• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Decay properties of the X(3872) through the Fierz rearrangement

    2022-03-12 06:42:06HuaXingChen
    Communications in Theoretical Physics 2022年2期

    Hua-Xing Chen

    School of Physics, Southeast University, Nanjing 210094, China

    Abstract We systematically construct all the tetraquark currents of JPC=1++ with the quark configurationsandTheir relations are derived using the Fierz rearrangement of the Dirac and color indices,through which we study decay properties of the X(3872)under both the compact tetraquark and hadronic molecule interpretations.We conduct a search for the X(3872)→χc0π, ηcππ, and χc1ππ decay processes in particle experiments.

    Keywords: exotic hadron, tetraquark state, hadronic molecule, Fierz rearrangement, QCD sum rules

    1.Introduction

    Since the discovery of the X(3872)in 2003 by Belle[1],many charmonium-like XYZ states have been discovered in the past twenty years [2].They are good candidates of four-quark states consisting of two quarks and two antiquarks, and their experimental and theoretical studies have significantly improved our understanding of the strong interaction at the low energy region.Although there is still a long way to go to fully understand how the strong interaction binds these quarks and antiquarks together with gluons, this subject has become and will continuously be one of the most intriguing research topics in hadron physics [3-10].

    The X(3872) is the most puzzling state among all the charmonium-like XYZ states.Although it is denoted as the χc1(3872) in PDG2018 [2], the mass of the charmonium state χc1(2P)was estimated to be 3.95 GeV[11],significantly higher than the X(3872).This challenges the interpretation of the X(3872) as a conventional charmonium state, and various interpretations were proposed to explain it, such as a compact tetraquark state composed of a diquark and an antidiquark[12-17],a loosely-bound hadronic molecular state composed of two charmed mesons [18-24], and a hybrid charmonium state with constituents[25, 26], etc.There were also some studies of the X(3872) as a conventionalstate [27-30], and it was considered as the mixture of astate with acomponent in[31-33].We refer to reviews [3-10] for detailed discussions.

    The charged charmonium-like state X(3872) of JPC=1++[34]has been observed in theJ/ψππ,J/ψω,and γJ/ψ decay channels[35-44],and there have been some evidences for the X(3872)→γψ(2S) decay [42, 44].Especially, its decay channels J/ψππ and J/ψω have comparable branching ratios[38-41], implying a large isospin violation.In a recent BESIII experiment [45], evidence for the X(3872)→χc1π decay was reported with a statistical significance of 5.2σ using data at center-of-mass energies between 4.15 and 4.30 GeV, while this was not confirmed in the later Belle experiment[46].We refer to a recent paper [47], where the authors presented a complete analysis of all the existing experimental data and determine the absolute branching fractions of the X(3872) decays.We also refer to another recent paper [48], which studies branching fractions of the X(3872)from a theoretical point of view.There have been many experimental and theoretical studies on this subject, and we refer to reviews [3-10] for more discussions.

    In [49] we studied decay properties of the Zc(3900)through the Fierz rearrangement of the Dirac and color indices,and in this paper we shall apply the same method to study decay properties of the X(3872).Both of these two studies are based on our previous finding that the diquark-antidiquark currents ([qq]and the meson-meson currentsare related to each other through the Fierz rearrangement of the Dirac and color indices [50-53].More studies on light baryon operators can be found in [54, 55].The present study follows the idea of the QCD factorization method [56-58],which has been widely and successfully applied to study weak decay properties of (heavy) hadrons.

    The X(3872), as either a compact tetraquark state or a hadronic molecular state, contains four quarks.There can be three configurations (q=u/d):

    In this paper we shall apply the Fierz rearrangement to relate them,and extract some strong decay properties of the X(3872)under both the compact tetraquark and hadronic molecule interpretations.We shall not calculate the absolute values of these decay widths,but extract their relative branching ratios,which are also useful to understand the nature of the X(3872)[59].A similar arrangement in the nonrelativistic case was used to study strong decay properties of the X(3872) and Zc(3900) in [60-62].

    This paper is organized as follows.In section 2 we systematically construct all the tetraquark currents of JPC=1++with the quark contentWe consider three configurations,[cq]and[c][q], and we derive their relations using the Fierz rearrangement of the Dirac and color indices.In section 3 and section 4 we extract some isoscalar decay channels of the X(3872), separately for the compact tetraquark and hadronic molecule interpretations, and in section 5 we investigate its isovector decay channels.The obtained results are discussed in section 6, and formulae of decay amplitudes and decay widths are given in appendix A.

    2.Tetraquark currents of JPC=1++ and their relations

    Similar to [49], we can use the c,q,quarks (q=u/d) to construct three types of tetraquark currents of JPC=1++, as illustrated in figure 1:

    Figure 1.Three types of tetraquark currents.Quarks and antiquarks are shown in red, green, and blue color.

    where Γiare Dirac matrices, and the subscripts a, b, c, d are color indices.We separately construct them in the following subsections.

    Generally speaking,one can apply the Fierz rearrangement to relate the local diquark-antidiquark currents η(x, x) and the local meson-meson currents ξ(x, x) and θ(x, x), but this equivalence is just between diquark-antidiquark and mesonicmesonic currents,while compact diquark-antidiquark tetraquark states and weakly-bound meson-meson molecular states are totally different.To exactly describe them, one needs to explicitly use non-local currents to perform QCD sum rule analyses,but we are still not able to do this.

    2.1.[qc][currents

    There are eight independent[q]currents of JPC=1++[63]:

    2.4.Fierz rearrangement

    The Fierz rearrangement [74] of the Dirac and color indices has been systematically applied to study light baryon and tetraquark operators/currents in[49-55].All the necessary equations can be found in section 3.3.2 of[75].More studies can be found in [69, 76].In the present study we apply it to relate the above three types of tetraquark currents.

