• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized T-Product Tensor Bernstein Bounds

    2022-03-18 12:37:00ShihYuChangandYiminWei
    Annals of Applied Mathematics 2022年1期

    Shih Yu Changand Yimin Wei

    1Department of Applied Data Science,San Jose State University,San Jose,CA 95192,USA

    2School of Mathematical Sciences and Shanghai Key Laboratory of Contemporary Applied Mathematics,Fudan University,Shanghai 200433,China

    Abstract.Since Kilmer et al.introduced the new multiplication method between two third-order tensors around 2008 and third-order tensors with such multiplication structure are also called as T-product tensors,T-product tensors have been applied to many fields in science and engineering,such as low-rank tensor approximation,signal processing,image feature extraction,machine learning,computer vision,and the multi-view clustering problem,etc.However,there are very few works dedicated to exploring the behavior of random T-product tensors.This work considers the problem about the tail behavior of the unitarily invariant norm for the summation of random symmetric T-product tensors.Majorization and antisymmetric Kronecker product tools are main techniques utilized to establish inequalities for unitarily norms of multivariate T-product tensors.The Laplace transform method is integrated with these inequalities for unitarily norms of multivariate T-product tensors to provide us with Bernstein bound estimation of Ky Fan k-norm for functions of the symmetric random T-product tensors summation.Finally,we also apply T-product Bernstein inequality to bound Ky Fan norm of covariance T-product tensor induced by hypergraph signal processing.

    Key words:T-product tensors,T-eigenvalues,T-singular values,Bernstein bound,Courant-Fischer theorem for T-product tensors.

    1 Introduction

    Since Kilmer et al.introduced the new multiplication method between two thirdorder tensors(T-product tensors),many new algebraic properties about such new multiplication rule between two third-order tensors are investigated[9,11].These useful algebraic properties of T-product tensors have been discovered as powerful tools in many science and engineering fields[21,28].Although T-product tensors have attracted many practical applications,all of these applications of T-product tensors assume that T-product tensors under consideration are deterministic.This assumption is not practical in general scientific and engineering applications based on T-product tensors.In[4,5],the authors have tried to establish several new tail bounds for sums of random T-product tensors.These probability bounds characterize large-deviation behavior of the extreme T-eigenvalue of the sums of random T-product tensors(definitions about T-eigenvalues and T-singular values associated to T-product tensors are given in Section 2.1).The authors first apply Lapalace transform method and Lieb’s concavity theorem for T-product tensors obtained from the work[4]to build several inequalities based on random T-product tensors,then utilize these inequalities to generalize the classical bounds associated with the names Chernoff,and Bernstein from the scalar to the T-product tensor setting.Tail bounds for the norm of a sum of random rectangular T-product tensors are also derived from corollaries of random symmetric T-product tensors cases.The proof mechanism is also applied to T-product tensor valued martingales and T-product tensor-based Azuma,Hoeffding and McDiarmid inequalities are also derived[5].The random tensor and its applications in MRI and the tensor normal distribution can be found in[1,23].

    In this work,we will apply majorization techniques to establish new Bernstein bounds based on the summation of random symmetric T-product tensors.Compared to the previous work studied in[4,5,14],we make following generalizations:(1)besides bounds related to extreme values of T-eigenvalues,we consider more general unitarily invariant norm for T-product tensors;(2)the bounds derived in[5]can only be applied to the identity map for the summation of random symmetric T-product tensors,this work can derive new bounds for any polynomial function raised by any power greater or equal than one for the summation of random symmetric T-product tensors.In order to drive these new bounds,we also establish Courant-Fischer minmax theorem for T-product tensors in Theorem 2.1 and marjoization relation for T-singular values in Lemma 4.1.Our main theorem is provided below:

    Theorem 1.1(Generalized T-product tensor Bernstein bound).Consider a sequence{Xj∈Rm×m×p}of independent,random symmetric T-product tensors with random structure defined by Definition4.1.Let g be a polynomial function withdegree n and nonnegative coefficients a0,a1,···,anraised by power s≥1,i.e.,g(x)=(a0+a1x+···+anxn)swith s≥1.Suppose following condition is satisfied:

    where t>0,and we also have

    Then we have following inequality:

    The rest of this paper is organized as follows.In Section 2,we review T-product tensors basic concepts and introduce a powerful scheme about antisymmetric Kronecker product for T-product tensors.In Section 3,we apply a majorization technique to prove T-product tensor norm inequalities.We then apply new derived T-product tensor norm inequalities to obtain random T-product tensor Bernstein bounds for the extreme T-eigenvalues and Ky Fank-norm in Section 4.Finally,concluding remarks are given by Section 6.

    2 T-product tensors

    In this section,we will introduce fundamental facts about T-product tensors in Section 2.1.Several unitarily invariant norms about a T-product tensor are defined in Section 2.2.A powerful scheme about antisymmetric Kronecker product for T-product tensors will be provided by Section 2.3.

    2.1 T-product tensor fundamental facts

    All third order tensors considered in this work will adopt T-product between two third order tensors multiplication.Basic definitions like identity,symmetric T-product tenor,inner product and computations can be found at[2,10,13,17,18,24,26].Notions about trace,T-positive definite(TPD)tensor,T-positive semidefinite(TPSD)tensor,SVD of a symmetric T-product tensor are provided by[27].

    If a T-product tensorC∈Rm×m×pcan be diagonalized as

    thej-th eigenvalue of the matrix Ciis called a T-eigenvalue[12,19],denoted byλi,j.We then define thedeterminantof a T-product tensorC∈Rm×m×p,represented by det(C),as

    Similarly,singular values of each matrix Ciare T-singular values of the tensorC.

    If a symmetric T-product tensorC∈Rm×m×pcan be expressed as the format shown by Eq.(2.1),the T-eigenvalues ofCwith respect to the matrix Ciare denoted asλi,ki,where 1≤ki≤m,and we assume thatλi,1≥λi,2≥···≥λi,m(including multiplicities).Then,λi,kiis theki-th largest T-eigenvalue associated to the matrix Ci.If we sort all T-eigenvalues ofCfrom the largest one to the smallest one,we use,a smallest integer between 1 tom×p(inclusive)associated withpgiven positive integersk1,k2,···,kpthat satisfies

    Then,we will have the following Courant-Fischer theorem for T-product tensors.

    Theorem 2.1.Given a symmetric T-product tensor C∈Rm×m×pand p positive integers k1,k2,···,kpwith1≤ki≤m,then we have

    where λandare defined by Eqs.(2.3)and(2.4).

    Proof.First,we have to express〈X,C★X〉by matrices of Ciand Xithrough the representation shown by Eq.(2.1).It is

    We will just verify the first characterization ofThe other is similar.LetSibe the projection ofSto the space with dimensionkispanned by vi,1,···,vi,ki,for every xi∈Si,we can write

    To verify that this is the maximum,letbe the projection ofTto the space with dimensionwith dimension+1,then the intersection ofSandis not empty.We have

    Therefore,for all subspacesSof dimensions{k1,···,kp},we have

    Thus,we complete the proof.

