• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Collapse arrest in a two-dimensional Airy Gaussian beam and Airy Gaussian vortex beam in nonlocal nonlinear media

    2022-03-12 06:42:20YeChenLijuanGeXinglinWangandMingShen
    Communications in Theoretical Physics 2022年2期

    Ye Chen, Lijuan Ge, Xinglin Wang and Ming Shen

    1 Department of Physics, Shanghai University, Shanghai 200444, China

    2 School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China

    3 Department of Applied Mathematics and Physics, Anhui Polytechnic University, Wuhu 241000, China

    Abstract Propagation dynamics of a two-dimensional Airy Gaussian beam and Airy Gaussian vortex beam are investigated numerically in local and nonlocal nonlinear media.The self-healing and collapse of the beam crucially depend on the distribution factor b and the topological charge m.With the aid of nonlocality,a stable Airy Gaussian beam and an Airy Gaussian vortex beam with larger amplitude can be obtained, which always collapse in local nonlinear media.When the distribution factor b is large enough, the Airy Gaussian vortex beam will transfer into quasivortex solitons in nonlocal nonlinear media.

    Keywords: Airy Gaussian beam, Airy Gaussian vortex beam, nonlocal nonlinear media,self-healing, collapse arrest

    1.Introduction

    Nondiffracting Airy beams [1, 2] have attracted considerable attention [3] both in linear media [4-9] and nonlinear media[10-23] during the last decade.In nonlinear media, an Airy beam with higher power (amplitude) undergoes catastrophic collapse when the strength of the strong self-trapping effect overcomes linear diffraction and self-acceleration of the beam[24].In particular, collapse occurs in both two-dimensional[24-26]and three-dimensional Airy beams[27].Physically,the collapse is induced by a strong mechanism for energy localization of the Airy beam [28, 29].The application of nonlocal nonlinearity is an effective way to prevent the catastrophic collapse of a high-dimensional Airy beam in nonlinear media[30].Nonlocality eliminates collapse in all physical dimensions for arbitrary shapes of the nonlocal response,as long as the response function is symmetric and has a positive definite Fourier spectrum [30].In previous work, with the aid of nonlocality, we obtained stable two-dimensional Airy beams, which always collapse in local nonlinear media [31].

    In the area of optics, nonlocality means that the lightinduced refractive index change of a material at a particular location is determined by the light intensity in a certain neighborhood of this location [32].Nonlocal nonlinearity exists in nematic liquid crystals [33] and thermal media [34].Many works have shown that nonlocal nonlinearity greatly affects the propagation properties of self-accelerating Airy beams [35].The beam trajectory of the Airy beams is decided by the boundary conditions of a strongly nonlocal media[36].In a strongly nonlocal nonlinear media, the normalized intensity distribution of an Airy beam is always periodic [37-39].Propagation characteristics of a truncated Airy beam [40], an Airy-Laguerre-Gaussian light bullet[41],a chirped Airy beam[42],spatiotemporal Airy Ince-Gaussian wave packets[43],an inward-focusing ring Airy beam [44], and rotating elliptic vortex complex Airy solitons [45] have also been extensively demonstrated in nonlocal nonlinear media.Nonlocality[46,47]also has deep impacts on the coherent [38, 48-50] and incoherent [51] interactions of an Airy beam, leading to the formation of bound states.

    The Airy Gaussian beam [52, 53] and Airy Gaussian vortex beam [54] describe, in a more realistic way, the propagation of the Airy beam, because the beam carries finite power, retains the nondiffracting propagation properties within a finite propagation distance, and can be realized experimentally to a very good approximation [52].The propagation properties of an Airy Gaussian beam [53] and an Airy Gaussian vortex beam [54] and their interactions [55]have been studied in local nonlinear media.In nonlocal media,nonlocality also affects the propagation dynamics[56]and the interactions [57, 58] of the Airy Gaussian beam.However, collapse of an Airy Gaussian beam and an Airy Gaussian vortex beam has not been studied in both local and nonlocal nonlinear media.

    In this paper, we study numerically the propagation properties of a two-dimensional Airy Gaussian beam and an Airy Gaussian vortex beam in local and nonlocal nonlinear media using the split-step Fourier transform method.The numerical results show that the distribution factor b and the topological charge m of the Airy Gaussian vortex beam decide the dynamics of the self-healing and collapse of the beam.In local nonlinear media, the Airy Gaussian beam and Airy Gaussian vortex beam with larger amplitudes always collapse due to the strong self-trapping effect.Nonlocality can effectively induce a long-range attractive force, leading to the stable propagation of such beams.When the distribution factor b is large enough, the Airy Gaussian vortex beam will transfer into quasi-vortex solitons in nonlocal media.

    2.Model and basic equations

    Consider a two-dimensional Airy Gaussian vortex beam propagating in nonlocal nonlinear media.The slowly varying beam envelope of the Airy Gaussian vortex beam ψ(x, y, z)can be described by the normalized nonlocal nonlinear Schr?dinger equation [38],

    where the variables x, y, and z are the normalized transverse and longitudinal coordinates, respectively, scaled by the characteristic transverse width D and the corresponding Rayleigh range d=kD2/2 [23].Here, δn(I) is the nonlinear refractive index change of the nonlocal nonlinear media, which can be represented by the following convolutional form [59]:

    Here,(x,y) is the vector spatial coordinate, and→is the normalized nonlocal response functions of the media, which satisfies the normalized condition[59].

    We assume the Airy Gaussian vortex beam is in the following form [54]

    where A is the amplitude of the Airy beam, w is the initial beam width of the Airy beam, b is the distribution factor[53,54]controlling the beam that tends toward an Airy vortex beam with a smaller value or a Gaussian vortex beam with a larger one, and a >0 is the decaying factor to ensure containment of the infinite Airy tail and the finite power of the Airy beam [1].Here, x0and y0decide the position (location)of the vortex center [31], and m is a topological charge that denotes the angular momentum of the vortex [54].For simplicity, we set w=1 and a=0.05 throughout this paper.

