• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High Energy Density Materials based on N4 Molecules:Synthesis Routes from First-principles Calculations

    2022-03-18 06:59:00MAOYutingSUNChuliDUHuifangGUOWei
    火炸藥學(xué)報 2022年1期

    MAO Yu-ting,SUN Chu-li,DU Hui-fang,GUO Wei,2

    (1.Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE),School of Physics,Beijing Institute of Technology,Beijing 100081,China;2.Frontiers Science Center for High Energy Materials (MOE),Beijing Institute of Technology,Beijing 100081,China)

    Abstract:To explore the routes for synthesizing and stabilizing polymeric nitrogen in molecules or crystals,two methods for synthesizing high energy density materials (HEDM)based on N4 molecules were proposed based on the first-principles calculations.The first route is to adsorb N4(Td)molecule on single crystal metal surfaces,and the second method is to use structural search to obtain stable N4-related structures.Three N4-containing crystals,P-43m-N4,P4/m-LiN4 and Amm2-G/N4 were proposed,and their energy densities,thermodynamic and kinetic stabilities,as well as their electronic properties were calculated.The results show that under ultra-high vacuum and low temperature conditions,N4(Td)can be stabilized by losing the Td symmetry on the metal surfaces.AIMD simulations indicate that they are stable at 50GPa and 50 or 300K.Through coordination bond between N4 and metal atoms,polymerized N4 can be synthesized at high pressure and stabilized at low temperature conditions.

    Keywords:first-principles calculations;high energy density materials;N4;coordination bond

    Introduction

    In last two decades,various theoretical and experimental works have been done to investigate the synthesis route of N4.Lee et al.reported that the most likely synthesis route for N4(Td)comes from the association of two bound quintet states of excited N2molecules[12].Bittererová et al.proposed that N4(Td)can be formed from azide (N3)and an atomic N(N+N3→N4)[13].Legare et al.reported that two or more dinitrogen (N2)naturally occur coupling under ionospheric radiation conditions,forming a complex of[N4]2-chains connecting two boron centers[14-15].The methods of ionization and electrical discharge can only produce short-lived metastable molecules or ions[16-18].Meanwhile,researchers started with hybrid materials which are consisted of polymeric nitrogen and nanomaterials (such as carbon nanotubes,fullerenes,and graphene substrates)[19-27].In these hybrid materials,polymeric nitrogen chain or compound can be stabilized due to interaction with the surrounding or under high pressures.Such nitrogen-based HEDM needs to activate N2and stabilize the final product.However,it is rather challenging to synthesize stabilized hybrid polymeric nitrogen HEDM on a large scale because of the large energy difference between N2and N4.On the other hand,there have been great progress in the study of metal nitride clusters,where Li,V and Ti atoms coordinate with N atoms and form charged clusters by laser ablation technique[31-33].

    In this article,based on first-principles calculation and ab initio molecular dynamic simulation (AIMD),we propose two routes to reduce the energy difference between N4and N2molecules.The first route is to use a transition metal surface to adsorb and stabilize N4at low temperature.We show that if produced hot N4(Td)molecule is dosed into ultra-high vacuum and adsorbed onto transition metal surfaces (such as a cluster of six Co adatoms on Pt(111)surface denoted as 6Co-Pt(111)in this work)at low temperatures,it can be stable after relaxation and losing its Tdsymmetry.The second route is to stabilize N4at high pressure in crystal,and three crystals containing N4are proposed in this study,which are P4/m-LiN4,P-43m-N4and G/N4.High pressure reduces the enthalpy difference between N4and 2N2,making the crystal thermodynamically stable.AIMD simulations indicate that such high nitrogen content HEDM are stable at 50GPa and 50 or 300K.

    1 Calculation Models and Method

    To stabilize the N4molecule,we have proposed two classes of configurations,which are N4/metal-surface adsorption configuration (metal=Ni,Cu,6Co-Pt)[31]and three molecular crystal structures.We first performed first-principles calculation based structural searching under high pressure with CALYPSO,which is a structural evolution code based on particle swarm optimization technique[35-36].We set the pressures to 20—100GPa to promote the polymerization of nitrogen atoms,then we constructed N4structure in the crystal and minimized the crystal with respect to unit-cell size and shape,as well as the atomic coordinates in the unit-cell.The first proposed crystal structure is P-43m-N4in cubic lattice with a N4(Td)molecule in each unit-cell,which is obtained by relaxing a CALYPSO predicted metastable structure in terms of lattice parameter and atom positions under pressure.The second structure is P4/m-LiN4in tetragonal lattice,which is comprised of one Li atom and one N4(D4h)ring in the unit-cell.Alkali metal azide has attracted more attention in recent years due to its unique physical and chemical properties[37-40].Based on the structure of NaN3and LiN3,we replaced N3with N4and optimized the structure to find the P4/m-LiN4structure.The third structure is Amm2-G/N4,which is made up of graphene layers and N4(Td)molecule in orthorhombic lattice.We found a CALYPSO predicted metastable structure with N3ring in between bilayer graphene,then we replaced the N3with N4molecule to build the Amm2-G/N4crystal.All the lattice information is listed in Table 1.