    Given a symmetric T-product tensorCwith associated matrices Ciprovided by Eq.(2.1),next theorem is the representation of the summation of all the largestkiT-eigenvalues of Ciand the summation of all the smallestkiT-eigenvalues of Ci.

    Theorem 2.2.Let C∈Rm×m×pbe a symmetric T-product tensor with associated matricesCiprovided by Eq.(2.1),and we sort T-eigenvalues of the matrixCias λi,1≥λi,2≥···≥λi,ki.Then,we have

    and

    whereUiare ki×m complex matrices.

    Proof.From Theorem 5 in[27],we may assume that Ciare diagonal matrices,denoted as Di,since Ciare symmetric T-product matrices.Therefore,we have the expression

    Then,we have

    where P=(pj,l)is aki×mstochastic matrix.Then,we can concatenate an(m-ki)×mmatrix Q to the matrix P to make the following matrixas doubly stochastic from 2.C.1(4)from[16].Then,Eq.(2.12)can be expressed as

    Given two lists of real numbers,[a1,···,an]and[b1,···,bn],we use[a1,···,an]?[b1,···,bn]to represent the following relationships:

    holds for anykbetween 1 andn.From Eq.(2.13),we have

    and 3.H.2.b from[16],we have

    and

    Finally,this theorem is proved by applyingto both sides of Eqs.(2.15)and(2.16)with respect to the indexi,and note that

    respectively.

    2.2 Unitarily invariant T-product tensor norms

    Let us represent the T-eigenvalues of a symmetric T-product tensorH∈Rm×m×pin decreasing order by the vector

    wherem×pis the total number of T-eigenvalues.We useto represent a set of nonnegative(positive)real numbers.Let‖·‖ρbe a unitarily invariant tensor norm,i.e.,

    whereUis any unitary tensor.Letbe the corresponding gauge function that satisfies Hlder’s inequality so that

    Several popular norms can be treated as special cases of unitarily invariant tensor norm.The first one is Ky Fan likek-norm[6]for tensors.Fork∈{1,2,···,m×p},the Ky Fank-norm[6]for tensorsH∈Rm×m×p,denoted as‖H‖(k),is defined as:

    Ifk=1,the Ky Fank-norm for tensors is the tensor operator norm,denoted as‖H‖.The second one is Schattenp-norm for tensors,denoted as‖H‖p,is defined as:

    wherep≥1.Ifp=1,it is the trace norm.

    2.3 Antisymmetric Kronecker product for T-product tensors

    In this section,we will discuss a machinery of antisymmetric Kronecker product for T-product tensors and this scheme will be used later for log-majorization results.Let H be anm×p-dimensional Hilbert space.For eachk∈N,let H?kdenote thek-fold Kronecker product of H,which is the(m×p)k-dimensional Hilbert space with respect to the inner product defined by

    For X1,···,Xk∈H,we define X1∧···∧Xk∈H?kby

    whereσruns over all permutations on{1,2,···,k}and sgnσ=±1 depending onσis even or odd.The subspace of H?kspanned by{X1∧···∧Xk},where Xi∈H,is named ask-fold antisymmetric Kronecker product of H and represented by H∧k.

    For eachC∈Rm×m×pandk∈N,thek-fold Kronecker productC?k∈Rmk×mk×pkis given by

    Because H∧kis invariant forC?k,the antisymmetric Kronecker product ofC∧kofCcan be defined asC∧k=C?|H∧k,then we have

    We will provide the following lemmas about antisymmetric Kronecker product.

    Lemma 2.1.Let A,B,C,E∈Rm×m×pbe T-product tensors,for any k∈{1,2,···,m×p},we have

    The proof can be found at Lemma 3 in[3].

    3 Multivariate T-product tensor norm inequalities

    In this section,the majorization with integral average and log-majorization with integral average will be introduced in Section 3.1 and Section 3.2.These majorization results will be used to prove T-product tensor norm inequalities in Section 3.3.The basic concept about majorization and its applications can refer to[16].

    3.1 Majorization with integral average

    Let Ω be aσ-compact metric space andνa probability measure on the Borelσ- field of Ω.LetC,Dτ∈Rm×m×pbe symmetric T-product tensors.We further assume that tensorsC,Dτare uniformly bounded in their norm forτ∈Ω.Letτ∈Ω→Dτbe a continuous function such that sup{‖Dτ‖:τ∈Ω}<∞.For notational convenience,we define the following relation:

    Iffis a single variable function,the notationf(C)represents a tensor function with respect to the tensorC.

    Theorem 3.1.LetΩ,ν,C,Dτbe defined as the beginning part of Section3.1,and f:R→[0,∞)be a non-decreasing convex function,we have following two equivalent statements:

    where‖·‖ρis the unitarily invariant norm defined in Eq.(2.17).

    Proof.We assume that the left statement of Eq.(3.2)is true and the functionfis a non-decreasing convex function.From Lemma 1 in[8],we have

    From the convexity off,we also have

    Then,we obtain

    By applying Lemma 4.4.2 in[7]to both sides of

    with gauge functionρ,we obtain

    Therefore,the right statement of Eq.(3.2)is true from the left statement.

    On the other hand,if the right statement of Eq.(3.2)is true,we select a functionf=max{x+c,0},wherecis a positive real constant satisfyingC+cI≥O,Dτ+cI≥Ofor allτ∈Ω,and tensorsC+cI,Dτ+cI.If the Ky Fank-norm at the right statement of Eq.(3.2)is applied,we have

    Hence,

    this is the left statement of Eq.(3.2).

    Next theorem will provide a stronger version of Theorem 3.1 by removing weak majorization conditions.

    Theorem 3.2.LetΩ,ν,C,Dτbe defined as the beginning part of Section3.1,and f:R→[0,∞)be a convex function,we have following two equivalent statements:

    where‖·‖ρis the unitarily invariant norm defined in Eq.(2.17).

    Proof.We assume that the left statement of Eq.(3.7)is true and the functionfis a convex function.Again,from Lemma 1 in[8],we have

    then,

    This proves the right statement of Eq.(3.7).

    Now,we assume that the right statement of Eq.(3.7)is true.From Theorem 3.1,we already have

    It is enough to prove

    We define a functionf=max{c-x,0},wherecis a positive real constant satisfyingC≤cI,Dτ≤cIfor allτ∈Ω and tensorscI-C,cI-Dτ.If the trace norm is applied,i.e.,the sum of the absolute value of all eigenvalues of a symmetric T-product tensor,then the right statement of Eq.(3.7)becomes

    The desired inequality

    is established.

    3.2 Log-majorization with integral average

    The purpose of this section is to consider log-majorization issues for unitarily invariant norms of TPSD T-product tensors.In this section,letC,Dτ∈Rm×m×pbe TPSD T-product tensors withm×pnonnegative T-eigenvalues by keeping notations with the same definitions as at the beginning of the Section 3.1.For notational convenience,we define the following relation for logarithm vector:

    Theorem 3.3.Let C,Dτbe TPSD T-product tensors,f:(0,∞)→[0,∞)be a continuous function such that the mapping x→logf(ex)is convex onR,and g:(0,∞)→[0,∞)be a continuous function such that the mapping x→g(ex)is convex onR,then we have following three equivalent statements:

    Proof.The roadmap of this proof is to prove equivalent statements between Eq.(3.11a)and Eq.(3.11b) first,followed by equivalent statements between Eq.(3.11a)and Eq.(3.11c).