    3.Dynamics of a two-dimensional fundamental Airy Gaussian beam in nonlinear media

    When the topological charge m=0, equation (3) represents a two-dimensional fundamental Airy Gaussian beam.In figure 1,we plot the intensity distributions of the Airy Gaussian beam with different distribution factors b.The choice of appropriate b can make the initial beams tend toward an Airy beam with a smaller value, such as b=0.05 in figure 1(a), or a Gaussian beam with a larger value, such as b=0.3 in figure 1(d).The influences of the distribution factor b will be explored later.

    Figure 1.The intensity distributions of a two-dimensional Airy Gaussian beam with different values of parameter b.The initial parameters are A=3, m=0, and b=0.05, 0.1, 0.2, 0.3 for (a)-(d),respectively.The zoom sizes of all the plots are scaled by 20d×20d,where d is the diffraction length (Rayleigh rangethe Airy Gaussian beam.

    In this paper, we study the propagation properties of a two-dimensional Airy beam in nonlocal nonlinear media by direct numerical integration of equation(1)using the split-step Fourier transform method.Firstly, the dynamics of the twodimensional Airy Gaussian beam with the smaller distribution factor b=0.05 propagating in nonlinear media at different propagation distances z are displayed in figure 2.Here, the propagation distance z is also scaled by the diffraction length(Rayleigh range)[53,54].When the power (or amplitude) is small (A=3), we show in figure 2(a)that the Airy Gaussian beam self-accelerates and travels along the identical accelerating trajectory in a local nonlinear medium(σ=0) [24].In particular, the beam can propagate stably within 12d.After this, the intensity distribution of the Airy Gaussian beam will become irregular (distortion).

    Figure 2.The intensity distributions of a fundamental Airy Gaussian beam (m=0, b=0.05) at different propagation distances in selffocusing nonlinear media.The amplitudes are A=3(a)and A=75(b),(c).The degrees of nonlocality are σ=0(a),(b)for local nonlinear media and σ=0.5 (c) for nonlocal nonlinear media, respectively.

    By increasing the amplitude (power) of the Airy Gaussian beam (A=75) in local media, as shown in figure 2(b),we can see that the Airy Gaussian beam self-accelerates firstly, and then catastrophic collapse of the beam occurs at the propagation distance z=12d because of strong selftrapping.The collapse of the Airy Gaussian beam can be effectively prevented with the aid of nonlocality [30].For simplicity, in this paper, we consider the so-called Gaussian nonlocal response functions [59]

    with a characteristic width σ, which represents the degree of nonlocality.The degree of nonlocality only depends on the physical mechanism of nonlocal media [30], such as molecule reorientation, heat or carrier transfer, etc.The Fourier transformofcan be obtained using the following calculation[30]

    The Fourier transform of the Gaussian nonlocal response function indeed has a positive definite Fourier spectrum,which has been discussed in our previous work [31].Thus,the nonlocality induces an effective long-range attractive force,which can completely suppress the collapse of the Airy Gaussian beam, leading to the stable propagation of the Airy Gaussian beam even when its power is large enough.As shown in figure 2(c),we can see that the Airy Gaussian beam can propagate stably in nonlocal nonlinear media, in contrast to the collapse observed in local nonlinear media.

    Figure 3.The intensity distributions of a fundamental Airy Gaussian beam(m=0,b=0.1)at different propagation distances in self-focusing nonlinear media.The amplitudes are A=3(a)and A=75(b),(c).The degrees of nonlocality are σ=0(a),(b)for local nonlinear media and σ=1.5 (c) for nonlocal nonlinear media, respectively.

    Figure 4.The intensity distributions of a fundamental Airy Gaussian beam(m=0,b=0.2)at different propagation distances in self-focusing nonlinear media.The amplitudes are A=3(a)and A=75(b),(c).The degrees of nonlocality are σ=0(a),(b)for local nonlinear media and σ=3 (c) for nonlocal nonlinear media, respectively.

    Figure 5.The intensity distributions of a two-dimensional Airy Gaussian vortex beam with the topological charge m=1 and the amplitude A=3.The values of parameter b are b=0.05, 0.1, and 0.2 for (a1)-(a4), (b1)-(b4), and (c1)-(c4), respectively.The corresponding vortex centers x0 and y0 are (0, 0), (-0.2, 0), (0, -0.2), (-0.2, -0.2), (0, 0), (-0.4, 0), (0, -0.4), (-0.4, -0.4), (0, 0), (-0.6, 0), (0, -0.6), and(-0.6, -0.6) for (a1)-(c4).The zoom sizes of all the plots are also scaled by 20d×20d.

    It is interesting that the propagation properties of the Airy Gaussian beam in nonlinear media are related to the values of the distribution factor b.In figures 3(a)and 4(a),we show the dynamics of the Airy Gaussian beam propagating in local nonlinear media with b=0.1 and b=0.2,respectively.For a given value of the amplitude A=3, the stable propagation distances of the Airy Gaussian beam become shorter when the value of b increases.As discussed above, the stable propagation distance is z=12d with b=0.05 (figure 2(a)).However, for b=0.1, the stable propagation distance is z=6d (figure 3(a)), and it becomes only z=3d with b=0.2(figure 4(a)).