    Table 1 Structure (at zero pressure)and calculation details

    DFT calculations were performed by using the Vienna ab initio simulation package (VASP)program[37].The surface of the Brillouin area was covered by Monhorst-Pack grid.RPBE (Revised Perdew-Burke-Ernzerhof)[42]was used to describe the exchange-correlation effects when calculating N4adsorption on transition metal surfaces,since RPBE gives more accurate binding energy in molecule/transition metal system,and PBE[43](Perdew-Burke-Ernzerhof)was used for other systems.Pseudopotentials generated with PAW (projector-augmented wave)method were used in treating the valence electron-ion interaction[44].The convergence criteria of self-consistent electronic and ionic loops were set to 10-4eV and 0.05eV/?,respectively.We set the cut-off energy of plane-wave basis to 450eV for N4/metal-surface (Ni,Cu,6Co-Pt),and Amm2-G/N4,550eV for P4/m-LiN4and P-43m-N4.The mesh sampling size,unit-cell volume and number of atoms of those structures are listed in Table 1 of the Supplementary Materials.Transition states of N4dissociation are calculated by CI-NEB method[45].Phonon frequencies were calculated using the supercell method implemented in the PHONOPY code[45],3×3×3 supercells were built for P-43m-N4,2×2×2 for P4/m-LiN4and Amm2-G/N4.AIMD in NpT ensemble were performed in the VASP code using a Langevin thermostat in 3×3×3 supercells for P-43m-N4,2×2×2 for Amm2-G/N4and 2×2×4 for P4/m-LiN4at a temperature of 50K or 300K,the time step was set to 1fs,and the pressures were set to 0GPa or 50GPa.We obtained the phonon vibration frequency through the finite displacement method,then calculated the polarizability of eigenvector of the Γ-point phonons to get off-resonance Raman activity of each mode using vasp_raman.py script[47].

    2 Results and Discussions

    2.1 N4 molecule on surfaces

    For gas phase N4molecules,we have focused on the structures with the highest symmetry and lowest energy[4],which are N4(Td)and N4(D2h)as shown in Fig.1.

    Fig.1 Potential energy diagram of 2N2→N4 reaction in gas phase. The blue balls are N atoms. The energy reference is set to two N2 molecules in gas phase.

    It is rather difficult to synthesize N4molecule directly from N2molecules in gas phase,according to the calculated energy diagram in Fig.1.Synthesizing N4molecule is strongly endothermic (above 6.94eV for N4(D2h)and 6.48eV for N4(Td)),and the activation barriers are 7.61 and 8.97eV,respectively.Even if two N2molecules are activated and surpass the barrier to form N4,the decomposition barrier of N4molecule back to two N2is only 0.67 and 2.49eV for N4(D2h)and N4(Td)phases,respectively.Once they are prepared,via techniques such as microwave or electric discharge[13-18].N4(Td)should be more stable than N4(D2h)in gas phase.However,its lifetime is short,which is in a level of microsecond[13].

    It is essential to stabilize N4molecule once it is produced and quenched at low temperature.Here we have proposed a few approaches to dissipate the excessive energy and stabilize N4molecules,so that further experimental techniques can be used to study its property.Transition metal surfaces often show good catalytic effect in many reactions due to proper binding strength to the intermediates in certain reactions[48].It is well known that N2is physisorbed on Pt (111),the binding is stronger at step sites,such as on Pt(211)surface[47],[50],and it can be even stronger when N2resides at step edges of nanoclusters on Pt(111),for example on 6Ni-Pt(111)surface (6 Ni adatoms form a cluster on Pt(111)surface),the adsorption can be enhanced and well understood by the d-band model[48],[51].

    Fig.2 (a)N4 on Ni(111)surface. (b)N4 on Cu(111)surface. (c)Four different adsorption configurations (B,C,D,E)of N4 on 6Co-Pt(111)surface. Here,A represents two N2 molecular adsorbed on the 6Co cluster of the surface,which is taken as the reference state in panel (c). Red columns are the ΔE of configurations B,C,D,and E with respect to A.

    Table 2 Bond length information

    Table 3 The frequencies of N4 in the gas phase and N4 on the metal surface

    2.2 N4 molecule in crystals

    Another approach to stabilize N4molecule is to polymerize N atoms under high pressure.Here,we have proposed three crystal structures associated with N4,and the enthalpy differences as a function of pressure of the crystal with respect to their corresponding decomposition products are shown in Fig.3.

    Fig.3 Enthalpy changes as a function of pressure. (a)ΔH=H(P-43m-N4)-1/2H(ɑ-N2). (b)ΔH=H(P4/m-LiN4)-1/2H(ɑ-N2)-H(LiN3). (c)The reference state is two N2 molecules in graphene layers. ΔH=H(Amm2-G/N4)-H(G/2N2).