    Eq.(3.11a)=?Eq.(3.11b).

    There are two cases to be discussed in this part of proof:C,Dτare TPD tensors,andC,Dτare TPSD T-product tensors.At the beginning,we consider the case thatC,Dτare TPD tensors.

    SinceDτare positive,we can findε>0 such thatDτ≥εIfor allτ∈Ω.From Eq.(3.11a),the convexity of logf(ex)and Lemma 1 in[8],we have

    Then,from Eq.(2.17),we obtain

    From the functionfproperties,we can assume thatf(x)>0 for anyx>0.Then,we have following bounded and continuous maps on Ω:τ→logf(λi(Dτ))fori∈Because we haveν(Ω)=1 andσ-compactness of Ω,we haveandn∈N withsuch that

    wherei∈{1,2,···m×p}.Moreover,

    By taking the exponential at both sides of Eq.(3.14)and apply the gauge functionρ,we have

    Similarly,by taking the exponential at both sides of Eq.(3.15),we have

    From Lemma 2 in[8],we have

    From Eqs.(3.16),(3.17)and(3.18),we have

    Then,Eq.(3.11b)is proved from Eqs.(3.13)and(3.19).

    Next,we consider thatC,Dτare TPSD T-product tensors.For anyδ>0,we have following log-majorization relation:

    where∈δ>0 andk∈{1,2,···r}.Then,we can apply the previous case result about TPD tensors to TPD tensorsC+∈δIandDτ+δI,and get

    Asδ→0,Eq.(3.21)will give us Eq.(3.11b)for TPSD T-product tensors.

    Eq.(3.11a)?=Eq.(3.11b).

    We consider TPD tensors at first phase by assuming thatDτare TPD T-product tensors for allτ∈Ω.We may also assume that the tensorCis a TPD T-product tensor.Since if this is a TPSD T-product tensor,i.e.,someλi=0,we always have following inequality valid:

    If we applyf(x)=xpforp>0 and‖·‖ρas Ky Fank-norm in Eq.(3.11b),we have

    From L’Hopital’s Rule,ifp→0,we have

    and

    whereτ∈Ω.Appling Eqs.(3.25)and(3.26)into Eq.(3.24)and takingp→0,we have

    Therefore,Eq.(3.11a)is true for TPD tensors.

    For TPSD T-product tensorsDτ,since Eq.(3.11b)is valid forDτ+δIfor anyδ>0,we can apply the previous case result about TPD tensors toDτ+δIand obtain

    wherek∈{1,2,···,r}.Eq.(3.11a)is still true for TPSD T-product tensors asδ→0.

    Eq.(3.11a) =?Eq.(3.11c).

    IfC,Dτare TPD tensors,andDτ≥δIfor allτ∈Ω.From Eq.(3.11a),we have

    If we apply Theorem 3.1 to logC,logDτwith functionf(x)=g(ex),wheregis used in Eq.(3.11c),Eq.(3.11c)is implied.

    IfC,Dτare TPSD T-product tensors and anyδ>0,we can find∈δ∈(0,δ)to satisfy following:

    Then,from TPD T-product tensor case,we have

    Eq.(3.11c)is obtained by takingδ→0 in Eq.(3.31).

    Eq.(3.11a)?=Eq.(3.11c).

    Fork∈{1,2,···,r},if we applyg(x)=log(δ+x),whereδ>0,and Ky Fank-norm in Eq.(3.11c),we have

    Then,we have following relation asδ→0:

    Therefore,Eq.(3.11a)can be derived from Eq.(3.11c).

    Next theorem will extend Theorem 3.3 to non-weak version.

    Theorem 3.4.Let C,Dτbe TPSD T-product tensors with

    for any p>0,f:(0,∞)→[0,∞)be a continuous function such that the mapping x→logf(ex)is convex onR,and g:(0,∞)→[0,∞)be a continuous function such that the mapping x→g(ex)is convex onR,then we have following three equivalent statements:

    Proof.The proof plan is similar to the proof in Theorem 3.3.We prove the equivalence between Eq.(3.34a)and Eq.(3.34b) first,then prove the equivalence between Eq.(3.34a)and Eq.(3.34c).

    Eq.(3.34a)=?Eq.(3.34b).

    First,we assume thatC,Dτare TPD T-product tensors withDτ≥δIfor allτ∈Ω.The corresponding part of the proof in Theorem 3.3 about TPD tensorsC,Dτcan be applied here.

    For case thatC,Dτare TPSD T-product tensors,we have

    whereδn>0 andδn→0.Because we have

    asn→∞;from Lemma 12 in[8],we can find a(n)withn≥n0such that≥···≥a(n)→→λ(C)and

    wheren≥n0.

    There are two situations for the functionfnear 0:f(0+)<∞andf(0+)=∞.For the case withf(0+)<∞,we have

    whereτ∈Ω andn→∞.From Fatou-Lebesgue theorem,we then have

    By takingn→∞in Eq.(3.37)and using Eqs.(3.38),(3.39),(3.40),we have Eq.(3.34b)for case thatf(0+)<∞.

    For the case withf(0+)=∞,we assume thatRΩlog‖f(Dτ)‖ρdν(τ)<∞,(since the inequality in Eq.(3.34b)is always true forRΩlog‖f(Dτ)‖ρdν(τ)=∞).Sincefis decreasing on(0,∈)for some∈>0.We claim that the following relation is valid:there are two constantsa,b>0 such that

    for allτ∈Ω andn≥n0.If Eq.(3.41)is valid and

    from Lebesgue’s dominated convergence theorem,we also have Eq.(3.34b)for case thatf(0+)=∞by takingn→∞in Eq.(3.37).

    Below,we will prove the claim stated by Eq.(3.41).By the uniform boundedness of tensorsDτ,there is a constantκ>0 such that

    whereτ∈Ω andn≥n0.We may assume thatDτis TPD tensors because‖f(Dτ)‖ρ=∞,i.e.,Eq.(3.41)being true automatically,whenDτis TPSD T-product tensors.From SVD of symmetric T-product tensors,we have

    Therefore,the claim in Eq.(3.41)follows by the triangle inequality for‖·‖ρandf(λj′(Dτ)+δn)<∞forλj′(Dτ)+δn≥∈.

    Eq.(3.34a)?=Eq.(3.34b).

    The weak majorization relation

    is valid fork<m×pfrom Eq.(3.11a)=?Eq.(3.11b)in Theorem 3.3.We wish to prove that Eq.(3.44)becomes equal fork=m×p.It is equivalent to prove that

    where det(·)is defined by Eq.(2.2).We can assume that

    since Eq.(3.45)is true for

    Then,Dτare TPD tensors.

    If we scale tensorsC,DτasaC,aDτby somea>0,we can assumeDτ≤Iandλi(Dτ)≤1 for allτ∈Ω andi∈{1,2,···,m×p}.Then for anyp>0,we have

    If we use tensor trace norm,represented by‖·‖1,as unitarily invariant tensor norm andf(x)=x-?for any?>0 in Eq.(3.34b),we obtain

    Similar to Eqs.(3.25)and(3.26),we have following two relations as?→0:

    and

    From Eq.(3.47)and Lebesgue’s dominated convergence theorem,we have

    Finally,we have Eq.(3.45)from Eqs.(3.49)and(3.52).