    When we increase the value of the amplitude (A=75),the strong self-trapping effect overcomes linear diffraction and self-acceleration of the Airy Gaussian beam for both b=0.1(figure 3(b))and b=0.2(figure 4(b)),leading to the collapse of the beam.For the given amplitude A=75, we also find that the beam collapses within a smaller diffraction length when the distribution factor b is larger.For example,the propagation distances of collapse are 12d(Figure 2(b)),d(figure 3(b)), and 0.4d (figure 4(b)) for b=0.05, b=0.1,and b=0.2, respectively.When b is small, the Airy Gaussian beam has a long tail,and the intensity is located at both the main lobe and the tail of the beam.However, when b is big, the Airy Gaussian beam has a short tail; thus the intensity is almost entirely located at the main lobe of the beam.Thus, the self-trapping effect is stronger for a bigger b.It has also been shown that the critical power of the Airy Gaussian beam decreases as the distribution factor b increases [53].Hence, the Airy beam collapses within a smaller diffraction length when the parameter b is bigger for the same amplitude.With the aid of nonlocality, a stable Airy Gaussian beam can be obtained for both b=0.1(figure 3(c)) and b=0.2 (figure 4(c)).A larger distribution factor b always requires a larger degree of nonlocality σ.For example, the degree of nonlocality is σ=0.5 for a stable Airy Gaussian beam with b=0.05 (figure 2(c)).However,the degrees of nonlocality are σ=1.5 (Figure 3(c)) and σ=3(figure 4(c))for a stable Airy Gaussian beam when b=0.1 and b=0.2, respectively.

    4.Dynamics of a two-dimensional Airy Gaussian vortex beam in nonlinear media

    When the topological charge m ≠0, equation (3) represents a two-dimensional Airy Gaussian vortex beam carrying angular momentum.In figures 5 and 6,we plot the intensity distributions of the Airy Gaussian vortex beam when the topological charges are m=1 and m=2, respectively.By plotting the figures, we change both the distribution factor b and the position of the vortex x0and y0.The vortex center is located at the main lobe(x0=y0=0), the side lobe (x0=0 or y0=0), and the tail(x0≠0 and y0≠0) with different values of x0and y0.

    When b=0.05, we show in figures 7(a)-(d) the propagation dynamics of an Airy Gaussian vortex beam in local nonlinear media with the topological charge m=1.We also assume that the vortex centers are located at different positions.Firstly,we numerically investigate the self-healing properties[60-62]of the Airy Gaussian vortex beam in local nonlinear media.

    Figure 6.The intensity distributions of a two-dimensional Airy Gaussian vortex beam with the topological charge m=2 and the amplitude A=3.The values of parameter b are b=0.05, 0.1, and 0.2 for (a1)-(a4), (b1)-(b4), and (c1)-(c4), respectively.The corresponding vortex centers x0 and y0 are (0, 0), (-0.2, 0), (0, -0.2), (-0.2, -0.2), (0, 0), (-0.4, 0), (0, -0.4), (-0.4, -0.4), (0, 0), (-0.6, 0), (0, -0.6), and(-0.6, -0.6) for (a1)-(c4).The zoom sizes of all the plots are also scaled by 20d×20d.

    Similar to the Airy vortex beam, we find that the selfhealing properties of the Airy Gaussian vortex beam also depend on the position of the optical vortex center[31,54].When x0=0 and y0=0,the vortex center is located at the main lobe of the Airy Gaussian beam.From figure 7(a), the self-healing of the Airy Gaussian vortex beam is apparent during the propagation.The main lobe is reborn at the corner again and persists undistorted.The Airy Gaussian vortex beam evolves into a new fundamental-like Airy Gaussian beam after the reconstruction.In figures 7(b)-(d),we show the self-healing properties of the Airy Gaussian vortex beam when the vortex center does not locate at the main lobe in local nonlinear media.After the self-healing process,the Airy Gaussian vortex beam turns into a fundamental Airy Gaussian beam; however, their intensity distributions are different with different x0and y0.When x0=-0.2 and y0=0,the vortex center is located at the minus x axis,and the intensity along the y axis is obviously stronger than that along the x axis.At the propagation distance z=6d, the beam realizes selfhealing, whereas the intensity along the y axis is weaker than that along the x axis after self-healing, as shown in figure 7(b).

    This phenomena is induced by the internal transverse power flow of the vortex Gaussian beam [60].The power flows from the lobes along the y axis towards the lobes along the x axis to facilitate self-healing.A similar result with the parameters x0=0 and y0=-0.2 is shown in figure 7(c).When x0=y0=-0.2, as shown in figure 7(d), the intensity distribution is similar to the general Airy beam after selfhealing.However, the intensity at the main lobe deceases obviously.This indicates that when the vortex center is located at the internal lobes, the power of the main lobe will flow towards the vortex center along the 45° axis during the self-healing process [60].

    Figure 7.The intensity distributions of an Airy Gaussian vortex beam(m=1,b=0.05)at different propagation distances in local nonlinear media (σ=0).The amplitudes are A=3 for all the plots.The vortex center positions are (x0=0, y0=0), (x0=-0.2, y0=0), (x0=0,y0=-0.2), and (x0=-0.2, y0=-0.2) for (a)-(d), respectively.

    Although the intensity distribution is different with different vortex center positions after self-healing, we also numerically demonstrated that the required propagation distance for self-healing does not sensitively depend on the vortex center position x0and y0when the parameters A, b,and m are given.This result can also be obtained from figure 7,which shows that the propagation distances of selfhealing are all 6d for A=3,b=0.05,and m=1,despite the fact that the vortex center positions are different.Thus, we restrict the vortex center position x0=y0=0 in the following discussions.

    The self-healing properties, especially the required propagation distance of the Airy Gaussian vortex beam, are also related to the distribution factor b.When the topological charge m=1 is given, we display in figures 8(a) and (b) the self-healing of an Airy Gaussian vortex beam with b=0.1 and b=0.2, respectively.From figures 7 and 8, we find that,for an Airy Gaussian vortex beam with a larger distribution factor b, the beam very easily realizes self-healing after a smaller propagation distance.The propagation distances are 6d,3d,and 1.5d for b=0.05(figure 7),b=0.1(figure 8(a)),and b=0.2(figure 8(b)),respectively.When the value of the

    distribution factor b increases, bw increases accordingly.The vortex can only destroy a little part of the main lobe of the Airy Gaussian beam.It is easy to realize self-healing within fewer diffraction lengths.