    The Fierz rearrangement is usually applied to local operators/currents.However, it is actually a matrix identity, and is valid if the same quark field in the initial and final operators is at the same location.As an example, we can apply the Fierz rearrangement to transform the non-local current with the quark fieldsη (x ′, x ; y ′, y) =into a combination of several non-local currents with the quark fields at same locationsθ ( y , x ; y ′ ,x ′ ) =

    To apply it to study the decay process, we need to add two overall dynamical processes in the first and third steps:

    which will be discussed in detail in the next section.The second step is the Fierz rearrangement whose explicit expressions are given as follows.and:

    the following relation betweenand:

    the following relation amongand:

    Altogether, we obtain the following relation between the currents and the following relation betweeny,x′ ;y′,x) and(y,x;y′ ,x′):

    2.5.Isospin of the X(3872) and decay constants

    In the present study we shall first use isoscalar tetraquark currents to study decay properties of the X(3872), for example,

    Hence,we need couplings of light isoscalar meson operators to light isoscalar meson states,which are summarized in table 1.We also need couplings of charmonium operators to charmonium states as well as those of charmed meson operators to charmed meson states, which are also summarized in table 1.We refer to [49] for detailed discussions.

    Since light scalar mesons have a complicated nature [77], couplings of the light scalar-isoscalar meson operatorto f0mesons are quite ambiguous, where f0can be either the f0(500) or f0(1370), etc.In this paper we shall simply use the f0(500) meson to estimate relevant partial decay widths, whose coupling to PSis assumed to be

    In the present study we simply average among the decay constantsfχc0andto obtain

    The isospin breaking effect of the X(3872) is significant and important to understand its nature.There have been many studies on this,and we refer to reviews[3-10]for detailed discussions.In the present study we shall study this effect by freely choosing the quark content of the X(3872) [12, 65, 66], for example,

    where θ andθ′are the two related mixing angles.We shall fine-tune them to be different fromθ= 45° /θ′= 0° in section 5,so that the X(3872) is assumed not to be a purely isoscalar state.To study this, we need couplings of light isovector meson operators to light isovector meson states, which are also summarized in table 1.

    3.Decay properties of the X(3872) as a diquark-antidiquark state.

    Operators IGJPC Mesons IGJPC Couplings Decay Constants=J qq S ˉ 1-0++ - 1-0++ - -γ=J q iq P ˉ 5 1-0-+ π0 1-0-+ 〈0|JP|π0〉=λπ λ = +π fπ mπ m m u d 2 γ=μ μ J q q V ˉ 1+1- ρ0 1+1- 〈 ρ〉 =μ ρ ρ μ J m f 0 V 0∣ ∣ ∈ fρ=216 MeV[94]γ γ=μ μ J q q A 5ˉ 1-1++ π0 1-0-+ 〈 π〉 =μ μ π J p f 0 i A 0∣ ∣ fπ=130.2 MeV[2]a1(1260) 1-1++ 〈 〉 =μ μ J a m f 0 A a a 1 1 1∣ ∣ ∈ f =254 a1 MeV[95]σ=μν μν J q q T ˉ 1+1±--- ρ0 1+1- 〈 ρ〉 = -μν ρ μ ν ν μ J f p p 0 i T T 0∣ ∣ ( )∈ ∈ =ρ f 159 T MeV[94]b1(1235) 1+1+- 〈 〉 =μν μναβ α β J b f p 0 i T bT 1 1∣ ∣ ∈ ∈ f =180 bT 1 MeV [96]=P qq S ˉ 0+0++ f0(500) (?) 0+0++ 〈P f〉 =m f 0 S f f 0 0 0∣ ∣ f ~380 f0 MeV(?)γ=P q iq P ˉ5 0+0-+ η 0+0-+ - -γ=μ μ P q q V ˉ 0-1- ω 0-1- 〈 ω〉 =μ ω ω μ P m f 0 V∣ ∣ ∈ fω ≈fρ=216 MeV[94]γ γ=μ μ P q q A 5ˉ 0+1++ η 0+0-+ 〈 η〉 =μ μ η P p f 0 i A∣ ∣ fη=97 MeV[97, 98]f1(1285) 0+1++ - -σ=μν μν P q q T ˉ 0-1±--- ω 0-1- 〈 ω〉 = -μν ω μ ν ν μ P f p p 0 i T T∣ ∣ ( )∈ ∈ ≈=ω ρ f f 159 T T MeV[94]h1(1170) 0-1+- 〈 〉 =μν μναβ α β P h f p 0 i T hT 1 1∣ ∣ ∈ ∈ ≈ =f f 180 hT bT 1 1 MeV[96]=I cc S ˉ 0+0++ χc0(1P) 0+0++ 〈 χ 〉 = χ χ I m f 0 S c0 c0 c0∣ ∣ =χf 343 c0 MeV[99]γ=I c ic P ˉ5 0+0-+ ηc 0+0-+ η λ〈 〉 = η I 0 Pc c∣ ∣λ =η fη mη m2 c 2 c c c γ=μ μ I c c V ˉ 0-1- J/ψ 0-1-ψ〈 〉 =μ ψ ψ μ I J m f 0 V J J∣ ∣ ∈ fJ/ψ=418 MeV[100]γ γ=μ μ I c c A 5ˉ 0+1++ ηc 0+0-+ 〈 η〉 =μ μ η I p f 0 i A c c∣ ∣ =ηf 387 c MeV[100]χc1(1P) 0+1++ 〈 χ 〉 =μ χ χ μ I m f 0 A c1 c1 c1∣ ∣ ∈ =χf 335 c1 MeV[101]σ=μν μν I c c T ˉ 0-1±--- J/ψ 0-1-ψ〈 〉 = -μν ψ μ ν ν μ 0I J f p p i T JT∣ ∣ ( )∈ ∈=ψ f 410 JT MeV[100]hc(1P) 0-1+- 〈 〉 =μν μναβ α β I h f p 0 i T c hT c∣ ∣ ∈ ∈ f =235 hT c MeV[100]=O qc S ˉ 0+ *D0 0+ * * *〈 〉 =O D m f 0 S DD 0 0 0∣ ∣ f* =410 D0 MeV[102]γ=O q ic P ˉ5 0- D 0- 〈0|OP|D〉=λD λ = +f m m m D D D c d 2 γ=μ μ O c q V ˉ 1- *Dˉ 1- * * *〈 〉 =μ μ O D m f 0 V D D∣ ∣ˉ ∈ f* =253 D MeV[103]=μ μ O c q A 5ˉγ γ 1+ Dˉ 0- 〈 〉 =μ μ O D p f 0 i A D∣ ∣ˉ fD=211.9 MeV[2]D1 1+ 〈 〉 =μ μ O D m f 0 A D D 1 1 1∣ ∣ ∈ f =356 D1 MeV[102]σ=μν μν O q c T ˉ 1± Dˉ* 1- * *〈 〉 = -μν μ ν ν μ O D f p p i T DT 0∣ ∣ ( )∈ ∈ f* ≈220 DT MeV[49]- 1+ - -Timages/BZ_67_890_2898_927_2940.pngaΓ b q l e=1(.uˉCΓ o uu p-l i ndˉg Γsd o)f m 2 e s,oann do pael l r atthoer sl itgoh tm i e so so sc na lsat a r tme se.sAon ll o th p ee rlaitgohrts iPs(oSμ vνPe) c Vto r A mT ehsaovne otpheer aqtuoarrsk J c(Sμ o νnP)te Vn tA q ˉT Γ q h a=v e(u tˉh Γ e u q+u a d rˉk Γ cdo)nten 2 t.Color indices are omitted for simplicity.