    Eq.(3.34a)=?Eq.(3.34c).

    First,we assume thatC,Dτare TPD tensors andDτ≥δIforτ∈Ω.From Eq.(3.34a),we can apply Theorem 3.2 to logC,logDτandf(x)=g(ex)to obtain Eq.(3.34c).

    ForC,Dτare TPSD T-product tensors,we can choose a(n)and correspondingC(n)forn≥n0givenδn→0 withδn>0 as the proof in Eq.(3.34a)=?Eq.(3.34b).Since tensorsC(n),Dτ+δnIare TPD T-product tensors,we then have

    Ifg(0+)<∞,Eq.(3.34c)is obtained from Eq.(3.53)by takingn→∞.On the other hand,ifg(0+)=∞,we can apply the argument similar to the portion aboutf(0+)=∞in the proof for Eq.(3.34a)=?Eq.(3.34b)to geta,b>0 such that

    for allτ∈Ω andn≥n0.Since the case that

    will have Eq.(3.34c),we only consider the case that

    Then,we have Eq.(3.34c)from Eqs.(3.53),(3.54)and Lebesgue’s dominated convergence theorem.

    Eq.(3.34a)?= Eq.(3.34c).

    The weak majorization relation

    is true from the implication from Eq.(3.11a)to Eq.(3.11c)in Theorem 3.3.We have to show that this relation becomes identity fork=m×p.If we apply‖·‖ρ=‖·‖1andg(x)=x-?for any?>0 in Eq.(3.34c),we have

    Then,we will get

    which will prove the identity for Eq.(3.55)whenk=m×p.The equality in=1will be proved by the following Lemma 3.1.

    Lemma 3.1.Let Dτbe TPSD T-product tensors withRΩ‖D-pτ‖ρdν(τ)<∞for any p>0,then we have

    The proof can be found at Lemma 6 in[3].

    3.3 T-product tensor norm inequalities by majorization

    In this section,we will apply derived majorization inequalities for T-product tensors to multivariate T-product tensor norm inequalities which will be used to bound random T-product tensor concentration inequalities in later sections.We will begin to present a Lie-Trotter product formula for tensors.

    The proof of this lemma can be found in Lemma 7 in[3].

    Below,new multivariate norm inequalities for T-product tensors are provided according to previous majorization theorems.

    Theorem 3.5.Let Ci∈Rm×m×pbe TPD tensors,where1≤i≤n,‖·‖ρbe a unitarily invaraint norm with corresponding gauge function ρ.For any continuous function f:(0,∞)→[0,∞)such that x→logf(ex)is convex onR,we have

    where

    For any continuous function g(0,∞)→[0,∞)such that x→g(ex)is convex onR,we have

    Proof.From Hirschman interpolation theorem[22]andθ∈[0,1],we have

    whereh(z)be uniformly bounded onand holomorphic onS.The termdβθ(t)is defined as:

    LetH(z)be a uniformly bounded holomorphic function with values in Cm×m×p.Fix someθ∈[0,1]and letU,V∈Cm×m×pbe normalized tensors such that

    If we defineh(z)ash(z)=〈U,H(z)★V〉,we have following bound:|h(z)|≤‖H(z)‖for allz∈S.From Hirschman interpolation theorem,we then have following interpolation theorem for tensor-valued function:

    Let

    Then the first term in the R.H.S.of Eq.(3.64)is zero sinceH(ιt)is a product of unitary tensors.Then we have

    From Lemma 2.1,we have following relations:

    If Eq.(3.65)is applied to∧kCifor 1≤k≤r,we have following log-majorization relation from Eqs.(3.66)and(3.67):

    Moreover,we have the equality condition in Eq.(3.68)fork=rdue to following identies:

    At this stage,we are ready to apply Theorem 3.4 for the log-majorization provided by Eq.(3.68)to get following facts:

    and

    From Lie product formula for tensors given by Lemma 3.2,we have

    By settingθ→0 in Eqs.(3.70),(3.71)and using Lie product formula given by Eq.(3.72),we will get Eqs.(3.60)and(3.61).

    4 Applications of T-product tensor norm inequalities

    The purpose of this section is to apply new derived T-product tensor norm inequalities to obtain random symmetric T-product tensor Bernstein bounds.In Section 4.1,Ky Fank-norm inequalities for T-product tensors will be provided and such Ky Fank-norm inequalities will be utilized to establish T-product tensor Bernstein bounds in Section 4.2 and Section 4.3.

    4.1 Ky fan k-norm tail bounds

    We will present several lemmas required to prove Ky Fank-norm tail bounds.

    We have following lemma about the majorization relation of T-singular values among T-product tensors summation.

    Lemma 4.1.Given two symmetric T-product tensors C,D∈Rm×m×p.We have following majorization relation about T-singular values:

    Proof.Since we have

    where?is the operation to take the real part,and the equalities=1and=2come from Theorem 2.2.

    We are ready to introduce the following two lemmas about Ky Fank-norm inequalities for the product of tensors(Lemma 4.2)and the summation of tensors(Lemma 4.3).

    Lemma 4.2.Let Ci∈Rm×m×pbe symmetric T-product tensors and let pibe positivereal numbers satisfyingThen,we have

    where s≥1and k∈{1,2,···,m×p}.

    The proof can be found at Lemma 10 in[3].

    Lemma 4.3.Let Ci∈Rm×m×pbe symmetric T-product tensors,then we have

    where s≥1and k∈{1,2,···,m×p}.

    The proof can be found at Lemma 11 in[3].

    Now,we are ready to present our main theorem about Ky Fank-norm probability bound for a function of tensors summation.

    Theorem 4.1.Consider a sequence{Xj∈Rm×m×p}of independent,random,symmetric T-product tensors.Let g(x)be a polynomial function with degree n and nonnegative coefficients a0,a1,···,anraised by power s≥1,then g(x)can be expressed as:

    Suppose following condition is satisfied:

    where t>0.Then,we have

    Proof.Lett>0 be a parameter to be chosen later.Then

    where≤1uses Markov’s inequality,≤2requires conditions provided by Eq.(4.6).

    We can further bound the expectation term in Eq.(4.7)as

    where≤3from Eq.(3.61)in Theorem 3.5,≤4is obtained from functiongdefinition and Lemma 4.3.Again,the expectation term in Eq.(4.9)can be further bounded by Lemma 4.2 as

    Note that the final equality is obtained due to that the integrand is independent of the variableτand

    Finally,this theorem is established from Eqs.(4.8),(4.9),and(4.10).

    Remark 4.1.The condition provided by Eq.(4.6)can be achieved by normalizing tensorsXjthrough scaling.

    4.2 T-product tensor Bernstein bound

    In this section,we will present a tensor Bernstein bound for the maximum and the minimum T-eigenvalue for summation of random symmetric T-product tensors.We will provide the following definition to define a random structure for the T-product tensorX∈Rm×m×p.