    The enthalpy difference decreases as the pressure increases,indicating that the crystal becomes thermodynamically more stable at higher pressures.Such trend implies that it is possible to synthesize N4containing crystals from N2under high pressure and low temperature conditions.Lattice parameters of the three crystals at different pressures are shown in Table 4,5 and 6 in Supplementary Materials.Next,we focus on the properties of such high-pressure phases of N4containing crystals.

    Table 4 Lattice parameters of P-43m-N4

    Table 5 Lattice parameters of P4/m-LiN4

    Table 6 Lattice parameters of Amm2-G/N4

    The structure of P-43m-N4phase is shown in Fig.4(a),the most stable lattice parameters at 0GPa and 50GPa area=b=c=3.50? anda=b=c=3.14?,respectively.The bond length in the N4(Td)molecule is 1.46?,indicating that it is still N—N single bond.The energy density of P-43m-N4phase is calculated to be 11.97kJ/g with respect to N2at ambient pressure,and the density of the crystal at 0GPa is 1.57g/cm3.The electron localization function (ELF)gives information of bonding between atoms.Fig.4(b)shows that there are localized lone-pair electrons at each corner of the N4tetrahedron.Such lone-pair electrons are repulsive to each other,and thus it takes higher pressure to stabilize the structure.

    Fig.4 Molecular dynamics and thermodynamic properties of P-43m-N4. (c)was calculated under 0GPa. (d)was calculated under the NpT ensemble at 300K and 50GPa,the structure in the figure is supercell 3×3×3.

    Fig.4(c)and Fig.5(a)shows that P-43m-N4is an insulator with a band-gap of 7.90eV,the valence band around Fermi-level is dominated by the N-2porbitals.To investigate the stability of the lattice,we have performed phonon band structure calculations,as shown in Fig.5(b)、(c)in Supplementary Materials.There are a few imaginary modes near theΓpoint,which are caused by the distortion of the lattice.We then perform AIMD simulations at 300K and 50GPa,the results indicate that N4molecules remain stable in the lattice,See Fig.4(d),while the lattice deviates from cubic slightly.The distorted lattice parameters after 10ps AIMD are shown in Table 7.At the same time,elastic constant was calculated to characterize the stability of the structure,but the structure does not satisfy the formula of elastic constant.P-43m-N4is Cubic crystal system,theC11,C44andC12are 22.36,-8.55,-2.09GPa,respectively.The structure is stable if the following calculation is satisfied:[C11>0,C44>0,C11>|C12|,(C11+2C12)>0].

    Fig.5 Thermodynamic properties of P-43m-N4. 3×3×3 supercell was used for calculation

    Here we introduce the second crystal structure from the theoretical point of view is P4/m-LiN4,which is shown in Fig.6(a).The second crystal in this study is P4/m-LiN4phase shown in Fig.6(a),the distance between adjacent N atoms are all 1.35?.

    The lattice parameters of P4/m-LiN4structure under atmospheric pressure and 50GPa are calculated to bea=b=3.90?,c=2.70? anda=b=3.71?,c=2.33?,respectively.By decomposing to LiN3and N2at ambient pressure,P4/m-LiN4releases energy 4.68kJ/g.The ELF (Fig.6(b))indicates that there are localized lone-pair electrons between N atoms and Li atom so that they form a coordinate covalent bond.From Bader charge analysis,we see that Li atom transfers about 0.2 charges to each N atom.According to electronic structures calculations shown in Fig.6(c)and Fig.7(a)in Supplementary Materials,we can see that P4/m-LiN4is a metal phase,in which the conduction and valence bands near Fermi-level are mostly occupied by the N-2p orbitals.Next,we calculate the phonon band structures and the results are shown in Fig.7(b)and (c)for 0 and 50GPa.There are a few imaginary modes betweenMandΓpoints,which are mainly caused by the distortion of the lattice.Finally,AIMD simulations are performed at 300K and 50GPa,showing that although N4molecules remain,the lattice distorts and is no longer tetragonal lattice (See Fig.6(d)).The distorted lattice parameters after 10ps AIMD are also shown in Table 7.The elastic constant were also calculated,and the structure can satisfy the formula of elastic constant.P4/m-LiN4is Tetragonal,theC11,C33,C44,C66,C12,andC13are 533.53,489.62,60.59,3.61,45.42,23.74GPa,respectively.The structure is stable if the following calculation is satisfied:{[C11>0,C33>0,C44>0,C66>0,(C11-C12)>0,(C11+C33-2C13)]>0,[2(C11+C12)+C33+4C13]>0}.

    Fig.6 Molecular dynamics and thermodynamic properties of P4/m-LiN4 structure. (c)was calculated under 0GPa. (d)was calculated under the NpT ensemble at 50GPa and 300K,the structure here is supercell 2×2×4.

