbe a surface of characteristic χ.Let μ(n,Σ)be the minimum integer k such that there is noΣ-embeddable(n,k)-graphs.Then for n≥1,we have

    While Eq.(4.5)was obtained by laborious computations,we discover Eq.(1.2)by the guess-and-check strategy.Although(0,k)-graphs are exactlyk-extendable graphs,Eq.(4.5)is valid under the premisen≥1.Nevertheless,it was Eq.(4.5)by which we were inspired to guess Eq.(1.2)out.

    Acknowledgements

    The authors appreciate the anonymous referee for his/her careful reading and detailed corrections for improvement.Lu is supported by the National Natural Science Foundation of China(NSFC,Grant No.11871391).Wang is supported by the NSFC(Grant No.12171034)and the Fundamental Research Funds for the Central Universities(Grant No.2021CX11012).He is grateful to the hospitality of Department of Mathematics in MIT.

    一个人免费在线观看的高清视频| 夜夜躁狠狠躁天天躁| 久久久久久久午夜电影| 日本精品一区二区三区蜜桃| 久久精品aⅴ一区二区三区四区| 日韩精品青青久久久久久| 麻豆成人av在线观看| 在线观看免费视频日本深夜| 欧美日韩瑟瑟在线播放| 成人永久免费在线观看视频| 国产成+人综合+亚洲专区| 欧美激情久久久久久爽电影| 亚洲狠狠婷婷综合久久图片| 久久久久精品国产欧美久久久| 日韩欧美在线二视频| 熟女少妇亚洲综合色aaa.| 非洲黑人性xxxx精品又粗又长| 啪啪无遮挡十八禁网站| 一级片免费观看大全| 无人区码免费观看不卡| 亚洲成av人片免费观看| 最近在线观看免费完整版| 十八禁人妻一区二区| 欧美在线一区亚洲| 欧美日韩亚洲综合一区二区三区_| 国产一区二区在线av高清观看| 国产欧美日韩精品亚洲av| 国产亚洲欧美在线一区二区| 久久久久久大精品| 一夜夜www| 欧美zozozo另类| 桃红色精品国产亚洲av| 欧美日韩一级在线毛片| 日本撒尿小便嘘嘘汇集6| 少妇的丰满在线观看| 亚洲第一电影网av| 高潮久久久久久久久久久不卡| 国产亚洲精品一区二区www| 亚洲五月色婷婷综合| 神马国产精品三级电影在线观看 | 午夜亚洲福利在线播放| 成人亚洲精品av一区二区| 无限看片的www在线观看| 欧美又色又爽又黄视频| 日本免费a在线| 免费在线观看亚洲国产| 国产亚洲精品av在线| 亚洲av成人不卡在线观看播放网| 国产91精品成人一区二区三区| 成人免费观看视频高清| 十分钟在线观看高清视频www| 91在线观看av| 成人av一区二区三区在线看| 欧美黑人精品巨大| a在线观看视频网站| tocl精华| 黄色毛片三级朝国网站| 天天躁夜夜躁狠狠躁躁| 亚洲av电影在线进入| 免费在线观看黄色视频的| 成人一区二区视频在线观看| av天堂在线播放| 天天添夜夜摸| 少妇的丰满在线观看| 天天一区二区日本电影三级| 一区二区日韩欧美中文字幕| 视频在线观看一区二区三区| 国产aⅴ精品一区二区三区波| 黑人巨大精品欧美一区二区mp4| 