    Definition 4.1.Random structure for random symmetric T-product tensor X∈Rm×m×p

    1.There are p Hermitian matrices with size m×m,denoted asX1,X2,···,Xp,obtained from Eq.(2.1).The entries for the matrixXiare denoted by(xij,k),where xij,kis a complex number.

    2.For eachXi,the random variables xij,j,?xij,kfor j<k,and ?xij,kfor j<k,are independent.

    3.For eachXi,the random variables xij,jfollow Gaussian distribution with zeromean and variance as

    4.For eachXi,the random variablesfor j<k,and ?xij,kfor j<k,followGaussian distribution with zero mean and variance as

    Following lemma is about the expectation of the largest T-eigenvalue of symmetric T-product tensor exp(γX),whereγis a real number.

    Lemma 4.4.Given a random symmetric T-product tensor X∈Rm×m×psatisfying Definition4.1and any real number γ,we have

    where λ1is the largest T-eigenvalue,and c1,c2are constants related to the bound of cumulative distribution function of the largest eigenvalue of the random Hermitian matrixX.

    The proof can be found at Lemma 12 in[3].

    We are ready to present our theorem about the maximum and the minimum of T-eigenvalue for the summation of random symmetric T-product tensors.

    Theorem 4.2(T-product tensor Bernstein bound for T-eigenvalue).Consider a sequence{Xj∈Rm×m×p}of independent,random,symmetric T-product tensors with random structure defined by Definition4.1.Then we have following inequalities:given θ1>0,we have

    and,given θ2<0,we have

    TheΨfunction is defined by Eq.(4.11).

    Proof.Since we have

    where=1comes from that maximum singular value equals to the maximum absolute value of an T-eigenvalue and the maximum and the minimum of T-eigenvalue has same distribution due to the symmetry of random structure given by Definition 4.1;the inequality≤2comes from Theorem 4.1 whengis the identity function;the equality≤3comes from Lemma 4.4 and

    due to TPD of exp(pjtXj);the inequality≤4is obtained by selectingpj=M.Therefore,we have Eq.(4.12).

    For the minimum T-eigenvalue,we also have

    where=1comes from Theorem 2.1;=2is true since the maximum singular value equals to the maximum absolute value of an T-eigenvalue and the maximum and the minimum of T-eigenvalue has same distribution due to the symmetry of random structure given by Definition 4.1;the inequality≤3comes from Theorem 4.1 again whengis an identity map;the equality≤4comes from Lemma 4.4 and

    due to TPD of exp(pjtXj);the inequality≤5is obtained by selectingpj=M.Hence,we have Eq.(4.13).

    4.3 Generalized T-product tensor Bernstein bound

    In this section,we will present a generalized tensor Bernstein bound for Ky Fanknorm,and we will begin with a lemma to bound exponential of a random T-product tensor.

    Lemma 4.5.Suppose that X∈Rm×m×pis a random symmetric T-product tensor that satisfies

    where A is a fixed TPD tensor.Then,we have

    where0<t<1.

    The proof can be found at Lemma 13 in[3].

    Lemma 4.6.Given a random symmetric T-product tensor X∈Rm×m×psatisfying Definition4.1,we have

    where σ1is the largest T-singular value,and d1,d2are constants related to the upper bound of the largest eigenvalue of the random Hermitian matrixX.

    The proof can be found at Lemma 14 in[3].

    Following lemma is about Ky Fank-norm bound for the exponential of a random T-product tensor with subexponential constraints.

    Lemma 4.7.Given a symmetric random T-product tensor X∈Rm×m×pwith random structure defined by Definition4.1and

    where A is a TPD T-product tensor.Then,we have following bound about the expectation value of Ky Fan k-norm for the random T-product tensorexp(θX)

    Proof.From Lemma 4.5,we have

    whereσl(·)is thel-th largest T-singular value.

    From Lemma 4.1,we have for two symmetric T-product tensorsAandB.Then,we can bound Eσ1(I+θX+as

    where we use Φ(m,d1,d2)from Lemma 4.6 to bound Eσ1(X)in the last inequality.This Lemma is proved by multiplyingkat Eq.(4.22).

    We are ready to prove our main theorem,Theorem 1.1,about the generalized T-product tensor Bernstein bound.

    Proof.Since we have

    where the inequality≤1comes from Theorem 4.1;the inequality≤2comes from Lemma 4.7;the inequality≤3is obtained by settingpj=M.

    5 Covariance T-product tensor characterization by generalized T-product Bernstein bound

    In this section,we will try to apply generalized T-product Bernstein Bound derived in Section 4.3 to bound Ky Fan norm of covariance T-product tensor induced by hypergraph signal processing.In[15],Marques et al.provide a comprehensive introduction to the spectral analysis and estimation of graph stationary processes based on graph signal processing(GSP).We extend their settings from vectors/matrices used in traditional GSP to hypergraph signal processing,where T-product tensors are applied to characterize hypergraph 3-uniform signals,i.e.,signals are represented by three(3)dimensional data array[25].

    Let G=(N,E)be a directed hypergraph with nodes set N and directed edges set E such that if there exists a hyperedge among a set ofMnodes(i,j,k)∈E.We associate G with the hypergraph shift operator(HGSO)S,defined as an square T-product tensor with dimensionsm×m×pwhose entrys(i,j,k)/=0 if(i,j,k)∈E.We introduce a hypergraph filterH:Rm×1×p→Rm×1×p,de fined as a linear hypergraph signal operator with the form

    wherehkare scaler coefficients.The covariance tensor of output signals X∈Rm×1×pafter filtering white input signals by hypergraph filter shown in Eq.(5.1)will be expressed as

    where=1is true if HGSOSis a symmetric T-product tensor.The coefficients

    It is shown by the work[20]that although the correlation information of signal is given by thedensetensor,the actual relation is easier to be described by the more sparse tensorS.Examples about relationships between the HGSO and the covariance tensorCX(h)include

    ·CX(h)=S-1,as in in conditionally independent Markov random fields;

    ·CX(h)=(I-S)-2,as in symmetric structural equation models with white exogenous inputs.

    In the sequel,we will bound the Ky Fan norm for the covariance tensorCX(h)when h=[h0,h1].In random environment,suppose HGSOSis obtained by sample average as

    which is the polynomial function

    in Theorem 1.1.We assume that random sampled tensorsare identical distributed asX′are satisfy Eq.(1.1)and Eq.(1.2).Then we have following bound of Ky Fan norm for the covarainceCX[h0,h1]from Theorem 1.1:

    wherea0=h20,a1=2h0h1,anda2=h21.The usefulness of Eq.(5.5)is that we can control Ky Fan norm for the covarianceCX[h0,h1]via graph filter parametersh0,h1,and this controllability is crucial in GSP system design.

    6 Conclusions

    This work extend previous work in[5]by making following generalizations via majorization techniques:(1)besides bounds related to extreme values of T-eigenvalues,this works considers more general unitarily invariant norm for T-product tensors;(2)this work derives new bounds for any polynomial function raised by any power greater or equal than one for the summation of random symmetric T-product tensors.We also establish the Courant-Fischer min-max theorem for T-product tensors and marjoization relation for T-singular values which are by-products of our procedure to prove the generalized random T-product Bernstein bounds.Eventually,we apply T-product Bernstein inequality to bound Ky Fan norm of covariance T-product tensor induced by hypergraph signal processing.