    Fig.7 Thermodynamic properties of P4/m-LiN4. 2×2×2 supercell was used for calculation

    The third crystal is Amm2-G/N4phase shown in Fig.8(a).The lattice parameters at ambient pressure and 50GPa area=b=4.30?,c=6.50? anda=b=4.06?,c=5.49?.The energy density is 7.35kJ/g at ambient pressure calculated with respect to graphene and N2.Again,we see lone-pair electrons around each corner of the N4(Td)molecule,as shown in the ELF of Fig.8(b).Band structures calculations shown in Fig.8(c)and Fig.9 in Supplementary Materials indicate that the crystal is a semimetal similar to graphene,and the valence and conduction bands are mostly composed of C-2porbitals.Mechanical stability depicted by phonon band structures are shown in Fig.9(b)and (c)for 0 and 50GPa in Supplementary Materials.There are also a few imaginary modes between theΓtoApoint,which are caused by the distortion of the lattice.

    Fig.8 Molecular dynamics and thermodynamic properties of P Amm2-G/N4 structure. (c)was calculated under 0GPa. (d)was calculated under the NpT ensemble at 50GPa and 50K,the structure in the figure is supercell 2×2×2.

    Fig.9 Thermodynamic properties of Amm2-G/N4. 2×2×2 supercell was used for the calculation

    We next perform AIMD simulations at room temperature and 50GPa,N4(Td)decomposes into N2gas and thus decrease the temperature to 50K and repeat the calculation,as shown in Fig.8(d).At 50K and 50GPa,N4(Td)molecule is stable within 10ps,and the lattice is also distorted to release stress.The slightly changed lattice parameters are shown in Table 7.Elastic constants of the three crystals were also calculated.Amm2-G/N4is orthogonality,theC11,C22,C33,C44,C55,C66,C12,C13,C23are 690.92,690.91,297.26,279.10,408.65,-76.48,129.99,60.66,54.12GPa,respectively.The structure is stable if the following calculation is satisfied:{C11>0,C22>0,C33>0,C44>0,C55>0,C66>0,[C11+C22+C33+2(C12+C13+C23)]>0,(C11+C22-2C12)>0,(C11+C33-2C13)>0,(C22+C33-2C23)>0}.The results agree with the phonon spectra and AIMD simulations that distortion is necessary to stabilize the crystal under high pressure.

    Finally,in order to guide further experimental research,we simulated the Raman spectra of the three crystals,as shown in Fig.10.

    Fig.10 Three Raman spectra of the crystal structure.

    For P-43m-N4,the Raman peaks near 1546.36cm-1and 924.054cm-1are mainly caused by the breathing and stretching modes of N—N bond,respectively.For P4/m-LiN4,an obvious Raman characteristic peak appears near 1074.521cm-1,which is mainly derived from the stretching mode of N—N bond.For Amm2-G/N4,there is a major peak at 1055.451cm-1,which is caused by the rotation of the N4molecule,and the peak near 1450cm-1is caused by the stretching mode of C—C bond and breathing mode of N—N bond.

    3 Conclusion

    (1)N4can be stabilized from perspectives of molecule and crystal.By adsorbing N4onto transition metal surfaces,it was found that the energy difference between N4and two N2molecules can be reduced from 6.48eV in gas phase to 3.24eV on metal surfaces.But N4will deform and lose the Tdsymmetry after interacting with the surfaces.From the crystal point of view,three crystals containing N4were proposed,which are P-43m-N4,P4/m-LiN4and Amm2-G/N4.

    (2)We have calculated their energy densities,thermodynamic and kinetic stabilities,as well as their electronic properties.As the pressure goes up,the enthalpy differences between the crystals and their corresponding decomposition products decrease,showing that high pressure is an effective way to stabilize N4molecule.Pure N4crystal P-43m-N4has the highest energy density(11.97kJ/g)in this study,but due to the repulsive interaction between the lone-pair electrons in the N4,it requires the highest pressure to synthesis in the three crystals.In P4/m-LiN4,the lone-pair electrons in the N4ring form coordination bond with Li atoms,giving an energy density of 4.68kJ/g.Without such coordination bond in Amm2-G/N4,it needs temperature as low as 50K to be stable in our AIMD simulations.

    (3)Our studies indicate that,through coordination bond between N4and metal atoms,polymerized N4can be synthesized as crystal at high pressure and stabilized at low temperatures.