午夜福利一区二区在线看| 99久久无色码亚洲精品果冻| 最新美女视频免费是黄的| 一二三四在线观看免费中文在| 国产主播在线观看一区二区| 香蕉国产在线看| 国产精品一区二区免费欧美| 丝袜在线中文字幕| 亚洲人成77777在线视频| 国内精品久久久久久久电影| www日本在线高清视频| 国产精品久久久av美女十八| 欧美zozozo另类| 午夜成年电影在线免费观看| 精品一区二区三区视频在线观看免费| 日本精品一区二区三区蜜桃| 三级毛片av免费| 国产熟女xx| 日韩成人在线观看一区二区三区| 国产伦人伦偷精品视频| 国产亚洲欧美精品永久| 亚洲人成网站在线播放欧美日韩| 国产午夜精品久久久久久| av福利片在线| 欧美国产精品va在线观看不卡| 国产一区在线观看成人免费| 最近最新免费中文字幕在线| 欧美一级a爱片免费观看看 | 成在线人永久免费视频| 日本三级黄在线观看| 婷婷精品国产亚洲av| 亚洲精品一区av在线观看| 99久久久亚洲精品蜜臀av| 99久久精品国产亚洲精品| 欧美丝袜亚洲另类 | 少妇的丰满在线观看| 看免费av毛片| 精品少妇一区二区三区视频日本电影| av中文乱码字幕在线| 日本精品一区二区三区蜜桃| 99久久无色码亚洲精品果冻| 久久久久久亚洲精品国产蜜桃av| 午夜免费鲁丝| 国产黄片美女视频| 国产野战对白在线观看| www.999成人在线观看| a在线观看视频网站| 午夜老司机福利片| 成人18禁在线播放| 久久精品亚洲精品国产色婷小说| 黄色 视频免费看| 国产不卡一卡二| 香蕉av资源在线| 免费高清视频大片| 99国产精品一区二区三区| 欧美 亚洲 国产 日韩一| 搡老妇女老女人老熟妇| 国产精品爽爽va在线观看网站 | 中文字幕精品亚洲无线码一区 | 久久婷婷成人综合色麻豆| 在线观看一区二区三区| 亚洲九九香蕉| 在线观看免费日韩欧美大片| 亚洲国产中文字幕在线视频| 欧美不卡视频在线免费观看 | 精品久久久久久久毛片微露脸| 久久久国产成人免费| 亚洲欧美精品综合久久99| 黑人操中国人逼视频| 亚洲精品中文字幕在线视频| 亚洲精品久久成人aⅴ小说| 满18在线观看网站| 校园春色视频在线观看| 国产精品免费视频内射| 在线永久观看黄色视频| 亚洲黑人精品在线| 丰满人妻熟妇乱又伦精品不卡| 一本大道久久a久久精品| 一进一出抽搐gif免费好疼| 国产精品免费一区二区三区在线| 黄片大片在线免费观看| 免费在线观看日本一区| 18禁观看日本| 欧美性猛交╳xxx乱大交人| 国产视频内射| 看片在线看免费视频| 黄色成人免费大全| 午夜福利在线在线| 亚洲熟妇中文字幕五十中出| 欧美人与性动交α欧美精品济南到| 免费一级毛片在线播放高清视频| 波多野结衣高清无吗| 久久人妻福利社区极品人妻图片| 国内精品久久久久久久电影| 亚洲自偷自拍图片 自拍| 日韩成人在线观看一区二区三区| 亚洲无线在线观看| 亚洲成av人片免费观看| 日本三级黄在线观看| 757午夜福利合集在线观看| 久久久国产欧美日韩av| 男女之事视频高清在线观看| 亚洲avbb在线观看| 国产亚洲av高清不卡| 美女高潮喷水抽搐中文字幕| 高清毛片免费观看视频网站| 级片在线观看| 黑人巨大精品欧美一区二区mp4| 99re在线观看精品视频| 视频区欧美日本亚洲| 最近在线观看免费完整版| 丁香六月欧美| 男人舔女人的私密视频| 亚洲精品国产精品久久久不卡| 亚洲免费av在线视频| 国产精品1区2区在线观看.| 长腿黑丝高跟| 99热这里只有精品一区 | 我的亚洲天堂| 国产在线观看jvid| 在线观看日韩欧美| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美又色又爽又黄视频| 在线观看免费日韩欧美大片| 久久久久国产精品人妻aⅴ院| 久久中文看片网| 久久久精品国产亚洲av高清涩受| 国产精品亚洲一级av第二区| 国产黄色小视频在线观看| 日本一本二区三区精品| 97人妻精品一区二区三区麻豆 | 久久久精品国产亚洲av高清涩受| 国产午夜精品久久久久久| 香蕉丝袜av| 国产单亲对白刺激| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲人成伊人成综合网2020| 9191精品国产免费久久| 男女午夜视频在线观看| 精品国产乱码久久久久久男人| 欧美中文日本在线观看视频| 一本大道久久a久久精品| 国产成人系列免费观看| 久久久久久久精品吃奶| 亚洲国产精品久久男人天堂| 又紧又爽又黄一区二区| 亚洲,欧美精品.