    As depicted in figure 2, when the q andquarks meet each other and the c andquarks meet each other at the same time,a compact tetraquark state decays into one charmonium meson and one light meson:

    Figure 2.The decay of a compact tetraquark state into one charmonium meson and one light meson,which can happen through either(b)a direct fall-apart process, or (c) a process with gluons exchanged.

    The first process is a dynamical process, and the second process can be described through the transformation(10):

    where we have used

    In the above expression we keep only the direct fall-apart process described bybut neglect theO(αs)corrections described by

    Together with table 1, we extract the following decay channels:

    This decay is kinematically forbidden.

    Summarizing the above results, we obtain numerically

    from which we further obtain

    Detailed calculations can be found in appendix A.

    As depicted in figure 3, when the c andquarks meet each other and the q andquarks meet each other at the same time,a compact tetraquark state decays into two charmed mesons.This process can be described by the transformation(11):

    Figure 3.The decay of a compact tetraquark state into two charmed mesons,which can happen through either(b)a direct fall-apart process,or (c) a process with gluons exchanged.

    Numerically, we obtain

    Detailed calculations can also be found in appendix A.As proposed in[61],when the X(3872)decays,a constituent of the diquark must tunnel through the barrier of the diquark-antidiquark potential.However,this tunnelling for heavy quarks is exponentially suppressed compared to that for light quarks,so the compact tetraquark couplings are expected to favour the open charm modes with respect to charmonium ones.Accordingly, c2may be significantly larger than c1, so thatmay mainly decay into theD0D0π0final state.

    If the above two processes investigated in section 3.1 and section 3.2 happen at the same time,i.e.,decays into one charmonium meson and one light meson as well as two charmed mesons simultaneously, we can use the transformation(12), which contains the color-singlet-colorsinglet currentsandtogether:

    In the above expression we keep all terms, and there is no…any more.Comparing this equation with equations(19)and(30), we obtain the same relative branching ratios as section 3.1 and section 3.2,just with the overall factors c1and c2replaced by others.

    4.Decay properties of the X(3872) as a hadronic molecular state

    As depicted in figure 4, when the q andquarks meet each other and the c andquarks meet each other at the same time,a hadronic molecular state decays into one charmonium meson and one light meson.This process can be described by the transformation(13):

    Figure 4.The decay of a hadronic molecular state into one charmonium meson and one light meson,which can happen through either(b)a direct fall-apart process, or (c) a process with gluons exchanged.

    Here we keep only the direct fall-apart process described by,but neglect theO(αs)corrections described by

    We repeat the same procedures as those done in section 3.1,and extract the following coupling constants from this transformation:

    which ratios are the same as equations (29), obtained in section 3.1 for the compact tetraquark state

    Assuming the X(3872) to be thehadronic molecular state of JPC=1++, it can naturally decay into thefinal state, which fall-apart process can be described by itself:

    and so

    Numerically, we obtain

    5.Isospin of the X(3872)

    The isospin breaking effect of the X(3872) is significant and important to understand its nature [3-10].As proposed in[78], this can be simply because the close proximity of the mass of the isoscalar X(3872)to the neutralD0threshold.We argue that in this case the X(3872) and theD0threshold together can be considered as a ‘mixed’ state, not purely isoscalar any more, through which we can investigate the isovector decay channels of the X(3872).

    In this section we shall investigate the isospin breaking effect of the X(3872) by freely choosing its quark content[12, 65, 66], for example,

    where θ andθ′ are the two related mixing angles.We shall fine-tune them to be different fromθ= 45°/θ′= 0° , so that the X(3872)is assumed not to be a purely isoscalar state.We shall study this effect separately for the compact tetraquark and hadronic molecule scenarios in the following subsections.

    5.1.Isospin breaking effect of

    Numerically, we obtain

    Channels ++〉0 1 ; 1 qc qc∣ ˉˉ * ++〉∣D Dˉ ; 1 θ= ′ =I 0 0 1 o θ′ = +15 1 o θ′ = -15 1 o θ= ′ =I 0 0 2 o θ′ = +15 2 o θ′ = -15 2 o η η ππ ψω ψπππ)→ →→ →X f X J J c c 0)B(B(~0.091 ~0.091 ~0.091 ~0.091 ~0.091 ~0.091 χ χ ππ ψω ψπππ)→ →→ →(X f X J J c c1 0 1)B B(~0.086 ~0.086 ~0.086 ~0.086 ~0.086 ~0.086 ψ ψπππ ψω ψπππ)→ →→ →(X J h J X J J 1)B B(1.4×10-3 1.4×10-3 1.4×10-3 1.4×10-3 1.4×10-3 1.4×10-3→χ π ψρ ψππ)→ →X J J c0( )(BX B-0.024 0.024 - 0.024 0.024 ψω ψπππ ψρ ψππ)→ →→ →(X J J X J J)B B(-1.6(input) 1.6(input) - 1.6(input) 1.6(input)* * π ψω ψπππ→+→→ →X D D D D D D X J J 0 0 0 0 0 0 0 B( ˉ ˉ ˉ)()B 0.32 t1 0.52 t1 0.17 t1 4.5 t2 7.4 t2 2.4 t2 Table 2.Relative branching ratios of the X(3872) evaluated through the Fierz rearrangement.θ′1,2 are the two angles related to the isospin breaking effect, which are fine-tuned to beθ′ =θ ′ = ±15 1 2 o, so that ψω ψπππ ψρ ψππ〉 → →〉 → →++++J J J J 0 1 ; 1 0 1 ; 1 qc qc qc qc(∣ )(∣ )ˉˉˉˉBB**ψω ψπππ ψρ ψππ=〉 → →〉 → → =++++DD J J DD J J; 1; 1 1.6 B(∣ ˉ )(∣ ˉ )B[41].

    where the latter ratio has been fine-tuned to be the same as the recent BESIII experiment [41].