    亚洲av福利一区| 噜噜噜噜噜久久久久久91| 亚洲内射少妇av| 精品久久久久久久末码| 亚洲人成网站在线播| 熟女av电影| 日本黄大片高清| 亚洲av成人精品一二三区| 免费大片18禁| 国产美女午夜福利| 欧美97在线视频| 最近中文字幕2019免费版| 国产精品成人在线| 激情 狠狠 欧美| 国产淫片久久久久久久久| 国产日韩欧美亚洲二区| h日本视频在线播放| 国产精品无大码| 丰满乱子伦码专区| 国产精品99久久99久久久不卡 | 视频区图区小说| av线在线观看网站| 中文字幕亚洲精品专区| 美女视频免费永久观看网站| 99热这里只有精品一区| 精品人妻一区二区三区麻豆| 夜夜爽夜夜爽视频| 亚洲精品一二三| 免费看光身美女| 成人亚洲欧美一区二区av| 人妻夜夜爽99麻豆av| 亚洲精品乱码久久久久久按摩| 成人黄色视频免费在线看| 一区二区av电影网| 亚洲精品国产色婷婷电影| 18禁裸乳无遮挡免费网站照片| 欧美极品一区二区三区四区| 女人久久www免费人成看片| 国产一区二区三区av在线| 国产精品一区二区在线不卡| 欧美丝袜亚洲另类| 内射极品少妇av片p| 只有这里有精品99| a级毛片免费高清观看在线播放| 中文乱码字字幕精品一区二区三区| 观看免费一级毛片| 成人亚洲欧美一区二区av| 成人国产麻豆网| 久久青草综合色| 欧美丝袜亚洲另类| 免费大片黄手机在线观看| 国产精品偷伦视频观看了| 亚洲精品国产成人久久av| 欧美xxxx性猛交bbbb| 日韩电影二区| 日日啪夜夜撸| 日本爱情动作片www.在线观看| 99热这里只有是精品在线观看| 成人午夜精彩视频在线观看| 免费人妻精品一区二区三区视频| 久久青草综合色| 亚洲成人一二三区av| 高清视频免费观看一区二区| 国产一区二区三区av在线| 国产综合精华液| 国产精品国产三级国产专区5o| 80岁老熟妇乱子伦牲交| 国内少妇人妻偷人精品xxx网站| 大片电影免费在线观看免费| 亚洲av免费高清在线观看| 亚洲国产毛片av蜜桃av| 在线观看av片永久免费下载| 国产精品三级大全| 美女高潮的动态| 国产毛片在线视频| 免费播放大片免费观看视频在线观看| 夜夜骑夜夜射夜夜干| 老女人水多毛片| 国产精品久久久久久久电影| 国产国拍精品亚洲av在线观看| 女性被躁到高潮视频| 国产色婷婷99| 日韩欧美 国产精品| 一级片'在线观看视频| 国产片特级美女逼逼视频| 美女中出高潮动态图| 中文天堂在线官网| 男女边吃奶边做爰视频| 超碰97精品在线观看| 亚洲久久久国产精品| 成人黄色视频免费在线看| 久久99热这里只频精品6学生| 秋霞在线观看毛片| 欧美变态另类bdsm刘玥| 男女边摸边吃奶| 久久久国产一区二区| 国产精品熟女久久久久浪| 精品人妻一区二区三区麻豆| 成年av动漫网址| 国产色婷婷99| 五月开心婷婷网| 亚洲av成人精品一二三区| 观看美女的网站| 一级毛片我不卡| 亚洲va在线va天堂va国产| 美女中出高潮动态图| 狠狠精品人妻久久久久久综合| 欧美丝袜亚洲另类| 女性被躁到高潮视频| 最近的中文字幕免费完整| 美女高潮的动态| 亚洲精品国产av蜜桃| 99热这里只有精品一区| 在线观看一区二区三区激情| 国产午夜精品一二区理论片| 国产精品不卡视频一区二区| 久久久久国产网址| 一个人看视频在线观看www免费| 日本免费在线观看一区| 各种免费的搞黄视频| 高清欧美精品videossex| 精品亚洲乱码少妇综合久久| 你懂的网址亚洲精品在线观看| 精品一区二区免费观看| 亚洲婷婷狠狠爱综合网| 国产成人精品一,二区| 九九在线视频观看精品| 国产亚洲91精品色在线| 午夜激情福利司机影院| 久久久精品免费免费高清| 男的添女的下面高潮视频| 大片电影免费在线观看免费| 最近的中文字幕免费完整| 蜜桃在线观看..