| 亚洲五月婷婷丁香| 亚洲欧洲精品一区二区精品久久久| 成人国产综合亚洲| 久久人人精品亚洲av| 国产精品av久久久久免费| 在线看三级毛片| 黑人操中国人逼视频| 免费看a级黄色片| 久久久精品欧美日韩精品| 亚洲成a人片在线一区二区| 91九色精品人成在线观看| 免费看a级黄色片| 黄频高清免费视频| 精品欧美一区二区三区在线| 国产精品乱码一区二三区的特点| 午夜福利欧美成人| 亚洲黑人精品在线| 法律面前人人平等表现在哪些方面| 免费无遮挡裸体视频| 黄片小视频在线播放| 制服丝袜大香蕉在线| 操出白浆在线播放| 啦啦啦观看免费观看视频高清| 动漫黄色视频在线观看| 哪里可以看免费的av片| 人人妻人人澡人人看| 亚洲一区二区三区不卡视频| 国产一区在线观看成人免费| 中文字幕最新亚洲高清| 精品国产亚洲在线| 国产亚洲欧美在线一区二区| 欧美黄色淫秽网站| 国产黄片美女视频| 91麻豆精品激情在线观看国产| 午夜福利视频1000在线观看| 黄色毛片三级朝国网站| 人人妻人人澡欧美一区二区| 国产成人精品无人区| 亚洲天堂国产精品一区在线| 午夜视频精品福利| 99国产综合亚洲精品| 欧美一级毛片孕妇| 精品少妇一区二区三区视频日本电影| 亚洲av成人av| 桃色一区二区三区在线观看| 欧美绝顶高潮抽搐喷水| 亚洲欧美日韩无卡精品| av视频在线观看入口| 成人18禁在线播放| 亚洲成人免费电影在线观看| 国产一区二区在线av高清观看| 人人妻人人澡人人看| 国产成人精品久久二区二区免费| 午夜影院日韩av| 亚洲国产欧美一区二区综合| 黄片播放在线免费| 大型黄色视频在线免费观看| 叶爱在线成人免费视频播放| 99热这里只有精品一区 | 欧美黑人巨大hd| 久久久久久久久免费视频了| 男人舔奶头视频| 日日干狠狠操夜夜爽| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲精品一区二区www| 成人三级黄色视频| 国产成人精品久久二区二区91| 日本三级黄在线观看| 久久久久久免费高清国产稀缺| 亚洲av日韩精品久久久久久密| 桃色一区二区三区在线观看| 美女国产高潮福利片在线看| 免费av毛片视频| 一本一本综合久久| 亚洲国产欧美网| 欧美av亚洲av综合av国产av| 国产精品 国内视频| 夜夜躁狠狠躁天天躁| 午夜免费成人在线视频| 亚洲国产精品成人综合色| 男女那种视频在线观看| 婷婷精品国产亚洲av在线| 男女视频在线观看网站免费 | 香蕉久久夜色| 99热只有精品国产| 精品久久蜜臀av无| 夜夜看夜夜爽夜夜摸| 亚洲熟妇中文字幕五十中出| 99热这里只有精品一区 | 欧美国产精品va在线观看不卡| 国产一区二区三区在线臀色熟女| 波多野结衣巨乳人妻| 免费在线观看完整版高清| 国产激情久久老熟女| 午夜影院日韩av| 美女 人体艺术 gogo| 免费在线观看影片大全网站| 午夜精品在线福利| 午夜激情av网站| 搡老妇女老女人老熟妇| 国产精品乱码一区二三区的特点| 亚洲七黄色美女视频| 亚洲国产日韩欧美精品在线观看 | 又黄又粗又硬又大视频| 91av网站免费观看| 香蕉久久夜色| 免费观看人在逋| 免费一级毛片在线播放高清视频| 亚洲中文av在线| 淫妇啪啪啪对白视频| 久久精品国产亚洲av香蕉五月| 精品日产1卡2卡| 人人妻人人澡欧美一区二区| 99久久国产精品久久久| 天天躁夜夜躁狠狠躁躁| 午夜老司机福利片| 国产精品影院久久| 日本撒尿小便嘘嘘汇集6| 欧美+亚洲+日韩+国产| 