    5.2.Isospin breaking effect of ∣;1++〉

    6.Summary and discussions

    We first use isoscalar tetraquark currents to study decay properties of the X(3872)as a purely isoscalar state,and then use isovector tetraquark currents to investigate its isospin breaking effect.The extracted relative branching ratios are summarized in table 2, where we have investigated the following interpretations of the X(3872):

    In the above expressions, we define the ratioto be the parameter measuring which process happens more easily,the process depicted in figure 2(b)or the process depicted in figure 3(b).Because the exchange of one light quark with another light quark seems to be easier than the exchange of one light quark with another heavy quark[61,79],it can be the case that t1≥1.As discussed in section 4.2, c5is probably larger than c4, so that the other ratio

    The above relative branching ratios extracted in the present study turn out to be very much different.This might be one of the reasons why many multiquark states were observed only in a few decay channels[49].We note that in this paper we only consider the leading-order fall-apart decays described by color-singlet-color-singlet meson-meson currents, but neglect the O (αs)corrections described by color-octet-color-octet meson-meson currents, so there can be other possible decay channels,such as X(3872)→χc1π [45].Besides, there is still one parameter not considered in above analyses, that is the phase angle between S- and D-wave coupling constants.We shall investigate its relevant uncertainty in B.

    Based on table 2,we conclude this paper.Generally speaking,compared to the Zc(3900)studied in[49],the results of this paper suggest that decay channels of the X(3872) are quite limited:

    · The X(3872) can couple to the J/ψω and J/ψh1(1170)channels, but both of them are kinematically forbidden.Hence, in the present study we calculate widths of the four-body decays X →J/ψω →J/ψπππ and X →J/ψh1→J/ψπππ.

    · The decay processes X →ηcf0→ηcππ and X →χc1f0→χc1ππ might be possible.In this paper we simply use the f0(500) to estimate widths of these two processes, but note that the obtained results do significantly depend on the nature of light scalar mesons,which are still quite ambiguous [77].

    To end this paper, we give several comments and proposals:

    · The hadronic molecular state ∣D1++〉mainly decays into two charmed mesons, because c5is probably larger than c4.The compact tetraquark statemay also mainly decay into two charmed mesons after taking into account the barrier of the diquark-antidiquark potential (see detailed discussions in [61] proposing c2?c1).· The isospin breaking effect of the X(3872) is significant and important to understand its nature [3-10].The isovector decay channel X(3872)→J/ψρ →J/ψππ has been well observed in experiments, and recently measured by the BESIII experiment [41] to be:

    In the present study we can well reproduce this value under both the compact tetraquark and hadronic molecule interpretations.

    Besides this, our result suggests that there can be another isovector decay channel X(3872)→χc0π.Under both the compact tetraquark and hadronic molecule interpretations, we obtain

    We refer to [80-87] for more theoretical studies, and propose to study the X(3872)→χc0π decay in the BESIII,Belle-II, and LHCb experiments to better understand the isospin breaking effect of the X(3872).

    · Our result suggests that the decay processes X(3872)→ηcf0→ηcππ and X(3872)→χc1f0→χc1ππ might be possible.We note that light scalar mesons have a complicated nature,so our results on these processes are just roughly estimations.

    We notice that the BaBar experiment [88] did not observe the γγ →X(3872)→ηcππ process, but that experiment was performed after assuming X(3872) to be a spin-2 state.Moreover,there seems to be a dip structure just at the mass of the X(3872)in the ηcππ invariant mass spectrum, as shown in figure 6(f) of[88].We also notice that the Belle experiment [89] did not observe the X(3872)→χc1ππ decay.They extracted the following upper limit

    at 90%C.L.Together with another Belle experiment[90]measuring

    one may roughly estimate

    which value seems not small enough to rule out the X(3872)→χc1ππ decay channel.

    Again, we refer to [80-87, 91] for more discussions,and propose to reanalysis the X(3872)→ηcf0→ηcππ and X(3872)→χc1f0→χc1ππ processes in the BESIII,Belle-II, and LHCb experiments to search for more decay channels of the X(3872).

    Acknowledgments

    This project is supported by the National Natural Science Foundation of China under Grant No.11722540 and No.12075019, the Jiangsu Provincial Double-Innovation Program under Grant No.JSSCRC2021488, and the Fundamental Research Funds for the Central Universities.

    Appendix A.Formulae of decay amplitudes and decay widths

    In this appendix we give formulae of decay amplitudes and decay widths used in the present study.Specifically,the mass of the X(3872) is taken from PDG [2] to be

    A.1.Two-body decay X →χc0π0

    The decay amplitude of the two-body decay X(3872)→χc0π0is

    This amplitude can be used to evaluate its decay width:

    where we have used the following formula for the vector meson

    A.2.Three-body decay X →J/ψρ0→J/ψπ+π-

    First we need to investigate the two-body decay ρ0→π+π-,whose amplitude is

    so that

    We can use the experimental parameters=147.8 MeV andB(ρ0→π+π-) ≈100%[2] to extract

    The decay amplitude of the three-body decay X(3872)→J/ψρ0→J/ψπ+π-is

    This amplitude can be used to evaluate its decay width:

    A.3.Three-body decay X →ηcf0→ηcππ

    First we need to investigate the two-body decay f0(500)→ππ, whose amplitude is

    In this case we do not differentiate π±,0.The above amplitude can be used to evaluate its decay width:

    We can use the experimental parametersmf0=512 MeV and Γf0= 376 MeV [92] to extract

    The decay amplitude of the three-body decay X(3872)→ηcf0→ηcππ is

    This amplitude can be used to evaluate its decay width:

    The X(3872)→χc1f0→χc1ππ decay can be similarly studied.