    Possible future work about this research is to consider tail bounds behaviors for the summation of random symmetric T-product tensors equipped with other random structures different from random structure provided by Definition 4.1.

    Acknowledgements

    The helpful comments of the handling editor and the referee are gratefully acknowledged.Prof.Wei is supported by Innovation Program of Shanghai Municipal Education Commission and the National Natural Science Foundation of China under grant No.11771099.

    久久久久久久国产电影| 国产欧美亚洲国产| 国产成人精品久久久久久| 亚洲美女黄色视频免费看| 亚洲精品乱码久久久久久按摩| 免费av不卡在线播放| 亚洲丝袜综合中文字幕| 日本欧美视频一区| 久久久久久人妻| 久久精品国产a三级三级三级| 亚洲精品中文字幕在线视频 | 新久久久久国产一级毛片| 一个人看视频在线观看www免费| 美女大奶头黄色视频| 亚洲欧洲国产日韩| 亚洲国产最新在线播放| 亚洲图色成人| 人体艺术视频欧美日本| 国产一区二区在线观看日韩| 美女福利国产在线| 十八禁高潮呻吟视频 | 一边亲一边摸免费视频| 国产精品不卡视频一区二区| 国产色爽女视频免费观看| 欧美成人精品欧美一级黄| 2021少妇久久久久久久久久久| 插阴视频在线观看视频| 美女内射精品一级片tv| 久久97久久精品| 日韩免费高清中文字幕av| 久久人人爽人人片av| 国产在视频线精品| 97超碰精品成人国产| 18+在线观看网站| 日韩成人伦理影院| 国产精品一区二区在线观看99| 日韩熟女老妇一区二区性免费视频| 欧美区成人在线视频| 日韩,欧美,国产一区二区三区| 全区人妻精品视频| 蜜桃久久精品国产亚洲av| 成人亚洲精品一区在线观看| av专区在线播放| 91精品一卡2卡3卡4卡| 蜜桃久久精品国产亚洲av| 亚洲精品,欧美精品| 久久99一区二区三区| 国产午夜精品一二区理论片| 国产成人午夜福利电影在线观看| 亚洲精品一二三| 免费大片黄手机在线观看| 日本-黄色视频高清免费观看| 亚洲av.av天堂| 大片免费播放器 马上看| 国产爽快片一区二区三区| 久久鲁丝午夜福利片| 亚洲精品自拍成人| 久久久精品94久久精品| 国产精品一区二区在线不卡| 久久久欧美国产精品| 国产日韩欧美亚洲二区| 中文字幕亚洲精品专区| 熟女人妻精品中文字幕| 日本黄色片子视频| 熟妇人妻不卡中文字幕| 日韩视频在线欧美| 精品酒店卫生间| 又大又黄又爽视频免费| 欧美3d第一页| 国产日韩欧美在线精品| 一级,二级,三级黄色视频| 狂野欧美激情性xxxx在线观看| 少妇人妻精品综合一区二区| 日韩,欧美,国产一区二区三区| 深夜a级毛片| 综合色丁香网| 国产91av在线免费观看| 国产熟女欧美一区二区| freevideosex欧美| 自拍偷自拍亚洲精品老妇| 亚洲欧美一区二区三区黑人 | 国产爽快片一区二区三区| 国产色爽女视频免费观看| 欧美97在线视频| 国产精品.久久久| 国产极品粉嫩免费观看在线 | av女优亚洲男人天堂| h视频一区二区三区| 亚洲激情五月婷婷啪啪| 嫩草影院新地址| 中文字幕制服av| 免费av不卡在线播放| 久久久久久久久大av| 人妻人人澡人人爽人人| 男人添女人高潮全过程视频| 街头女战士在线观看网站| 免费观看性生交大片5| 国产欧美日韩一区二区三区在线 | 亚洲国产精品专区欧美| 99久久精品国产国产毛片| 日韩视频在线欧美| 一级,二级,三级黄色视频| 久久久久人妻精品一区果冻| 国产欧美日韩一区二区三区在线 | 亚洲一级一片aⅴ在线观看| 免费观看的影片在线观看| 黄色欧美视频在线观看| 国产午夜精品久久久久久一区二区三区| 免费大片18禁| av在线app专区| 日本黄大片高清| 国产精品免费大片| 亚洲精品国产av蜜桃| 国产男女超爽视频在线观看| 男女边吃奶边做爰视频| 国产爽快片一区二区三区| 熟女电影av网| 国产日韩一区二区三区精品不卡 | 免费黄频网站在线观看国产| 在线观看免费日韩欧美大片 | 自线自在国产av| 成人亚洲欧美一区二区av| 黑人高潮一二区| 日韩 亚洲 欧美在线| 国产毛片在线视频| 97超视频在线观看视频| 国产69精品久久久久777片| 少妇高潮的动态图| 97超视频在线观看视频| 一区二区三区免费毛片| 亚洲国产最新在线播放| 少妇高潮的动态图| 国产熟女午夜一区二区三区 | 精品久久国产蜜桃| 亚洲四区av| 亚洲av成人精品一区久久| 精品酒店卫生间| 国产午夜精品久久久久久一区二区三区| 高清av免费在线| 狂野欧美白嫩少妇大欣赏| 亚洲精华国产精华液的使用体验| 一级,二级,三级黄色视频| 午夜激情久久久久久久| 国产精品99久久99久久久不卡 | 日韩亚洲欧美综合| av线在线观看网站| 色网站视频免费| 五月伊人婷婷丁香| 高清不卡的av网站| 乱码一卡2卡4卡精品| 亚洲电影在线观看av| 国产精品国产三级国产av玫瑰| 久久国内精品自在自线图片| 美女中出高潮动态图| 两个人的视频大全免费| 大片电影免费在线观看免费| 男男h啪啪无遮挡| 成年av动漫网址| 国产一区二区三区综合在线观看 | 国产欧美日韩精品一区二区| 成人毛片a级毛片在线播放| 亚洲内射少妇av| 大香蕉97超碰在线| 晚上一个人看的免费电影| 久久久精品免费免费高清| 日韩人妻高清精品专区| a级毛片免费高清观看在线播放| 欧美xxxx性猛交bbbb| 亚洲三级黄色毛片| 最近中文字幕2019免费版| 免费人妻精品一区二区三区视频| 精品久久久久久久久av| 国产精品熟女久久久久浪| av在线老鸭窝| 国产av码专区亚洲av| 我的女老师完整版在线观看| 