    The self-healing properties of the Airy Gaussian vortex beam also have something to do with the topological charge m.For an Airy Gaussian vortex beam with smaller topological charge m=1, the beam finds it easier to realize selfhealing than that with a larger topological charge m=2 at the same propagation distance.When b=0.05,the Airy Gaussian vortex beam with m=1 has realized self-healing at z=6d(figure (7)).Although the main lobe of the Airy Gaussian vortex beam with m=2 is reborn at z=6d, the intensity of the main lobe is still weaker than the intensity of the side lobes(figure 9(a)).This phenomena also occurred for b=0.1.The Airy Gaussian vortex beam with m=1 has realized selfhealing at z=3d (Figure 8(a)), whereas the main lobe of the Airy Gaussian vortex beam with m=2 has not appeared at z=3d(figure 9(b)).An Airy Gaussian vortex beam carrying a larger topological charge always requires a longer distance(not shown) to realize self-healing due to the fact that the vortex with higher-order topological charge always destroys the beam better.

    Figure 8.The intensity distributions of an Airy Gaussian vortex beam (m=1, x0=y0=0) at different propagation distances in local nonlinear media(σ=0).The amplitudes are A=3 for all the plots.The values of parameter b are b=0.1(a)and b=0.2(b),respectively.

    Figure 9.The intensity distributions of an Airy Gaussian vortex beam (m=2, x0=y0=0) at different propagation distances in local nonlinear media(σ=0).The amplitudes are A=3 for all the plots.The values of parameter b are b=0.05(a)and b=0.1(b),respectively.

    We increase the amplitude of the Airy Gaussian vortex beam with b=0.05 and m=1 to A=15,and the propagation of the beam is shown in figure 10(a).The Airy Gaussian vortex beam also self-heals firstly and, subsequently, selfaccelerates and travels along the identical accelerating trajectory with the propagation distance z=12d.The beam will also suffer from catastrophic collapse due to strong selffocusing effects when the amplitude is A=35,as displayed in figure 10(b).The beam realizes self-healing z=4d firstly,and then shows manifestations of a strong self-trapping process at z=8d, where its beam width decreases obviously and eventually undergoes collapse into a multi-filament pattern at z=12d.This is because the linear effects, including diffraction, self-acceleration, and self-healing, cannot balance the effects of strong self-focusing of the beam with larger amplitude (power).

    Figure 10.The intensity distributions of an Airy Gaussian vortex beam(m=1,b=0.05)at different propagation distances in self-focusing nonlinear media.The amplitudes are A=15 (a) and A=35 (b), (c).The degrees of nonlocality are σ=0 (a), (b) for local nonlinear media and σ=1.5 (c) for nonlocal nonlinear media, respectively.

    We also find that the dynamic is different from that of the Airy Gaussian beam (m=0) with b=0.05, which only collapses at z=12d (figure 2(b)) when the amplitude of the beam is large enough (A=75).The reason for this can be explained as follows:the stability of the vortex Airy Gaussian beam becomes worse than the Airy Gaussian beam due to the azimuthal instability of the vortex carrying angular momentum.In nonlocal nonlinear media, as shown in figure 10(c),we can obtain the self-healing and the stationary propagation of the Airy Gaussian vortex beam.

    When the distribution factor b increases,the propagation properties of the Airy Gaussian vortex beam(b=0.1,m=1,and A=15) are shown in figure 11(a).The beam self-heals and self-accelerates stably with the propagation distance z=1.5d.When A=55, the Airy Gaussian vortex beam will also undergo collapse into a multi-filament pattern at z=1.5d,as displayed in figure 11(b).With the aid of nonlocal nonlinearity, we obtain, in figure 11(c), the self-healing and the collapse arrest of the Airy Gaussian vortex beam with a moderate degree of nonlocality σ=2.

    Figure 11.The intensity distributions of an Airy Gaussian vortex beam (m=1, b=0.1) at different propagation distances in self-focusing nonlinear media.The amplitudes are A=15 (a) and A=55 (b), (c).The degrees of nonlocality are σ=0 (a), (b) for local nonlinear media and σ=2 (c) for nonlocal nonlinear media, respectively.

    When m=2, as shown in figure 12(a), we display the propagation dynamic of the beam in local nonlinear media with the parameters A=5 and b=0.05.It is obvious that the beam undergoes collapse into a multi-filament pattern at z=6d.The stability of the beam with higher-order topological charge becomes worse due to the azimuthal instability induced by the higher-order charged vortex.Fortunately, nonlocality can effectively induce a long-range attractive force to suppress the azimuthal instability, leading to the stable propagation of the Airy Gaussian vortex beam (figure 12(b)).

    Figure 12.The intensity distributions of an Airy Gaussian vortex beam(m=2,b=0.05)at different propagation distances in self-focusing nonlinear media.The amplitudes are A=5.The degrees of nonlocality are σ=0(a)for local nonlinear media and σ=0.5(b)for nonlocal nonlinear media, respectively.

    5.Dynamics of an Airy Gaussian vortex beam with larger values of distribution factor b

    In this section,we focus on the propagation behavior of the Airy Gaussian vortex beam with larger values of the distribution factor b.When b=1 and m=0, as shown in figure 13(a), we can see that the Airy Gaussian beam trends to a fundamental Gaussian beam[53].The beam with smaller amplitude(A=3),is stable within a certain propagation distance (figure 13(b)) in local nonlinear media.When the amplitude increases (A=30),the beam again collapses,as shown in figure 13(c).Similarly,a stable Airy Gaussian beam can be obtained with a moderate degree of nonlocality σ=5 (figure 13(d)).

    Figure 13.The intensity distributions of an Airy Gaussian beam(m=0,b=1)at different propagation distances in self-focusing nonlinear media.The amplitudes are A=3(a),(b)and A=30(c),(d).The propagation distances are z=0,0.4d,0.4d,3.2d for(a)-(d).The degrees of nonlocality are σ=0 (a), (b), (c) for local nonlinear media and σ=2 (d) for nonlocal nonlinear media, respectively.