    First we need to investigate the two-body decay D*0→D0π0,whose amplitude is

    so that

    This amplitude can be used to evaluate its decay width:

    A.5.Four-body decay X →J/ψω →J/ψπ+π-π0

    First we need to investigate the three-body decay ω →π+π-π0, whose amplitude is

    so that

    We can use the experimental parameters Γω=8.49 MeV and B(ω→π+π-π0)=89.3%[2] to extract

    The decay amplitude of the four-body decay X(3872)→J/ψω →J/ψπ+π-π0is

    This amplitude can be used to evaluate its decay width:

    The phase space integration is done in the reference frame wherep3=(E3,p3x, 0, 0),and p3xsatisfies p3x>0 as well as

    A.6.Four-body decay X →J/ψh1→J/ψπ+π-π0

    First we need to investigate the three-body decay h1(1170)→ρπ →π+π-π0, whose amplitude is simply assumed to be

    so that

    We can use the experimental parametersΓh1= 360 MeV [2]to estimate

    The decay amplitude of the four-body decay X(3872)→J/ψh1→J/ψπ+π-π0is

    Table 3.Relative branching ratios of the X(3872)evaluated through the Fierz rearrangement.In this table we fix the phase angle θ between the S- and D-wave coupling constantsand to be θ=π.

    Table 3.Relative branching ratios of the X(3872)evaluated through the Fierz rearrangement.In this table we fix the phase angle θ between the S- and D-wave coupling constantsand to be θ=π.

    Channels ++〉0 1 ; 1 qc qc∣ ˉˉ * ++〉∣D Dˉ ; 1 θ= ′ =I 0 0 1 o θ′ = +15 1 o θ′ = -15 1 o θ= ′ =I 0 0 2 o θ′ = +15 2 o θ′ = -15 2 o η η ππ ψω ψπππ)→ →→ →X f X J J c c 0)B(B(~0.091 ~0.091 ~0.091 ~0.091 ~0.091 ~0.091 χ χ ππ ψω ψπππ)→ →→ →(X f X J J c c1 0 1)B B(~0.086 ~0.086 ~0.086 ~0.086 ~0.086 ~0.086 ψ ψπππ ψω ψπππ)→ →→ →(X J h J X J J 1)B B(1.4×10-3 1.4×10-3 1.4×10-3 1.4×10-3 1.4×10-3 1.4×10-3→χ π ψρ ψππ)→ →X J J c0( )(BX B-0.024 0.024 - 0.024 0.024 ψω ψπππ ψρ ψππ)→ →→ →(X J J X J J)B B(-1.6(input) 1.6(input) - 1.6(input) 1.6(input)* * π ψω ψπππ→+→→ →X D D D D D D X J J 0 0 0 0 0 0 0 B( ˉ ˉ ˉ)()B 0.021 t1 0.034 t1 0.011 t1 4.5 t2 7.4 t2 2.4 t2

    This amplitude can be used to evaluate its decay width:

    Again, the phase space integration is done in the reference frame wherep3=(E3,p3x, 0, 0), and p3xsatisfies p3x>0 as well as

    Appendix B.Uncertainties due to the phase angle

    There are two different effective Lagrangians for the X(3872)decay into thefinal state,as given in equations(32)and(33):

    Using the mixing angle= +15o, we obtain while using the mixing angle= -15o, we obtain