天堂俺去俺来也www色官网| 女人久久www免费人成看片| 18禁裸乳无遮挡动漫免费视频| 国产老妇伦熟女老妇高清| 亚洲精品456在线播放app| 丰满乱子伦码专区| 久久久久人妻精品一区果冻| 热99国产精品久久久久久7| 亚洲精品一区蜜桃| av卡一久久| av线在线观看网站| av福利片在线观看| 少妇被粗大猛烈的视频| 国国产精品蜜臀av免费| 男人爽女人下面视频在线观看| 色视频www国产| 在线精品无人区一区二区三| 视频区图区小说| av国产久精品久网站免费入址| 久久久久久久久久久丰满| 国产男女超爽视频在线观看| 美女国产视频在线观看| 午夜91福利影院| 久久国产精品男人的天堂亚洲 | 亚洲精品国产色婷婷电影| 热99国产精品久久久久久7| 中文字幕人妻熟人妻熟丝袜美| 国产高清不卡午夜福利| 菩萨蛮人人尽说江南好唐韦庄| 国产免费一区二区三区四区乱码| 亚洲图色成人| 亚洲av日韩在线播放| 大码成人一级视频| 亚洲不卡免费看| 男女啪啪激烈高潮av片| 一区二区三区乱码不卡18| 欧美高清成人免费视频www| 亚洲av成人精品一二三区| 狂野欧美激情性bbbbbb| 亚洲欧美精品自产自拍| 美女内射精品一级片tv| 十八禁网站网址无遮挡 | 高清视频免费观看一区二区| 有码 亚洲区| 一级av片app| 国产免费一级a男人的天堂| 国产高清有码在线观看视频| kizo精华| 亚洲av福利一区| 在线亚洲精品国产二区图片欧美 | 欧美另类一区| 亚洲第一av免费看| 亚洲国产av新网站| 妹子高潮喷水视频| 这个男人来自地球电影免费观看 | 欧美精品高潮呻吟av久久| 亚洲美女黄色视频免费看| 老司机亚洲免费影院| 欧美激情极品国产一区二区三区 | 日韩三级伦理在线观看| 黑人巨大精品欧美一区二区蜜桃 | 边亲边吃奶的免费视频| 国产在视频线精品| 欧美激情极品国产一区二区三区 | xxx大片免费视频| 亚洲国产欧美日韩在线播放 | 18禁动态无遮挡网站| 91久久精品电影网| 中文字幕精品免费在线观看视频 | 国产精品不卡视频一区二区| 少妇的逼好多水| av线在线观看网站| 日韩中字成人| 丰满饥渴人妻一区二区三| 亚洲欧美精品自产自拍| 性色avwww在线观看| 99re6热这里在线精品视频| 久久人人爽人人爽人人片va| 丝袜喷水一区| 国产伦精品一区二区三区视频9| 99热全是精品| av网站免费在线观看视频| 精品卡一卡二卡四卡免费| 尾随美女入室| 九色成人免费人妻av| 91精品国产九色| 久久免费观看电影| 曰老女人黄片| 日本黄大片高清| 亚洲高清免费不卡视频| 久久久久久久久久成人| 亚洲欧洲精品一区二区精品久久久 | 国产成人免费观看mmmm| 九九爱精品视频在线观看| 国产精品偷伦视频观看了| 男人爽女人下面视频在线观看| 波野结衣二区三区在线| 一区二区三区四区激情视频| 午夜福利,免费看| 久久久国产一区二区| 亚洲av在线观看美女高潮| 国产真实伦视频高清在线观看| 麻豆成人午夜福利视频| 午夜福利在线观看免费完整高清在| 亚洲色图综合在线观看| 国产精品99久久久久久久久| av天堂久久9| 亚洲三级黄色毛片| 啦啦啦在线观看免费高清www| 丝瓜视频免费看黄片| 中文欧美无线码| 人妻少妇偷人精品九色| 我的老师免费观看完整版| 精品少妇内射三级| 国产白丝娇喘喷水9色精品| 一级二级三级毛片免费看| 精品一品国产午夜福利视频| www.色视频.com| 久久久久久久大尺度免费视频| 国产精品国产三级专区第一集| 日韩亚洲欧美综合| 在线看a的网站| 美女内射精品一级片tv| 波野结衣二区三区在线| 六月丁香七月| 女性生殖器流出的白浆| 国产免费视频播放在线视频| 亚洲中文av在线| 人人妻人人添人人爽欧美一区卜| 亚洲无线观看免费| 噜噜噜噜噜久久久久久91| 成年女人在线观看亚洲视频| 少妇的逼好多水| 国产色爽女视频免费观看| 搡女人真爽免费视频火全软件| 国产无遮挡羞羞视频在线观看| 男女啪啪激烈高潮av片| 久久久久网色| 寂寞人妻少妇视频99o| 99九九在线精品视频 | 国产淫片久久久久久久久| 色94色欧美一区二区| 久久99热这里只频精品6学生| 蜜桃在线观看..| 夫妻午夜视频| 国产在线男女| 久久ye,这里只有精品| 男女无遮挡免费网站观看| 丰满人妻一区二区三区视频av| 免费黄网站久久成人精品| 69精品国产乱码久久久| 在线亚洲精品国产二区图片欧美 | 国精品久久久久久国模美| 久久av网站| 久久ye,这里只有精品| 日韩欧美一区视频在线观看 | av又黄又爽大尺度在线免费看| 99热这里只有精品一区| 草草在线视频免费看| 美女视频免费永久观看网站| 欧美精品一区二区免费开放| 国产乱来视频区| 亚洲av中文av极速乱| 丝袜脚勾引网站| 国产精品久久久久久久电影| 婷婷色综合www| 色网站视频免费| 大片免费播放器 马上看| 成人免费观看视频高清| 18禁在线无遮挡免费观看视频| 免费看光身美女| 偷拍熟女少妇极品色| 91精品一卡2卡3卡4卡| 亚洲精品国产成人久久av| 精品一品国产午夜福利视频| 免费av中文字幕在线| av专区在线播放| 九色成人免费人妻av| 青春草视频在线免费观看| 777米奇影视久久| 国产一区有黄有色的免费视频| 日韩大片免费观看网站| 精品久久久噜噜| 亚州av有码| 国产一区有黄有色的免费视频| 各种免费的搞黄视频| 在线观看人妻少妇| 亚洲国产欧美在线一区| 成年女人在线观看亚洲视频| av一本久久久久| 国产精品国产av在线观看| 伦理电影免费视频| 国产成人午夜福利电影在线观看| 一级毛片久久久久久久久女| 99国产精品免费福利视频| 日本av手机在线免费观看| 免费看光身美女| 久久青草综合色| 看免费成人av毛片| 美女内射精品一级片tv| 欧美日韩一区二区视频在线观看视频在线| 夜夜骑夜夜射夜夜干| 国产av码专区亚洲av| 午夜福利影视在线免费观看| 久久99一区二区三区| 曰老女人黄片| 蜜臀久久99精品久久宅男| 99热这里只有是精品在线观看| 国产精品福利在线免费观看| 久久久久久久大尺度免费视频| 99热国产这里只有精品6| 亚洲人成网站在线播| 日韩不卡一区二区三区视频在线| 极品少妇高潮喷水抽搐| 爱豆传媒免费全集在线观看| h视频一区二区三区| 97在线视频观看| 