    When m ≠0, the Airy Gaussian vortex beam tends toward the conventional vortex beam when b=1.As shown in figure 14,we display the propagation dynamics of the Airy Gaussian vortex beam with the topological charges m=1 and m=2.In local nonlinear media,we can see that the beam can propagate stably within a short distance and then splits into several scalar filaments (solitons) due to the azimuthal instability of the vortex.For m=1, the beam always splits into three scalar solitons (figure 14(a)), whereas it will split into a random number of scalar solitons when m=2(figure 14(c)).This result is different from that of the conventional vortex beam, which always splits into two scalar solitons for m=1 and four scalar solitons for m=2[63,64].

    Figure 14.The intensity distributions of an Airy Gaussian vortex beam (b=1)at different propagation distances in self-focusing nonlinear media.The topological charges are m=1(a),(b)and m=2(c),(d).The amplitudes are A=3(a),(b)and A=2(c),(d).The vortex centers are x0=y0=-0.25(a)-(d).The degrees of nonlocality are σ=0(a),(c)for local nonlinear media and σ=5(b),(d)for nonlocal nonlinear media, respectively.

    This is because the intensity distribution of the Airy Gaussian vortex beam is not completely uniform along its ring.Thus, it is not symmetric when the azimuthal instability of the vortex breaks up the beam.With the aid of nonlocality,we can obtain a quasi-stable vortex beam,as shown in figures 14(b)and(d).Nonlocality can suppress the azimuthal instability of the vortex beam, leading to the formation of quasi-vortex solitons,where their intensity oscillates with the propagation distance.

    6.Conclusion

    In conclusion, we have demonstrated numerically the selfhealing and collapse arrest in a two-dimensional Airy Gaussian vortex beam in local and nonlocal nonlinear media using the split-step Fourier transform method.It has been shown that the distribution factor b and the topological charge m of the Airy Gaussian vortex beam have a deep impact on the propagation of such a beam.In the regime of strong self-trapping with a larger amplitude, a stable Airy Gaussian vortex beam can be obtained with the aid of nonlocality,which always collapses in local nonlinear media.The Airy Gaussian vortex beam will transfer into quasi-vortex solitons in nonlocal media when the distribution factor b is large enough.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (No.61 975 109) and the Science and Technology Commission of Shanghai Municipal (No.19ZR1417900).