    成人国产av品久久久| 满18在线观看网站| av在线app专区| 各种免费的搞黄视频| 久久久国产精品麻豆| 免费黄网站久久成人精品| 高清不卡的av网站| 中国三级夫妇交换| 丝袜美腿诱惑在线| 欧美亚洲 丝袜 人妻 在线| 美国免费a级毛片| 国产精品欧美亚洲77777| 亚洲精品aⅴ在线观看| 欧美日本中文国产一区发布| 男人舔女人的私密视频| 午夜老司机福利剧场| 男女高潮啪啪啪动态图| av免费观看日本| 1024视频免费在线观看| 中文字幕人妻丝袜一区二区 | 免费久久久久久久精品成人欧美视频| 五月伊人婷婷丁香| 国产熟女欧美一区二区| 欧美 亚洲 国产 日韩一| 午夜福利网站1000一区二区三区| 国产又爽黄色视频| 另类精品久久| 久久久久精品性色| 午夜免费鲁丝| 日韩三级伦理在线观看| 国产精品 国内视频| 捣出白浆h1v1| 欧美97在线视频| 久热久热在线精品观看| 老司机影院成人| 啦啦啦在线免费观看视频4| 日本猛色少妇xxxxx猛交久久| 永久网站在线| 捣出白浆h1v1| 久久精品aⅴ一区二区三区四区 | 成年女人在线观看亚洲视频| 香蕉精品网在线| 一边摸一边做爽爽视频免费| 国产成人av激情在线播放| 亚洲精品国产一区二区精华液| 久久久精品国产亚洲av高清涩受| 亚洲精品,欧美精品| 国产免费福利视频在线观看| 看免费成人av毛片| 久久这里有精品视频免费| 欧美精品高潮呻吟av久久| 久久久久久久国产电影| 妹子高潮喷水视频| 亚洲精品日本国产第一区| 午夜福利影视在线免费观看| 久久97久久精品| 亚洲情色 制服丝袜| 搡老乐熟女国产| 精品一区二区三区四区五区乱码 | 欧美人与性动交α欧美精品济南到 | 亚洲人成77777在线视频| 在线观看免费视频网站a站| 99久久人妻综合| 男人舔女人的私密视频| 中文字幕制服av| 最近的中文字幕免费完整| 亚洲国产欧美网| 久久 成人 亚洲| 在线观看美女被高潮喷水网站| 久久久久人妻精品一区果冻| 国产亚洲午夜精品一区二区久久| 99久久中文字幕三级久久日本| 亚洲欧美成人综合另类久久久| 只有这里有精品99| 国产极品天堂在线| 免费观看av网站的网址| 国产免费现黄频在线看| 亚洲精品一二三| 日韩一区二区视频免费看| 亚洲国产看品久久| av线在线观看网站| 久久久久久久大尺度免费视频| a 毛片基地| 久久精品国产综合久久久| 久久久精品94久久精品| 国产精品人妻久久久影院| 一区二区av电影网| 2022亚洲国产成人精品| 大陆偷拍与自拍| 岛国毛片在线播放| 黄片小视频在线播放| 两个人免费观看高清视频| 国产精品麻豆人妻色哟哟久久| 免费av中文字幕在线| 久久国产精品大桥未久av| 欧美日本中文国产一区发布| 欧美+日韩+精品| 国产精品国产av在线观看| 欧美在线黄色| 国产亚洲av片在线观看秒播厂| 韩国精品一区二区三区| 免费看av在线观看网站| 国产精品国产三级国产专区5o| 久久久久精品性色| 午夜福利视频精品| 国产精品女同一区二区软件| 夫妻午夜视频| 最近最新中文字幕免费大全7| 久久99蜜桃精品久久| 国产av码专区亚洲av| 国产一区二区三区综合在线观看| 在线观看免费视频网站a站| 国产精品麻豆人妻色哟哟久久| 久久精品国产a三级三级三级| 成人二区视频| 婷婷成人精品国产| 超碰97精品在线观看| a级毛片黄视频| 丰满少妇做爰视频| 啦啦啦在线免费观看视频4| 久久精品久久精品一区二区三区| 久久久久久久精品精品| 国产一区二区 视频在线| 人人澡人人妻人| 一本色道久久久久久精品综合| 欧美日韩亚洲国产一区二区在线观看 | 亚洲男人天堂网一区| 伊人久久国产一区二区| 另类精品久久| 亚洲精品成人av观看孕妇| 人妻系列 视频| 中文字幕亚洲精品专区| 狠狠精品人妻久久久久久综合| 午夜福利视频在线观看免费| 精品亚洲成国产av| 国产成人欧美| av线在线观看网站| 久久精品国产亚洲av天美| 成人二区视频| 飞空精品影院首页| 狠狠精品人妻久久久久久综合| 十八禁高潮呻吟视频| av在线app专区| 国产成人精品一,二区| 日韩视频在线欧美| 麻豆乱淫一区二区| 午夜激情av网站| 一边摸一边做爽爽视频免费| 欧美成人午夜精品| 免费看av在线观看网站| 99久久人妻综合| 波多野结衣av一区二区av| tube8黄色片| 午夜福利一区二区在线看| 国产成人精品一,二区| 三上悠亚av全集在线观看| 国产精品久久久久久久久免| 狠狠精品人妻久久久久久综合| 亚洲精品一区蜜桃| 老女人水多毛片| 国产色婷婷99| 国产av一区二区精品久久| 日韩在线高清观看一区二区三区| 一区二区日韩欧美中文字幕| 久久久久精品人妻al黑| 一级毛片黄色毛片免费观看视频| 男女免费视频国产| 日韩人妻精品一区2区三区| 一级,二级,三级黄色视频| 精品国产乱码久久久久久小说| 69精品国产乱码久久久| 成人国语在线视频| 有码 亚洲区| 综合色丁香网| 亚洲精品av麻豆狂野| 午夜老司机福利剧场| 中文乱码字字幕精品一区二区三区| 人妻系列 视频| 女人高潮潮喷娇喘18禁视频| 亚洲第一av免费看| 老女人水多毛片| 成年女人在线观看亚洲视频| 免费看不卡的av| 黄色配什么色好看| 人体艺术视频欧美日本| 欧美激情高清一区二区三区 | 精品少妇内射三级| 国产欧美日韩综合在线一区二区| 欧美av亚洲av综合av国产av | 久久综合国产亚洲精品| 夫妻午夜视频| 女人精品久久久久毛片| 国产成人精品婷婷| 各种免费的搞黄视频| 亚洲精品国产一区二区精华液| 亚洲情色 制服丝袜| 看免费av毛片| 国产高清国产精品国产三级| 国产精品一区二区在线不卡| 久久青草综合色| 大片免费播放器 马上看| 色播在线永久视频| 99久久精品国产国产毛片| 人妻少妇偷人精品九色| 热re99久久精品国产66热6| 日韩制服丝袜自拍偷拍| 国产色婷婷99| 高清视频免费观看一区二区| 色94色欧美一区二区| 午夜福利在线观看免费完整高清在| 国产有黄有色有爽视频| 寂寞人妻少妇视频99o| 国产黄频视频在线观看| 亚洲天堂av无毛| 国产精品秋霞免费鲁丝片| 午夜久久久在线观看| 91在线精品国自产拍蜜月| 免费观看无遮挡的男女| 欧美日韩av久久| 国产成人欧美| 久久久久久久亚洲中文字幕| 1024香蕉在线观看| 亚洲中文av在线| 久久免费观看电影| 亚洲欧洲国产日韩| 久久久国产一区二区| 日韩成人av中文字幕在线观看| 日本爱情动作片www.