99精品久久久久人妻精品| 国产午夜福利久久久久久| 又大又爽又粗| 动漫黄色视频在线观看| 后天国语完整版免费观看| 一区二区三区激情视频| 久久精品成人免费网站| 亚洲av五月六月丁香网| 久久天躁狠狠躁夜夜2o2o| 国产伦在线观看视频一区| a级毛片a级免费在线| 丁香六月欧美| 国产一区二区三区在线臀色熟女| 搡老熟女国产l中国老女人| 淫秽高清视频在线观看| 9191精品国产免费久久| 精品国产乱码久久久久久男人| 亚洲国产日韩欧美精品在线观看 | 婷婷精品国产亚洲av| 人成视频在线观看免费观看| 美女国产高潮福利片在线看| 日本 欧美在线| 欧美精品亚洲一区二区| 在线观看午夜福利视频| 精品国产超薄肉色丝袜足j| 亚洲五月婷婷丁香| 丝袜在线中文字幕| 日韩有码中文字幕| 神马国产精品三级电影在线观看 | 好看av亚洲va欧美ⅴa在| a级毛片a级免费在线| 人人妻人人看人人澡| 亚洲无线在线观看| 美国免费a级毛片| 日韩欧美免费精品| 日本熟妇午夜| 国产精品 国内视频| 国产精品一区二区精品视频观看| 又大又爽又粗| 黄网站色视频无遮挡免费观看| 高清毛片免费观看视频网站| 久久婷婷成人综合色麻豆| 国产欧美日韩一区二区精品| 国产精品综合久久久久久久免费| 国产极品粉嫩免费观看在线| 国产男靠女视频免费网站| 两人在一起打扑克的视频| 久久久久亚洲av毛片大全| 久久这里只有精品19| 日本五十路高清| 成年免费大片在线观看| 日韩 欧美 亚洲 中文字幕| 久久久久国产一级毛片高清牌| 亚洲国产毛片av蜜桃av| 亚洲国产中文字幕在线视频| 国产精品,欧美在线| 久久人妻av系列| 日韩欧美一区二区三区在线观看| 男女那种视频在线观看| 亚洲精品国产精品久久久不卡| 99国产精品99久久久久| 欧美激情高清一区二区三区| 757午夜福利合集在线观看| cao死你这个sao货| 中文亚洲av片在线观看爽| 一本久久中文字幕| 国产精品综合久久久久久久免费| 在线看三级毛片| 日韩成人在线观看一区二区三区| 国产精品久久电影中文字幕| 欧美午夜高清在线| 啦啦啦观看免费观看视频高清| 黄色视频不卡| 亚洲一区二区三区不卡视频| 久久国产精品人妻蜜桃| 91麻豆精品激情在线观看国产| 国产aⅴ精品一区二区三区波| 日韩欧美三级三区| 窝窝影院91人妻| 久久久国产精品麻豆| 亚洲午夜理论影院| 香蕉丝袜av| 欧美国产精品va在线观看不卡| 国产成人精品久久二区二区91| 亚洲色图av天堂| 国产精品 国内视频| 黑人巨大精品欧美一区二区mp4| 桃红色精品国产亚洲av| 黄色 视频免费看| 日韩有码中文字幕| 欧美日本亚洲视频在线播放| 色av中文字幕| 国产91精品成人一区二区三区| 91老司机精品| 久久久久久国产a免费观看| 亚洲av成人一区二区三| 欧美激情高清一区二区三区| 国产精品99久久99久久久不卡| 嫁个100分男人电影在线观看| 日韩免费av在线播放| 欧美日韩一级在线毛片| 午夜影院日韩av| 一卡2卡三卡四卡精品乱码亚洲| 丰满的人妻完整版| 久久青草综合色| 午夜福利免费观看在线| 757午夜福利合集在线观看| 国产精品久久视频播放| 国产99白浆流出| 在线观看免费午夜福利视频| 日韩成人在线观看一区二区三区| 国产精品永久免费网站| 老汉色av国产亚洲站长工具| 搡老熟女国产l中国老女人| 国产成人精品无人区| 在线观看免费视频日本深夜| 免费在线观看黄色视频的| 久久人人精品亚洲av| 亚洲男人的天堂狠狠| 精品乱码久久久久久99久播| 久久国产亚洲av麻豆专区| 免费观看人在逋| 婷婷精品国产亚洲av| 午夜精品在线福利| 免费看a级黄色片| 亚洲男人的天堂狠狠| 亚洲av美国av| 国产亚洲精品av在线| 69av精品久久久久久| 亚洲熟女毛片儿| 女警被强在线播放| 一级a爱片免费观看的视频| 国产高清videossex| www.999成人在线观看| 午夜日韩欧美国产| 满18在线观看网站| 久久久久久免费高清国产稀缺| 午夜老司机福利片| 午夜a级毛片| 淫妇啪啪啪对白视频| 