    欧美日韩精品网址| 一级毛片女人18水好多| 视频在线观看一区二区三区| 黄片小视频在线播放| 精品国产一区二区三区四区第35| 亚洲精品在线观看二区| 丝袜在线中文字幕| 免费在线观看视频国产中文字幕亚洲| 中文字幕人妻熟女乱码| 国产精品日韩av在线免费观看 | 村上凉子中文字幕在线| 免费在线观看视频国产中文字幕亚洲| 丰满迷人的少妇在线观看| 久久久久九九精品影院| 视频区欧美日本亚洲| 国产成人欧美在线观看| 国产日韩一区二区三区精品不卡| 亚洲精品中文字幕一二三四区| 久久精品国产99精品国产亚洲性色 | 欧美人与性动交α欧美精品济南到| 无人区码免费观看不卡| 视频在线观看一区二区三区| 成年女人毛片免费观看观看9| 淫妇啪啪啪对白视频| 欧美日韩国产mv在线观看视频| 岛国在线观看网站| 女性被躁到高潮视频| 两个人看的免费小视频| av免费在线观看网站| 午夜视频精品福利| 国产精品国产高清国产av| 夫妻午夜视频| 国产精品九九99| 999久久久国产精品视频| 搡老乐熟女国产| 亚洲熟妇中文字幕五十中出 | 欧美日韩黄片免| 在线观看舔阴道视频| 久久久国产一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 性色av乱码一区二区三区2| 亚洲精品美女久久久久99蜜臀| 亚洲国产精品999在线| 91大片在线观看| 久久草成人影院| 操出白浆在线播放| 国产激情久久老熟女| 午夜免费鲁丝| 自线自在国产av| 亚洲国产毛片av蜜桃av| 精品国产美女av久久久久小说| 欧美性长视频在线观看| 韩国精品一区二区三区| 侵犯人妻中文字幕一二三四区| 一二三四在线观看免费中文在| tocl精华| 91国产中文字幕| 亚洲五月天丁香| 午夜免费激情av| 午夜日韩欧美国产| 很黄的视频免费| 一区二区三区精品91| 亚洲色图 男人天堂 中文字幕| 最近最新中文字幕大全免费视频| 亚洲成a人片在线一区二区| 亚洲国产欧美网| 国产视频一区二区在线看| 新久久久久国产一级毛片| 亚洲精品一区av在线观看| 亚洲人成77777在线视频| 18禁裸乳无遮挡免费网站照片 | 国产成人精品久久二区二区免费| 色婷婷久久久亚洲欧美| 久久国产乱子伦精品免费另类| 男女床上黄色一级片免费看| www.www免费av| 婷婷丁香在线五月| 亚洲专区字幕在线| 免费看a级黄色片| 日韩欧美一区视频在线观看| 两性夫妻黄色片| 欧美另类亚洲清纯唯美| 亚洲中文日韩欧美视频| 亚洲国产精品sss在线观看 | av福利片在线| 高清毛片免费观看视频网站 | av国产精品久久久久影院| 一边摸一边抽搐一进一出视频| 又紧又爽又黄一区二区| 国产精品国产av在线观看| 精品国产乱码久久久久久男人| 久久亚洲真实| 9色porny在线观看| 欧美日韩黄片免| 另类亚洲欧美激情| 久久久久久久久久久久大奶| 日本三级黄在线观看| 香蕉久久夜色| 嫩草影视91久久| 嫩草影院精品99| av福利片在线| 中文字幕高清在线视频| 男人舔女人下体高潮全视频| 亚洲av熟女| 欧美乱妇无乱码| 91老司机精品| 国产99白浆流出| 一区二区日韩欧美中文字幕| 亚洲一区二区三区欧美精品| 欧美另类亚洲清纯唯美| 国产精品98久久久久久宅男小说| 国产91精品成人一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 精品少妇一区二区三区视频日本电影| 十八禁网站免费在线| 日韩高清综合在线| 免费久久久久久久精品成人欧美视频| 亚洲精品国产区一区二| 亚洲精品粉嫩美女一区| 如日韩欧美国产精品一区二区三区| 免费在线观看日本一区| 欧美日韩亚洲高清精品| 女生性感内裤真人,穿戴方法视频| 99精品久久久久人妻精品| 久久青草综合色| 国产精品亚洲一级av第二区| 国产成年人精品一区二区 | 欧美日韩黄片免| 女生性感内裤真人,穿戴方法视频| 青草久久国产| 高清毛片免费观看视频网站 | 午夜影院日韩av| a级片在线免费高清观看视频| 久久九九热精品免费| 久久伊人香网站| 精品久久久久久久久久免费视频 | 少妇被粗大的猛进出69影院| 亚洲美女黄片视频| 亚洲少妇的诱惑av| 亚洲av成人av| av有码第一页| 一夜夜www| a级毛片在线看网站| 免费在线观看亚洲国产| 亚洲成国产人片在线观看| 国产1区2区3区精品| 老司机靠b影院| 十八禁网站免费在线| 欧美精品一区二区免费开放| 精品久久久久久久久久免费视频 | 亚洲欧美日韩另类电影网站| 亚洲伊人色综图| 99国产综合亚洲精品| 男人操女人黄网站| 精品第一国产精品| 日韩精品青青久久久久久| 琪琪午夜伦伦电影理论片6080| 麻豆国产av国片精品| xxx96com| 久久婷婷成人综合色麻豆| 亚洲男人天堂网一区| 日本a在线网址| 午夜老司机福利片| 丁香六月欧美| 亚洲自拍偷在线| 香蕉丝袜av| 夜夜夜夜夜久久久久| 色播在线永久视频| 日本欧美视频一区| 亚洲人成电影观看| 多毛熟女@视频| 免费日韩欧美在线观看| 精品国产一区二区三区四区第35| 最近最新中文字幕大全免费视频| 亚洲欧洲精品一区二区精品久久久| 久久精品亚洲精品国产色婷小说| 免费少妇av软件| 18禁裸乳无遮挡免费网站照片 | 色哟哟·www| 嫁个100分男人电影在线观看| www.熟女人妻精品国产| 波野结衣二区三区在线| 亚洲综合色惰| 国产精品久久久久久久久免 | 精品乱码久久久久久99久播| 天天躁日日操中文字幕| 波多野结衣巨乳人妻| 国产精品综合久久久久久久免费| 天天躁日日操中文字幕| 久久国产精品人妻蜜桃| 日本五十路高清| 啪啪无遮挡十八禁网站| 国产精品人妻久久久久久| 久久国产乱子伦精品免费另类| 性色avwww在线观看| 99久久无色码亚洲精品果冻| 亚洲人成伊人成综合网2020| 女同久久另类99精品国产91| 97超级碰碰碰精品色视频在线观看| 日韩有码中文字幕| 国产日本99.