在线观看| 国产成人免费无遮挡视频| 在现免费观看毛片| 婷婷色av中文字幕| av线在线观看网站| 久久久欧美国产精品| 最近中文字幕2019免费版| 黄频高清免费视频| 你懂的网址亚洲精品在线观看| 国产成人精品无人区| 免费观看在线日韩| 亚洲天堂av无毛| 日本wwww免费看| 精品午夜福利在线看| 人人澡人人妻人| 精品卡一卡二卡四卡免费| 曰老女人黄片| 久热久热在线精品观看| 国产精品久久久av美女十八| 欧美老熟妇乱子伦牲交| 久久久亚洲精品成人影院| 最黄视频免费看| 丰满乱子伦码专区| 精品久久久精品久久久| 黄网站色视频无遮挡免费观看| 亚洲av综合色区一区| 这个男人来自地球电影免费观看 | 1024视频免费在线观看| 如日韩欧美国产精品一区二区三区| 免费女性裸体啪啪无遮挡网站| 亚洲美女黄色视频免费看| 亚洲精品国产一区二区精华液| 午夜91福利影院| 国产一级毛片在线| av视频免费观看在线观看| 国产成人精品在线电影| 久久久久久久久久人人人人人人| 在线观看免费日韩欧美大片| 99久久中文字幕三级久久日本| 丰满乱子伦码专区| 欧美国产精品va在线观看不卡| 纯流量卡能插随身wifi吗| 久久婷婷青草| videosex国产| 街头女战士在线观看网站| 男女边吃奶边做爰视频| 我要看黄色一级片免费的| 韩国精品一区二区三区| a级片在线免费高清观看视频| 国产成人精品无人区| 99热国产这里只有精品6| 欧美少妇被猛烈插入视频| 精品久久久精品久久久| 丝袜在线中文字幕| 亚洲精品久久成人aⅴ小说| 久久国产精品大桥未久av| 五月伊人婷婷丁香| 国产高清国产精品国产三级| 国语对白做爰xxxⅹ性视频网站| 国产精品一二三区在线看| 午夜福利视频在线观看免费| 精品人妻熟女毛片av久久网站| 母亲3免费完整高清在线观看 | 9色porny在线观看| 大香蕉久久网| 亚洲精品日韩在线中文字幕| 中文字幕色久视频| 国产av国产精品国产| 热re99久久精品国产66热6| 另类亚洲欧美激情| 免费女性裸体啪啪无遮挡网站| 最新中文字幕久久久久| 青青草视频在线视频观看| 国产精品国产三级国产专区5o| 久久精品aⅴ一区二区三区四区 | 99香蕉大伊视频| 天堂8中文在线网| 日韩一区二区三区影片| 午夜福利一区二区在线看| 亚洲欧美一区二区三区黑人 | 啦啦啦啦在线视频资源| 亚洲第一青青草原| 视频在线观看一区二区三区| 国产97色在线日韩免费| 亚洲欧美一区二区三区久久| 在线亚洲精品国产二区图片欧美| 亚洲第一青青草原| 亚洲精品日韩在线中文字幕| 一边亲一边摸免费视频| 一区二区三区乱码不卡18| 亚洲图色成人| 亚洲av电影在线进入| 久久这里只有精品19| 男男h啪啪无遮挡| 999久久久国产精品视频| 99国产精品免费福利视频| 只有这里有精品99| 亚洲欧洲精品一区二区精品久久久 | av在线老鸭窝| 美女脱内裤让男人舔精品视频| 桃花免费在线播放| 亚洲欧美一区二区三区久久| 狠狠精品人妻久久久久久综合| 国产欧美亚洲国产| 亚洲欧美成人综合另类久久久| 91精品伊人久久大香线蕉| 久久久久久久国产电影| 国产白丝娇喘喷水9色精品| 看非洲黑人一级黄片| 男男h啪啪无遮挡| 日日啪夜夜爽| 亚洲成色77777| 大码成人一级视频| 亚洲欧美一区二区三区久久| 国产深夜福利视频在线观看| 国产在线免费精品| 黄片无遮挡物在线观看| 国产片内射在线| 国产精品99久久99久久久不卡 | 国产成人欧美| 午夜免费男女啪啪视频观看| 国产精品国产三级专区第一集| av一本久久久久| 国产 精品1| 热99久久久久精品小说推荐| 视频在线观看一区二区三区| 成人影院久久| 97精品久久久久久久久久精品| 欧美变态另类bdsm刘玥| 视频在线观看一区二区三区| 日韩av免费高清视频| 王馨瑶露胸无遮挡在线观看| 久久久欧美国产精品| 国产成人精品无人区| 国产精品亚洲av一区麻豆 | 久久久精品国产亚洲av高清涩受| 精品少妇内射三级| 国产爽快片一区二区三区| 成人亚洲精品一区在线观看| 99香蕉大伊视频| 国精品久久久久久国模美| 免费看av在线观看网站| 捣出白浆h1v1| 中文字幕人妻熟女乱码| av国产精品久久久久影院| 久久久久久免费高清国产稀缺| 99re6热这里在线精品视频| 日韩伦理黄色片| 国产成人a∨麻豆精品| 伊人久久大香线蕉亚洲五| 久久久久久久久久久免费av| 亚洲一码二码三码区别大吗| 香蕉精品网在线| 日韩,欧美,国产一区二区三区| 久久这里只有精品19| 我要看黄色一级片免费的| 在线观看免费视频网站a站| 最新的欧美精品一区二区| 97在线视频观看| 成人二区视频| 久久国产精品大桥未久av| 亚洲av福利一区| 老司机亚洲免费影院| 热99久久久久精品小说推荐| 国产精品一国产av| av国产久精品久网站免费入址| 老女人水多毛片| 男女啪啪激烈高潮av片| 国产精品女同一区二区软件| 自线自在国产av| 寂寞人妻少妇视频99o| 国产精品 欧美亚洲| 婷婷色av中文字幕| 黄频高清免费视频| 毛片一级片免费看久久久久| 在线观看免费视频网站a站| 国产麻豆69| 久久人人爽人人片av| 国产有黄有色有爽视频| 久久99热这里只频精品6学生| 人妻 亚洲 视频| xxx大片免费视频| 熟妇人妻不卡中文字幕| 极品人妻少妇av视频| av在线老鸭窝| www.