国产精品人妻久久久久久| 亚洲国产精品一区三区| www.av在线官网国产| 国产精品久久久久久av不卡| 熟女电影av网| 丝袜脚勾引网站| 午夜日本视频在线| 美女视频免费永久观看网站| 日韩制服骚丝袜av| 精品久久久噜噜| 一级a做视频免费观看| 午夜免费观看性视频| 久久ye,这里只有精品| 国产毛片在线视频| 91久久精品国产一区二区成人| 亚洲中文av在线| 午夜91福利影院| 永久网站在线| 亚洲欧美一区二区三区国产| 日本av免费视频播放| 美女视频免费永久观看网站| 精品久久久久久电影网| 国产精品麻豆人妻色哟哟久久| 亚洲av福利一区| 免费少妇av软件| 国产成人精品婷婷| 国产精品国产av在线观看| 免费大片18禁| 女人久久www免费人成看片| 成人无遮挡网站| 精品熟女少妇av免费看| 国产成人aa在线观看| 免费人妻精品一区二区三区视频| 美女视频免费永久观看网站| 少妇人妻久久综合中文| 久久狼人影院| 91久久精品国产一区二区三区| 亚洲无线观看免费| 国产精品久久久久久av不卡| 国产成人精品久久久久久| 日韩 亚洲 欧美在线| 日本与韩国留学比较| 纯流量卡能插随身wifi吗| 色婷婷av一区二区三区视频| 亚洲丝袜综合中文字幕| 少妇裸体淫交视频免费看高清| 欧美日本中文国产一区发布| 一级毛片我不卡| 三级国产精品欧美在线观看| 国产视频内射| 久久精品久久久久久噜噜老黄| 中文在线观看免费www的网站| 一级片'在线观看视频| 国产精品人妻久久久久久| 亚洲精品久久午夜乱码| av福利片在线观看| 简卡轻食公司| 国产精品成人在线| 亚洲美女搞黄在线观看| 日韩中文字幕视频在线看片| 国产精品不卡视频一区二区| 在线观看免费高清a一片| 欧美日韩一区二区视频在线观看视频在线| 狂野欧美白嫩少妇大欣赏| 91aial.com中文字幕在线观看| 亚洲美女搞黄在线观看| 狠狠精品人妻久久久久久综合| 黄片无遮挡物在线观看| 久久精品国产鲁丝片午夜精品| 自拍欧美九色日韩亚洲蝌蚪91 | av天堂久久9| 久久久久国产网址| av不卡在线播放| 日日啪夜夜撸| 久久久久久人妻| 精品午夜福利在线看| 18+在线观看网站| 高清不卡的av网站| 在线看a的网站| a级毛色黄片| 少妇人妻 视频| 免费少妇av软件| 亚洲精品国产色婷婷电影| 久久久久国产网址| 热99国产精品久久久久久7| freevideosex欧美| 丝瓜视频免费看黄片| 国产亚洲欧美精品永久| 高清视频免费观看一区二区| 国产免费视频播放在线视频| 寂寞人妻少妇视频99o| a级毛色黄片| 国产精品秋霞免费鲁丝片| 成人综合一区亚洲| 午夜免费鲁丝| 天堂中文最新版在线下载| 久久精品国产亚洲网站| 国产精品秋霞免费鲁丝片| 日韩电影二区| 嫩草影院新地址| 欧美日韩一区二区视频在线观看视频在线| 国产日韩欧美视频二区| 色婷婷av一区二区三区视频| 久久毛片免费看一区二区三区| 中文字幕av电影在线播放| 寂寞人妻少妇视频99o| 性色av一级| 久久久久久伊人网av| 欧美变态另类bdsm刘玥| 91精品国产国语对白视频| 两个人的视频大全免费| 香蕉精品网在线| 久久久久视频综合| 国产精品99久久久久久久久| 高清欧美精品videossex| 久久99精品国语久久久| 国产在线一区二区三区精| 国国产精品蜜臀av免费| 国产黄片美女视频| 精品人妻熟女av久视频| 少妇丰满av| 久久婷婷青草| 久久97久久精品| 人妻夜夜爽99麻豆av| 啦啦啦啦在线视频资源| 久久久久久久久大av| 18+在线观看网站| 精品卡一卡二卡四卡免费| 男女边摸边吃奶| 久久精品国产亚洲av天美| 国产精品欧美亚洲77777| 欧美激情极品国产一区二区三区 | 亚洲欧美清纯卡通| 亚洲真实伦在线观看| 内地一区二区视频在线| 有码 亚洲区| 女性生殖器流出的白浆| 国产黄色视频一区二区在线观看| 99热国产这里只有精品6| 精品视频人人做人人爽| 亚洲欧美日韩卡通动漫| 伊人亚洲综合成人网| 免费黄网站久久成人精品| 亚洲欧洲日产国产| 国产在线免费精品| 狂野欧美激情性bbbbbb| 国产午夜精品久久久久久一区二区三区| 老熟女久久久| 久久久久人妻精品一区果冻| 高清午夜精品一区二区三区| 国产精品国产三级国产专区5o| 精品一区二区免费观看| 97超碰精品成人国产| 国语对白做爰xxxⅹ性视频网站| 亚洲精品,欧美精品| 在线观看人妻少妇| 午夜免费鲁丝| 欧美精品一区二区大全| 九九爱精品视频在线观看| 伦理电影免费视频| 国产有黄有色有爽视频| 性色av一级| 在线观看三级黄色| 少妇高潮的动态图| 亚洲精品第二区| 99久久中文字幕三级久久日本| 欧美老熟妇乱子伦牲交| 一本久久精品| 亚洲天堂av无毛| 精品一品国产午夜福利视频| 99久久综合免费| 亚洲真实伦在线观看| 99热这里只有是精品50| 一区二区三区四区激情视频| 久久免费观看电影| 久久精品国产鲁丝片午夜精品| 国产视频首页在线观看| 久久女婷五月综合色啪小说| 国产中年淑女户外野战色| 亚洲伊人久久精品综合| 人人妻人人爽人人添夜夜欢视频 | 亚洲经典国产精华液单| 国产精品国产三级国产专区5o| 亚洲av.av天堂| 日韩在线高清观看一区二区三区| 久久国产亚洲av麻豆专区| 日韩人妻高清精品专区| 乱码一卡2卡4卡精品| 嫩草影院新地址| 日韩人妻高清精品专区| 乱人伦中国视频| 青青草视频在线视频观看| 纵有疾风起免费观看全集完整版| 99久久人妻综合| 噜噜噜噜噜久久久久久91| 国产熟女欧美一区二区| 男人狂女人下面高潮的视频| 色哟哟·www| 国产av码专区亚洲av| 亚洲av综合色区一区| 午夜久久久在线观看| 精品国产一区二区三区久久久樱花| 国产精品久久久久久精品古装| 国产男女内射视频| .国产精品久久| 国产无遮挡羞羞视频在线观看| 大片电影免费在线观看免费| 色94色欧美一区二区| 国产69精品久久久久777片| 大片电影免费在线观看免费| h日本视频在线播放| 国产精品一二三区在线看| av又黄又爽大尺度在线免费看| www.av在线官网国产| 国产日韩欧美视频二区| 国产精品人妻久久久影院| 国产白丝娇喘喷水9色精品| 麻豆精品久久久久久蜜桃| 黑人高潮一二区| 亚洲av二区三区四区| 国产亚洲一区二区精品| 精品久久国产蜜桃|