国产一区二区三区在线臀色熟女| 精品福利观看| 在线观看日韩欧美| 18禁黄网站禁片免费观看直播| 亚洲天堂国产精品一区在线| 成人亚洲精品一区在线观看| 手机成人av网站| 99riav亚洲国产免费| 日韩免费av在线播放| 成年女人毛片免费观看观看9| 国产av一区二区精品久久| 精品一区二区三区av网在线观看| 亚洲熟妇熟女久久| 超碰成人久久| 日韩大码丰满熟妇| 伊人久久大香线蕉亚洲五| 欧美成人免费av一区二区三区| 在线免费观看的www视频| 成人精品一区二区免费| 两个人视频免费观看高清| 日韩中文字幕欧美一区二区| 午夜激情福利司机影院| 日韩成人在线观看一区二区三区| 国产又黄又爽又无遮挡在线| 欧美性猛交黑人性爽| 日韩精品中文字幕看吧| 久久久国产成人免费| 欧美av亚洲av综合av国产av| 国产在线精品亚洲第一网站| 免费看美女性在线毛片视频| 亚洲熟女毛片儿| 在线看三级毛片| 久久99热这里只有精品18| 免费观看精品视频网站| 亚洲无线在线观看| av电影中文网址| 亚洲欧美一区二区三区黑人| 欧美日韩瑟瑟在线播放| 亚洲国产欧洲综合997久久, | 成年人黄色毛片网站| 欧美亚洲日本最大视频资源| 午夜精品久久久久久毛片777| 日韩欧美 国产精品| 亚洲人成电影免费在线| 午夜福利在线在线| 亚洲欧美精品综合久久99| www日本黄色视频网| 亚洲av电影不卡..在线观看| 99re在线观看精品视频| 午夜久久久在线观看| 一区二区日韩欧美中文字幕| 久久国产精品人妻蜜桃| 日韩欧美三级三区| 国内精品久久久久精免费| 色综合站精品国产| 91在线观看av| 黄频高清免费视频| 曰老女人黄片| 亚洲精品久久国产高清桃花| 亚洲国产欧美日韩在线播放| 在线看三级毛片| 巨乳人妻的诱惑在线观看| 在线播放国产精品三级| 天堂√8在线中文| 一本综合久久免费| 亚洲黑人精品在线| 欧美三级亚洲精品| 日韩有码中文字幕| 色在线成人网| svipshipincom国产片| 国产精品二区激情视频| 精品久久久久久久人妻蜜臀av| 亚洲九九香蕉| 欧美日韩瑟瑟在线播放| 男女视频在线观看网站免费 | 男男h啪啪无遮挡| 精品久久久久久久毛片微露脸| 看黄色毛片网站| 男女之事视频高清在线观看| av免费在线观看网站| 久久久久九九精品影院| 999久久久精品免费观看国产| 一级作爱视频免费观看| 波多野结衣高清无吗| 久久久久九九精品影院| 久久香蕉激情| 国产av在哪里看| 国产精品亚洲av一区麻豆| 99re在线观看精品视频| 日韩欧美在线二视频| 一区福利在线观看| 国内久久婷婷六月综合欲色啪| 日本免费一区二区三区高清不卡| 最近的中文字幕免费完整| 两个人的视频大全免费| 亚洲人与动物交配视频| 99久久久亚洲精品蜜臀av| 国产淫片久久久久久久久| 男女啪啪激烈高潮av片| а√天堂www在线а√下载| 欧美xxxx性猛交bbbb| 免费在线观看影片大全网站| 麻豆国产av国片精品| 欧美一区二区精品小视频在线| 欧美3d第一页| 久久精品国产自在天天线| 乱码一卡2卡4卡精品| 亚洲av成人av| 国产精品人妻久久久久久| 噜噜噜噜噜久久久久久91| 成人精品一区二区免费| 成人特级av手机在线观看| 亚洲av中文字字幕乱码综合| 露出奶头的视频| 久久亚洲国产成人精品v| 99九九线精品视频在线观看视频| 色综合色国产| 午夜精品在线福利| 蜜臀久久99精品久久宅男| 99热这里只有精品一区| 亚洲熟妇中文字幕五十中出| 日日摸夜夜添夜夜添av毛片| 性插视频无遮挡在线免费观看| 三级国产精品欧美在线观看| 韩国av在线不卡| 精品国产三级普通话版| 亚洲在线观看片| 久久精品综合一区二区三区| 亚洲无线观看免费| 欧美成人一区二区免费高清观看| 全区人妻精品视频| 少妇人妻精品综合一区二区 | 国产av麻豆久久久久久久| 亚洲性夜色夜夜综合| 亚洲最大成人中文| 美女内射精品一级片tv| 日本成人三级电影网站| 在线免费十八禁| 深夜a级毛片| 国产又黄又爽又无遮挡在线|