熟女人妻精品国产| 久久精品国产亚洲av涩爱| xxxhd国产人妻xxx| 亚洲成人av在线免费| 超碰成人久久| 亚洲av国产av综合av卡| 女的被弄到高潮叫床怎么办| 亚洲国产av新网站| 欧美97在线视频| 男女高潮啪啪啪动态图| 亚洲精品美女久久av网站| 嫩草影院入口| 国产福利在线免费观看视频| 黄网站色视频无遮挡免费观看| 日本色播在线视频| 久久精品国产a三级三级三级| 18禁裸乳无遮挡动漫免费视频| 国产精品香港三级国产av潘金莲 | 午夜福利在线观看免费完整高清在| 男人爽女人下面视频在线观看| 1024视频免费在线观看| 国产精品久久久久久久久免| 亚洲av.av天堂| 日本91视频免费播放| 亚洲内射少妇av| 亚洲第一青青草原| 精品少妇内射三级| 亚洲欧美一区二区三区黑人 | 国产极品粉嫩免费观看在线| 国产野战对白在线观看| 欧美国产精品一级二级三级| 十八禁网站网址无遮挡| 嫩草影院入口| 交换朋友夫妻互换小说| 婷婷色av中文字幕| 亚洲av.av天堂| 成年女人在线观看亚洲视频| 欧美日韩视频高清一区二区三区二| 成人免费观看视频高清| 国产老妇伦熟女老妇高清| 男女啪啪激烈高潮av片| 中文字幕亚洲精品专区| 可以免费在线观看a视频的电影网站 | 汤姆久久久久久久影院中文字幕| 丝袜在线中文字幕| 最近最新中文字幕免费大全7| 亚洲精品久久成人aⅴ小说| 精品第一国产精品| 日韩熟女老妇一区二区性免费视频| 亚洲欧美清纯卡通| 18在线观看网站| 亚洲精品国产av蜜桃| 免费不卡的大黄色大毛片视频在线观看| 男女无遮挡免费网站观看| 亚洲国产精品一区三区| 老司机影院毛片| 中文字幕精品免费在线观看视频| 久久久亚洲精品成人影院| 老汉色∧v一级毛片| 少妇人妻久久综合中文| 国产av一区二区精品久久| 亚洲情色 制服丝袜| 国产精品一区二区在线观看99| 亚洲精品日本国产第一区| av在线观看视频网站免费| 亚洲美女搞黄在线观看| 日本猛色少妇xxxxx猛交久久| 国产精品二区激情视频| 99九九在线精品视频| 欧美精品人与动牲交sv欧美| 晚上一个人看的免费电影| 国产精品亚洲av一区麻豆 | 超色免费av| 韩国精品一区二区三区| 国产激情久久老熟女| 十八禁网站网址无遮挡| 2021少妇久久久久久久久久久| 亚洲激情五月婷婷啪啪| 天天躁夜夜躁狠狠躁躁| 国产激情久久老熟女| 日本黄色日本黄色录像| 欧美国产精品va在线观看不卡| 国产精品国产三级专区第一集| 韩国精品一区二区三区| 国产精品 欧美亚洲| www.av在线官网国产| 老司机亚洲免费影院| 青草久久国产| 久久精品国产亚洲av天美| 美女国产视频在线观看| 国产精品国产av在线观看| 卡戴珊不雅视频在线播放| 午夜福利在线观看免费完整高清在| 亚洲欧美日韩另类电影网站| 亚洲国产av影院在线观看| 日韩精品免费视频一区二区三区| 久久97久久精品| 狠狠婷婷综合久久久久久88av| 一级黄片播放器| 亚洲av成人精品一二三区| 精品一品国产午夜福利视频| 日日爽夜夜爽网站| 中文天堂在线官网| 男人舔女人的私密视频| 熟女少妇亚洲综合色aaa.| 国产探花极品一区二区| 老司机亚洲免费影院| 亚洲熟女精品中文字幕| 免费黄频网站在线观看国产| 久久久久久久久免费视频了| 狠狠婷婷综合久久久久久88av| 天堂俺去俺来也www色官网| 日本wwww免费看| 欧美变态另类bdsm刘玥| 久久午夜福利片| 视频在线观看一区二区三区| 国产乱人偷精品视频| 久久久精品94久久精品| 成人亚洲精品一区在线观看| 免费黄色在线免费观看| 久久久久久伊人网av| 国产精品不卡视频一区二区| 美国免费a级毛片| 亚洲精品,欧美精品| 免费黄频网站在线观看国产| 国产成人av激情在线播放| 免费女性裸体啪啪无遮挡网站| 免费黄色在线免费观看| 亚洲av.av天堂| 欧美黄色片欧美黄色片| 2021少妇久久久久久久久久久| 香蕉国产在线看| 国产又爽黄色视频| 中文字幕av电影在线播放| 国产福利在线免费观看视频| 狠狠精品人妻久久久久久综合| 日本猛色少妇xxxxx猛交久久| 国产精品.久久久| 一二三四在线观看免费中文在| 精品一区二区三区四区五区乱码 | 啦啦啦啦在线视频资源| xxx大片免费视频| 看免费成人av毛片| 亚洲欧美一区二区三区国产| 亚洲伊人久久精品综合| 免费在线观看完整版高清| 超碰成人久久| 精品国产乱码久久久久久小说| 精品人妻在线不人妻| 国产免费一区二区三区四区乱码| 久久99精品国语久久久| 日本欧美视频一区| 日日爽夜夜爽网站| 男女啪啪激烈高潮av片| videos熟女内射| 午夜免费鲁丝| 成人毛片a级毛片在线播放| 韩国精品一区二区三区| 成人漫画全彩无遮挡| 日本免费在线观看一区| 晚上一个人看的免费电影| 多毛熟女@视频| 大陆偷拍与自拍| 亚洲成人一二三区av| 亚洲av男天堂| 国产av一区二区精品久久| 中文字幕最新亚洲高清| av有码第一页| 热99国产精品久久久久久7| 欧美日韩成人在线一区二区| 99久久人妻综合| 免费av中文字幕在线| 女人久久www免费人成看片| 在线 av 中文字幕| 香蕉国产在线看| 91成人精品电影| 中文字幕最新亚洲高清| 久久精品人人爽人人爽视色| 国产 精品1| 久久精品国产自在天天线| 日韩视频在线欧美| 中国国产av一级| 看十八女毛片水多多多| 2021少妇久久久久久久久久久| 欧美日韩成人在线一区二区| 精品亚洲乱码少妇综合久久| www.精华液| 国产探花极品一区二区| av电影中文网址| 男女啪啪激烈高潮av片| 精品99又大又爽又粗少妇毛片| 美女国产视频在线观看| 精品人妻在线不人妻| 啦啦啦中文免费视频观看日本| 肉色欧美久久久久久久蜜桃| 亚洲五月色婷婷综合| 少妇人妻 视频| 国产福利在线免费观看视频| 精品少妇一区二区三区视频日本电影 | 日韩精品免费视频一区二区三区| 久久99热这里只频精品6学生| 永久网站在线| 丰满饥渴人妻一区二区三|