免费观看| 欧美高清性xxxxhd video| 少妇的逼水好多| 白带黄色成豆腐渣| 婷婷亚洲欧美| av在线观看视频网站免费| 日本 av在线| 久久久精品欧美日韩精品| av视频在线观看入口| a在线观看视频网站| 国产成人欧美在线观看| www.熟女人妻精品国产| 精品一区二区三区人妻视频| 国产精品自产拍在线观看55亚洲| 国内精品久久久久精免费| 三级国产精品欧美在线观看| 乱人视频在线观看| 精品久久久久久久末码| 人妻丰满熟妇av一区二区三区| 国产高清视频在线播放一区| 听说在线观看完整版免费高清| 麻豆av噜噜一区二区三区| 99久久精品一区二区三区| 12—13女人毛片做爰片一| 久久久久久久午夜电影| 国产单亲对白刺激| 国产精品亚洲一级av第二区| 久久精品综合一区二区三区| 久久午夜亚洲精品久久| 夜夜躁狠狠躁天天躁| 国产视频一区二区在线看| 午夜福利欧美成人| 丝袜美腿在线中文| 国产探花在线观看一区二区| 91久久精品电影网| 日韩高清综合在线| netflix在线观看网站| 亚洲综合色惰| 国产日本99.免费观看| 伊人久久精品亚洲午夜| 国产一区二区在线av高清观看| 无人区码免费观看不卡| 国产精品亚洲一级av第二区| 最近视频中文字幕2019在线8| 久久人妻av系列| 大型黄色视频在线免费观看| 岛国在线免费视频观看| 国产av麻豆久久久久久久| 久久人人精品亚洲av| 亚洲欧美日韩高清专用| 夜夜看夜夜爽夜夜摸| 久久久久久国产a免费观看| 久久午夜福利片| 久久久久久久久大av| 久久人妻av系列| 亚洲一区二区三区不卡视频| 欧美一级a爱片免费观看看| 欧美+亚洲+日韩+国产| 悠悠久久av| 日日摸夜夜添夜夜添av毛片 | 免费黄网站久久成人精品 | 91久久精品电影网| 2021天堂中文幕一二区在线观| 黄片小视频在线播放| 性色av乱码一区二区三区2| 国产成人aa在线观看| 亚洲国产精品久久男人天堂| 国产成人啪精品午夜网站| 在线观看舔阴道视频| 成人三级黄色视频| 在线观看午夜福利视频| 赤兔流量卡办理| 日韩欧美精品v在线| 一个人观看的视频www高清免费观看| 中文字幕人妻熟人妻熟丝袜美| 精品国产亚洲在线| 深爱激情五月婷婷| 国产久久久一区二区三区| 悠悠久久av| 久久久久久久午夜电影| 欧美成人免费av一区二区三区| 又紧又爽又黄一区二区| a级毛片a级免费在线| 中文字幕免费在线视频6| 日韩中文字幕欧美一区二区| 男女做爰动态图高潮gif福利片| 日韩高清综合在线| 99久久99久久久精品蜜桃| avwww免费| 长腿黑丝高跟| 日韩 亚洲 欧美在线| 日本黄色视频三级网站网址| 搡老妇女老女人老熟妇| 欧美激情国产日韩精品一区| 一级毛片久久久久久久久女| 精品久久久久久久人妻蜜臀av| 免费电影在线观看免费观看| 美女 人体艺术 gogo| 亚洲美女搞黄在线观看 | 丁香欧美五月| 少妇被粗大猛烈的视频| 亚洲欧美日韩卡通动漫| 一级作爱视频免费观看| 日本一二三区视频观看| 又爽又黄a免费视频| 在线观看舔阴道视频| 国产午夜精品久久久久久一区二区三区 | av在线天堂中文字幕| 可以在线观看的亚洲视频| 别揉我奶头 嗯啊视频| 在线播放无遮挡| 亚洲经典国产精华液单 | 久久久久性生活片| 国内精品久久久久久久电影| 欧美黄色淫秽网站| 午夜日韩欧美国产| 一区二区三区高清视频在线| 亚洲精品色激情综合| www.www免费av| 国产久久久一区二区三区| 欧美日韩瑟瑟在线播放| 人人妻人人澡欧美一区二区| 亚洲国产欧洲综合997久久,| 一个人观看的视频www高清免费观看| 男女那种视频在线观看| 伦理电影大哥的女人| 亚洲成人中文字幕在线播放| a在线观看视频网站| 91麻豆av在线| 日本在线视频免费播放| 日韩国内少妇激情av| 国产真实伦视频高清在线观看 | www.999成人在线观看| 久久亚洲真实| 99热这里只有精品一区| 国产精品影院久久| 成人无遮挡网站| 白带黄色成豆腐渣| 国产伦人伦偷精品视频| 窝窝影院91人妻| 日韩中字成人| 精品99又大又爽又粗少妇毛片 | 亚洲精品成人久久久久久| 搡老妇女老女人老熟妇| 国内精品一区二区在线观看| 亚洲18禁久久av| 国产在视频线在精品| 亚洲 国产 在线| 精品人妻熟女av久视频| 一个人看的www免费观看视频| 久久久久久国产a免费观看| 1024手机看黄色片| netflix在线观看网站| 婷婷精品国产亚洲av在线| 成年免费大片在线观看| 成人鲁丝片一二三区免费| 波多野结衣巨乳人妻| 亚洲一区二区三区色噜噜| 欧美黑人欧美精品刺激| 亚洲欧美日韩卡通动漫| 国产av一区在线观看免费| 亚洲美女搞黄在线观看 | 亚洲,欧美精品.| 国产亚洲av嫩草精品影院| 天堂网av新在线| av在线蜜桃| 久久久久久国产a免费观看| 中亚洲国语对白在线视频| 国产综合懂色| 国产免费一级a男人的天堂| 国产精品三级大全| 成年免费大片在线观看| 三级国产精品欧美在线观看| 国内久久婷婷六月综合欲色啪| 又紧又爽又黄一区二区| xxxwww97欧美| 一进一出好大好爽视频| 亚洲人成电影免费在线| 亚洲国产日韩欧美精品在线观看| eeuss影院久久| 久9热在线精品视频| 丁香六月欧美| 久久久久久九九精品二区国产| АⅤ资源中文在线天堂| 午夜激情欧美在线| 搡老熟女国产l中国老女人| 亚洲成人精品中文字幕电影| 欧美成人性av电影在线观看| 精品久久久久久久久久久久久| 全区人妻精品视频| 亚洲av免费在线观看| 欧美xxxx性猛交bbbb| 免费一级毛片在线播放高清视频| 久久久久久九九精品二区国产| 噜噜噜噜噜久久久久久91| xxxwww97欧美| 黄色一级大片看看| 国产精品久久久久久精品电影| 日韩欧美精品免费久久 | 黄色日韩在线| 久久亚洲真实| 天天一区二区日本电影三级| 偷拍熟女少妇极品色| 人妻丰满熟妇av一区二区三区| 国产蜜桃级精品一区二区三区| 亚洲欧美激情综合另类| 中文字幕av成人在线电影| 毛片女人毛片| 在线天堂最新版资源| 色播亚洲综合网| 中文资源天堂在线| 国产三级黄色录像| 人妻丰满熟妇av一区二区三区| 