| freevideosex欧美| 久久97久久精品| 特大巨黑吊av在线直播| 国产在线视频一区二区| 又大又黄又爽视频免费| av卡一久久| 国产在线一区二区三区精| 亚洲成色77777| 国内揄拍国产精品人妻在线| 国产亚洲午夜精品一区二区久久| 亚洲经典国产精华液单| 欧美一级a爱片免费观看看| h视频一区二区三区| 伦精品一区二区三区| 国产男女超爽视频在线观看| 亚洲精品自拍成人| 哪个播放器可以免费观看大片| 一本—道久久a久久精品蜜桃钙片| 国产亚洲午夜精品一区二区久久| 欧美zozozo另类| 国产精品一区www在线观看| 日本黄色片子视频| 直男gayav资源| 人妻 亚洲 视频| 欧美日韩一区二区视频在线观看视频在线| 久久影院123| 亚洲成人一二三区av| www.av在线官网国产| 亚洲欧美成人综合另类久久久| 免费观看无遮挡的男女| 老女人水多毛片| 边亲边吃奶的免费视频| 少妇裸体淫交视频免费看高清| 亚洲精品国产av蜜桃| 欧美最新免费一区二区三区| 五月玫瑰六月丁香| 在线免费观看不下载黄p国产| 日韩成人伦理影院| 亚洲伊人久久精品综合| 日韩 亚洲 欧美在线| 国产精品不卡视频一区二区| 菩萨蛮人人尽说江南好唐韦庄| 美女cb高潮喷水在线观看| av专区在线播放| 亚洲成人中文字幕在线播放| a 毛片基地| 亚洲欧美日韩东京热| 黑人高潮一二区| 韩国高清视频一区二区三区| 人体艺术视频欧美日本| 午夜免费鲁丝| 国产精品麻豆人妻色哟哟久久| 国产黄色免费在线视频| 国内精品宾馆在线| 五月开心婷婷网| 有码 亚洲区| 久久久久久久大尺度免费视频| 国产免费福利视频在线观看| 美女福利国产在线 | 亚洲av国产av综合av卡| 久久国内精品自在自线图片| 亚洲国产精品999| 色婷婷av一区二区三区视频| 三级国产精品片| 国产av精品麻豆| 噜噜噜噜噜久久久久久91| 精品亚洲乱码少妇综合久久| 亚洲精品日韩av片在线观看| 国产美女午夜福利| 看十八女毛片水多多多| 欧美一区二区亚洲| 久久婷婷青草| av免费在线看不卡| 国产爽快片一区二区三区| 最近中文字幕2019免费版| 成人影院久久| 成年女人在线观看亚洲视频| 国产精品一及| 99热这里只有是精品在线观看| 九九在线视频观看精品| 久久久久久久精品精品| 人妻 亚洲 视频| 亚洲怡红院男人天堂| 在线免费观看不下载黄p国产| 久久鲁丝午夜福利片| 日韩大片免费观看网站| 久久久久国产精品人妻一区二区| 久久精品国产亚洲av涩爱| 精品久久久久久久久亚洲| 免费av中文字幕在线| 色视频www国产| 欧美日韩一区二区视频在线观看视频在线| 啦啦啦视频在线资源免费观看| 免费黄网站久久成人精品| 欧美精品人与动牲交sv欧美| 亚洲av电影在线观看一区二区三区| 水蜜桃什么品种好| 永久网站在线| 国产白丝娇喘喷水9色精品| 中文精品一卡2卡3卡4更新| 国产精品蜜桃在线观看| 久久人妻熟女aⅴ| 一级毛片电影观看| 亚洲婷婷狠狠爱综合网| 国产亚洲午夜精品一区二区久久| 久久精品人妻少妇| 一区在线观看完整版| 搡女人真爽免费视频火全软件| 免费观看在线日韩| 国产黄频视频在线观看| 在线观看一区二区三区| 一级片'在线观看视频| 91在线精品国自产拍蜜月| 亚洲av电影在线观看一区二区三区| 久久久久人妻精品一区果冻| 欧美日韩国产mv在线观看视频 | av专区在线播放| 人妻制服诱惑在线中文字幕| 亚洲精品国产成人久久av| 国产精品久久久久久精品古装| 国产精品不卡视频一区二区| 亚州av有码| 丝袜脚勾引网站| 久久鲁丝午夜福利片| 高清日韩中文字幕在线| 久久久久久人妻| 久久国产精品大桥未久av | 久久99蜜桃精品久久| 久久国产亚洲av麻豆专区| 另类亚洲欧美激情| 日本猛色少妇xxxxx猛交久久| 超碰97精品在线观看| 男的添女的下面高潮视频| 久久人人爽av亚洲精品天堂 | 一个人看的www免费观看视频| 成人18禁高潮啪啪吃奶动态图 | 亚州av有码| 熟女人妻精品中文字幕| 亚洲国产高清在线一区二区三| 免费久久久久久久精品成人欧美视频 | 在线观看av片永久免费下载| 伦理电影大哥的女人| 欧美最新免费一区二区三区| 欧美精品一区二区免费开放| 国产国拍精品亚洲av在线观看| av国产精品久久久久影院| 久久国内精品自在自线图片| 国产精品蜜桃在线观看| 免费少妇av软件| 精品一区二区三卡| 身体一侧抽搐| 亚洲欧美成人综合另类久久久| 18禁在线播放成人免费| 精品人妻熟女av久视频| 久久毛片免费看一区二区三区| 亚洲精品日韩在线中文字幕| av国产久精品久网站免费入址| 内射极品少妇av片p| 99热网站在线观看| 黄色视频在线播放观看不卡| 亚洲欧美精品自产自拍| 亚洲欧美日韩卡通动漫| 男女无遮挡免费网站观看| 熟女av电影| 国产爽快片一区二区三区| 久久毛片免费看一区二区三区| 涩涩av久久男人的天堂| 亚洲欧美一区二区三区黑人 | 欧美日韩视频高清一区二区三区二| 免费看日本二区| 在线精品无人区一区二区三 | 欧美高清性xxxxhd video| 欧美成人精品欧美一级黄| 伊人久久精品亚洲午夜| 2018国产大陆天天弄谢| 下体分泌物呈黄色| 岛国毛片在线播放| 免费大片18禁| 国产午夜精品一二区理论片| 男女下面进入的视频免费午夜| 日日撸夜夜添| 男的添女的下面高潮视频| 人妻制服诱惑在线中文字幕| av在线老鸭窝| 免费黄网站久久成人精品| av视频免费观看在线观看| 亚洲成色77777| 日韩中文字幕视频在线看片 | 少妇丰满av| 街头女战士在线观看网站| 国内少妇人妻偷人精品xxx网站| 2022亚洲国产成人精品| 激情五月婷婷亚洲| 狂野欧美激情性xxxx在线观看| 免费观看性生交大片5| 天美传媒精品一区二区| 日本wwww免费看| 亚洲内射少妇av| 啦啦啦啦在线视频资源| 22中文网久久字幕| 一级毛片我不卡| 干丝袜人妻中文字幕| 美女脱内裤让男人舔精品视频| 18禁裸乳无遮挡动漫免费视频| 国产视频内射| 熟女电影av网| 18禁裸乳无遮挡免费网站照片| 秋霞伦理黄片| 亚州av有码| 成年免费大片在线观看| 日韩av不卡免费在线播放| 最近中文字幕高清免费大全6| 中文资源天堂在线| 亚洲av男天堂| 国产中年淑女户外野战色| 寂寞人妻少妇视频99o| 青青草视频在线视频观看| 人妻 亚洲 视频| 99久久精品热视频| a 毛片基地| 欧美xxⅹ黑人| 啦啦啦中文免费视频观看日本| 91精品一卡2卡3卡4卡| 亚洲综合色惰| 免费黄网站久久成人精品| 久久久久久九九精品二区国产| 国模一区二区三区四区视频| 伦精品一区二区三区| 亚洲综合色惰| 观看免费一级毛片| 精品人妻视频免费看| 久久久久性生活片| 欧美日韩一区二区视频在线观看视频在线| 能在线免费看毛片的网站| 亚洲精华国产精华液的使用体验| 亚洲美女视频黄频| 久久精品国产亚洲av天美| av网站免费在线观看视频| 大香蕉97超碰在线| www.av在线官网国产| 亚洲欧美日韩卡通动漫| 亚洲人成网站在线观看播放| 久久99蜜桃精品久久| 少妇熟女欧美另类| 日本黄大片高清| 热99国产精品久久久久久7| 高清视频免费观看一区二区| 国产精品女同一区二区软件| 精品视频人人做人人爽| 精品久久国产蜜桃| 老师上课跳d突然被开到最大视频| 91久久精品电影网| 亚洲欧美一区二区三区国产| 久久国产精品大桥未久av | 久久影院123| 又黄又爽又刺激的免费视频.| 一本—道久久a久久精品蜜桃钙片| 国产亚洲一区二区精品| 日韩一本色道免费dvd| av国产久精品久网站免费入址| 亚洲国产精品国产精品| 久久久久久伊人网av| 欧美3d第一页| 国产一区二区三区av在线| 99久国产av精品国产电影| 你懂的网址亚洲精品在线观看| 亚洲欧美日韩卡通动漫| 久久这里有精品视频免费| 久久久久视频综合| 国产91av在线免费观看| 九九久久精品国产亚洲av麻豆| 亚洲精品成人av观看孕妇| 午夜日本视频在线| 亚洲av免费高清在线观看| 国产又色又爽无遮挡免| 我的女老师完整版在线观看| 99久久精品国产国产毛片| 国产精品久久久久久av不卡| 涩涩av久久男人的天堂| 亚州av有码| 直男gayav资源| 成人国产av品久久久| 国产精品爽爽va在线观看网站| 国产欧美日韩精品一区二区| 草草在线视频免费看| 亚洲精品乱码久久久v下载方式| 国产黄色免费在线视频| 亚洲,一卡二卡三卡| 伦理电影大哥的女人| 亚洲内射少妇av| 午夜免费男女啪啪视频观看| 九九久久精品国产亚洲av麻豆| 国产亚洲av片在线观看秒播厂| 国产亚洲5aaaaa淫片| 成年免费大片在线观看| 亚洲精品aⅴ在线观看| 乱系列少妇在线播放| 成人亚洲欧美一区二区av| 一级毛片我不卡| 黄色一级大片看看| 丰满少妇做爰视频| 网址你懂的国产日韩在线| 插阴视频在线观看视频| 国产在线免费精品| 99久久综合免费| 国产成人一区二区在线| 七月丁香在线播放| 久久这里有精品视频免费| 亚洲伊人久久精品综合| 日韩电影二区| 最近最新中文字幕免费大全7| 亚洲三级黄色毛片| 男女边摸边吃奶| 在线免费十八禁| 联通29元200g的流量卡| 爱豆传媒免费全集在线观看| 久久这里有精品视频免费| 99九九线精品视频在线观看视频| h视频一区二区三区| 国产视频首页在线观看| 深夜a级毛片| 亚洲四区av| 一级爰片在线观看| 欧美bdsm另类| 狂野欧美激情性bbbbbb| 97超碰精品成人国产| 免费高清在线观看视频在线观看| 一二三四中文在线观看免费高清| 亚洲,欧美,日韩| 亚洲内射少妇av| 51国产日韩欧美| 