国产蜜桃级精品一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 久久欧美精品欧美久久欧美| 一级作爱视频免费观看| 91九色精品人成在线观看| 国产主播在线观看一区二区| 午夜福利视频1000在线观看| 男人狂女人下面高潮的视频| 赤兔流量卡办理| 赤兔流量卡办理| 国产精品99久久久久久久久| 精品一区二区三区视频在线观看免费| 久久精品国产亚洲av香蕉五月| 97热精品久久久久久| 久久久久久久亚洲中文字幕 | av在线天堂中文字幕| 亚洲第一欧美日韩一区二区三区| 757午夜福利合集在线观看| 热99在线观看视频| 久久亚洲真实| 别揉我奶头 嗯啊视频| 一进一出抽搐gif免费好疼| 偷拍熟女少妇极品色| 脱女人内裤的视频| 午夜福利18| 亚洲黑人精品在线| 国产精品一区二区免费欧美| 国产男靠女视频免费网站| 性插视频无遮挡在线免费观看| 免费一级毛片在线播放高清视频| 亚洲国产精品sss在线观看| 99久久无色码亚洲精品果冻| 精品人妻一区二区三区麻豆 | 亚洲美女视频黄频| 97超级碰碰碰精品色视频在线观看| av女优亚洲男人天堂| 丰满人妻一区二区三区视频av| 国产精品一及| 97超级碰碰碰精品色视频在线观看| 国产伦在线观看视频一区| 亚洲专区国产一区二区| 欧美一区二区国产精品久久精品| 女人被狂操c到高潮| 天天一区二区日本电影三级| 丁香欧美五月| 久久午夜福利片| 国产成人a区在线观看| 欧美bdsm另类| 午夜福利视频1000在线观看| 国产精品不卡视频一区二区 | 精品久久国产蜜桃| 又爽又黄无遮挡网站| 午夜两性在线视频| 国产精品日韩av在线免费观看| 亚洲av不卡在线观看| 国产一区二区三区视频了| 亚洲av五月六月丁香网| 免费av毛片视频| 熟女人妻精品中文字幕| 亚洲av五月六月丁香网| 少妇的逼好多水| 人妻久久中文字幕网| 亚洲成av人片在线播放无| 每晚都被弄得嗷嗷叫到高潮| 国内毛片毛片毛片毛片毛片| 亚洲第一电影网av| 97碰自拍视频| 日本 欧美在线| 成人美女网站在线观看视频| 国产真实伦视频高清在线观看 | 国产极品精品免费视频能看的| 在线观看美女被高潮喷水网站 | 久久性视频一级片| 欧美乱色亚洲激情| 日韩欧美三级三区| 99热这里只有是精品在线观看 | 大型黄色视频在线免费观看| 成人av在线播放网站| 国产高潮美女av| 亚洲国产色片| 小蜜桃在线观看免费完整版高清| 亚洲专区中文字幕在线| 性插视频无遮挡在线免费观看| a级一级毛片免费在线观看| 国产主播在线观看一区二区| 一进一出抽搐动态| 国产午夜精品论理片| 日本与韩国留学比较| 午夜福利在线观看吧| 99久久99久久久精品蜜桃| 国产不卡一卡二| bbb黄色大片| 日本成人三级电影网站| 俄罗斯特黄特色一大片| 啦啦啦观看免费观看视频高清| 少妇人妻一区二区三区视频| 久久99热6这里只有精品| 国内精品美女久久久久久| 国产精品女同一区二区软件 | 国产精品免费一区二区三区在线| 在线看三级毛片| 黄色日韩在线| АⅤ资源中文在线天堂| 成年免费大片在线观看| 国产伦在线观看视频一区| 九九久久精品国产亚洲av麻豆| bbb黄色大片| 91狼人影院| 亚洲国产欧洲综合997久久,| 精品日产1卡2卡| 两个人的视频大全免费| 色精品久久人妻99蜜桃| 99久久99久久久精品蜜桃| 亚洲av美国av| 成年女人毛片免费观看观看9| 国内精品美女久久久久久| 久久人人爽人人爽人人片va | 日韩亚洲欧美综合| 国产在线精品亚洲第一网站| 18禁黄网站禁片免费观看直播| 给我免费播放毛片高清在线观看| 日韩精品中文字幕看吧| 久久久久久久午夜电影| 丰满人妻熟妇乱又伦精品不卡| 欧美日本亚洲视频在线播放| 日本a在线网址| 欧美绝顶高潮抽搐喷水| av视频在线观看入口| 波野结衣二区三区在线| 成人无遮挡网站| av天堂中文字幕网| 99久久精品国产亚洲精品| 免费av毛片视频| 免费在线观看日本一区| 一个人免费在线观看的高清视频| 欧美高清成人免费视频www| 嫩草影院新地址| 色综合婷婷激情| 波多野结衣高清作品| 亚洲黑人精品在线| 中文字幕免费在线视频6| 日韩欧美 国产精品| 日韩av在线大香蕉| 免费一级毛片在线播放高清视频| 黄色女人牲交| 麻豆av噜噜一区二区三区| 成人av一区二区三区在线看| 天天躁日日操中文字幕| 欧美+日韩+精品| 久久精品综合一区二区三区| 婷婷丁香在线五月| 午夜福利在线在线| 成人三级黄色视频| 久久性视频一级片| 欧美最新免费一区二区三区 | 国产黄片美女视频| 国内毛片毛片毛片毛片毛片| 免费在线观看日本一区| 亚洲国产欧洲综合997久久,| 黄色丝袜av网址大全| 韩国av一区二区三区四区| 国产午夜精品久久久久久一区二区三区 | 国产成人福利小说| 天堂av国产一区二区熟女人妻| 国产精品爽爽va在线观看网站| 高清日韩中文字幕在线| 久久久色成人| 久久欧美精品欧美久久欧美| 亚洲成人久久爱视频| 人人妻,人人澡人人爽秒播| 欧美丝袜亚洲另类 | 亚洲av成人av| 亚洲经典国产精华液单 | 精品一区二区免费观看| 一本综合久久免费| 99精品久久久久人妻精品| 日韩欧美一区二区三区在线观看| 91狼人影院| 麻豆成人午夜福利视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成av人片在线播放无| 久久午夜亚洲精品久久| 午夜福利欧美成人| 亚洲成av人片在线播放无| 欧美成狂野欧美在线观看| 久久精品夜夜夜夜夜久久蜜豆| 91在线观看av| 国产亚洲精品久久久com| 久久精品久久久久久噜噜老黄 | 18禁黄网站禁片免费观看直播| 真人做人爱边吃奶动态| 桃红色精品国产亚洲av| 午夜福利欧美成人| 91在线观看av| 麻豆国产av国片精品| 热99在线观看视频| 亚洲,欧美,日韩| 在线免费观看不下载黄p国产 | 97热精品久久久久久| 丁香欧美五月| 色综合婷婷激情| 桃红色精品国产亚洲av|