在线看a的网站| 久久99热这里只频精品6学生| 最近最新中文字幕大全电影3| 亚洲激情五月婷婷啪啪| 一级二级三级毛片免费看| 老师上课跳d突然被开到最大视频| 亚洲真实伦在线观看| 日韩 亚洲 欧美在线| 大香蕉久久网| 18禁裸乳无遮挡动漫免费视频| 午夜精品国产一区二区电影| 欧美xxⅹ黑人| 久久久久人妻精品一区果冻| 青青草视频在线视频观看| 国产欧美日韩一区二区三区在线 | 国产一区二区在线观看日韩| 啦啦啦在线观看免费高清www| 热99国产精品久久久久久7| 尤物成人国产欧美一区二区三区| 国产精品一区二区性色av| 国产精品一区二区在线不卡| 久久精品国产鲁丝片午夜精品| 亚洲国产高清在线一区二区三| 国产成人精品婷婷| 国产精品蜜桃在线观看| 汤姆久久久久久久影院中文字幕| 男男h啪啪无遮挡| 大又大粗又爽又黄少妇毛片口| 看十八女毛片水多多多| 午夜激情福利司机影院| 国产黄片美女视频| 97在线视频观看| 一个人免费看片子| 婷婷色麻豆天堂久久| 国内精品宾馆在线| 久久人妻熟女aⅴ| 天堂8中文在线网| 成人美女网站在线观看视频| 草草在线视频免费看| 欧美xxxx性猛交bbbb| 亚洲,欧美,日韩| 日韩强制内射视频| 中文字幕制服av| 欧美精品人与动牲交sv欧美| 99九九线精品视频在线观看视频| 国产有黄有色有爽视频| 欧美日韩在线观看h| 国精品久久久久久国模美| 免费人成在线观看视频色| 国产白丝娇喘喷水9色精品| 美女xxoo啪啪120秒动态图| 欧美丝袜亚洲另类| 在线观看免费视频网站a站| 免费观看a级毛片全部| 熟妇人妻不卡中文字幕| 纵有疾风起免费观看全集完整版| 啦啦啦在线观看免费高清www| 成年人午夜在线观看视频| 国产毛片在线视频| 国产男女内射视频| 狂野欧美白嫩少妇大欣赏| 99re6热这里在线精品视频| 97超视频在线观看视频| 国产v大片淫在线免费观看| 大香蕉久久网| 一本—道久久a久久精品蜜桃钙片| 午夜激情福利司机影院| 国产爽快片一区二区三区| kizo精华| 午夜福利在线观看免费完整高清在| 18禁在线播放成人免费| 欧美高清性xxxxhd video| 国产免费一级a男人的天堂| 丰满少妇做爰视频| 日本黄色日本黄色录像| 一级片'在线观看视频| 午夜免费观看性视频| 国产成人91sexporn| 性色av一级| 国产精品国产三级专区第一集| 亚洲欧美日韩另类电影网站 | 亚洲欧洲日产国产| 一级毛片aaaaaa免费看小| av在线播放精品| 成人高潮视频无遮挡免费网站| 日本欧美国产在线视频| 三级国产精品欧美在线观看| 下体分泌物呈黄色| 这个男人来自地球电影免费观看 | av在线app专区| 精品久久久久久电影网| 国产在线一区二区三区精| 国产精品人妻久久久影院| 一级毛片aaaaaa免费看小| 青春草亚洲视频在线观看| 国产毛片在线视频| 女性被躁到高潮视频| 日本免费在线观看一区| 妹子高潮喷水视频| 免费观看a级毛片全部| 久久精品熟女亚洲av麻豆精品| av免费在线看不卡| kizo精华| 中国国产av一级| 午夜福利在线观看免费完整高清在| 国模一区二区三区四区视频| 一级毛片黄色毛片免费观看视频| 性色av一级| 又大又黄又爽视频免费| 小蜜桃在线观看免费完整版高清| 国产精品一区二区在线不卡| 亚洲第一区二区三区不卡| 一本久久精品| 日本av免费视频播放| 久久精品熟女亚洲av麻豆精品| 国产高清国产精品国产三级 | 精品人妻一区二区三区麻豆| 亚洲av欧美aⅴ国产| av国产久精品久网站免费入址| 亚洲电影在线观看av| 91精品伊人久久大香线蕉| 久热这里只有精品99| av一本久久久久| 99久久精品一区二区三区| 五月伊人婷婷丁香| 亚洲av.av天堂| 建设人人有责人人尽责人人享有的 | 人妻夜夜爽99麻豆av| 卡戴珊不雅视频在线播放| 欧美高清成人免费视频www| 欧美精品国产亚洲| 亚洲国产成人一精品久久久| 永久免费av网站大全| 欧美xxxx黑人xx丫x性爽| 日本-黄色视频高清免费观看| 女人十人毛片免费观看3o分钟| 内射极品少妇av片p| 国产成人免费无遮挡视频| 亚洲第一av免费看| 久久久久久久久大av| 国产在线一区二区三区精| 国产精品秋霞免费鲁丝片| 免费看av在线观看网站| 精品国产乱码久久久久久小说| 韩国av在线不卡| 日韩一区二区三区影片| 国产午夜精品久久久久久一区二区三区| 免费少妇av软件| 有码 亚洲区| 一级毛片aaaaaa免费看小|