• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Illustrating the Helmholtz-Kohlrausch effect of quantum dots enhanced LCD through a comparative study

    2022-03-08 03:48:56JIHongleiCHENGShangjunLIPengfeiZHANGYanGEZiyiZHONGHaizheng
    中國(guó)光學(xué) 2022年1期
    關(guān)鍵詞:純色色域實(shí)測(cè)值

    JI Hong-lei,CHENG Shang-jun,LI Peng-fei ,ZHANG Yan,GE Zi-yi,ZHONG Hai-zheng

    (1. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201;2. University of Chinese Academy of Sciences, Beijing 100049;3. School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081;4. R & D Center, TCL Electronics Co., Ltd., Shenzhen 518000, China;5. Ningbo Excite Technology Co., Ltd., Ningbo 315000, China)

    Abstract: Helmholtz-Kohlrausch effect (H-K effect) describes the influence of color purity on the perceived brightness of a colored object. Quantum dots (QD) based backlights can enhance the color quality of Liquid Crystal Display (LCD) with improved perceived brightness due to the well-known H-K effect. However, the H-K effect of QD embedded TVs (also known as QLED TV) has not been fully demonstrated. In this paper,we investigated the H-K effect of QLED TVs through a comparative study between QLED backlights and YAG-LED backlights. By comparing the viewers’ experimental results with the Kaiser and Nayatani model,we demonstrate that a QLED TV shows significant H-K effect. To achieve the same perceived brightness with YAG-LED TV, the physical brightness of QLED TV was greatly decreased to 75% for pure red, 86%for pure green, and 74%-88% for bright colorful images. Moreover, QLED TVs are strongly preferred over YAG-LED TVs even when both QLED TV and YAG-LED TV show the same perceived brightness. The results imply the bright future of QLED TVs toward healthly displays.

    Key words: QLED TV; Helmholtz-Kohlrausch effect; perceived brightness; display; colority

    1 Introduction

    The display is an important technology for information communication. Display technology has developed well in the past 20 years. As a key parameter for describing the performance of display screens, color gamut represents the largest range of colors that a screen can display, which was defined by the International Commission on Illumination(CIE) in 1931. The colored triangle in the color space is the gamut limit of a screen[1]. The National Television System Committee (NTSC) is one of the standard color gamuts, which indicates the subset of all colors that should be generated[2]. The color gamut of conventional Liquid Crystal Display(LCD) with LED backlight is usually less than 70%NTSC because of the broad emission of Yttrium Aluminum Garnet (YAG) phosphor[3-4]. Quantum Dots (QDs) are nanoscale semiconductor crystals with narrow-band emission, tunable color and high quantum yields, which can improve the color quality of LCD displays[5-7]. The color gamut of QD embedded TVs (also known as QLED TVs) can reach up to 120% NTSC[8-13]. In 2013, Sony[14]and QD Vision first showed QLED TVs at the Consumer Electronics Show (CES). Later on, many companies launched their own QLED TV products[15-17], including TCL, Samsung, Hisense, etc. In 2020, more than 10 million QLED TVs were sold. In comparison with the rapid commercialization of QLED TV products, the investigation of their color performance lagged off.

    The Helmholtz-Kollosch effect (H-K effect)refers to the phenomenon that the perceived brightness of color increases with the increase of color purity[18-20]. Tsujimura et al. showed that the H-K effect is involved in OLEDs[21]and a similar phenomenon has been reported in LED projectors[22-23].Although it is expected that QLED TVs have a more significant H-K effect[24-25], the H-K effect of QLED TV has not been comprehensively studied. In this paper, we investigated the H-K effect of QLED TV through a comparative study between QLED backlights and YAG-LED backlights. By comparing the results of an observational study with the Kaiser and Nayatani model, we illustrated the influence of color gamut on the perceived brightness of QLED TVs.

    2 Models for calculating the H-K effect

    According to the literature, perceived brightness (the sensation) does not always vary linearly with luminance[26]. Luminance is a measurable physical concept, while the perceived brightness is affected not only by the light source itself, but also by the viewing environment and the psychological factors of the viewer. Helmholtz defines color purity (%P) which can be expressed in the following equation:

    whereNis the location of the white reference point,Sis the color point being evaluated, andDWis the dominant wavelength. For different colors with the same dominant wavelength, the brightness/luminance ratio (B/L ratio) increases with an increase in color purity%P[18]. The H-K effect reveals the relationship between brightness and chroma, and was theoretically described by Dowling and Nayatani et al..

    2.1 Kaiser model

    In 1986, Kaiser summarized the experimental results[27-29]and proposed the Kaiser model[30]. In the Kaiser model, two terms have influence on brightness: a color component (F) and the luminance component log (Y). The equations are as follows:

    whereL**is the perceived brightness,x,yare the CIE 1931 color coordinates. When the perceived brightness of the two screens is the same, theRBratio of the physical brightnesses can be expressed as equations (4)~(5):

    whereY2/Y1is the measured value,is the theoretically calculated value.RBrepresents the luminance ratio of the two screens when their perceived brightness are the same.F1andF2can be calculated by the color coordinates.Y1andY2represent the luminance of the two screens when their brightness is the same.

    2.2 Nayatani model

    The Kaiser model describes the relationship between perceived brightness and color purity without considering the influence of the environment. Nayatani proposed a mathematical model to calculate the H-K effect in 1991 and further improved it in 1997. Nayatani showed that the model should not only consider the light itself, but also consider the influence of the environment[31-32]. The H-K effect was described by using equation (6):

    whereLis the luminance of the test chromatic light,andLeqis the equivalent luminance of the reference white light.

    wherev′andu′are the CIE 1976v′andu′chromaticity transformed form chromaticity (x,y) of the test chromatic light, andv′candu′care thev′andu′chromaticity of the reference white light.

    whereLais adapting luminance of the environment.KBris a coefficient for specifying the adapting-luminance dependency of the H-K effect.

    In equation (10),suvis the metric saturation of test chromatic light withx,y. The Nayatani model considers the luminances of both the light source and the environment. The γVACcan be regarded as the B/L ratio. The viewer’s brightness perception experiment is carried out according to the above two models, and the calculation results were discussed with a comparison of that against the experimental results.

    3 Experimental section

    In our work, a TCL 55F8 (YAG TV) and a TCL 55C715 (QLED TV) were selected for testing.For simulating normal indoor lighting conditions,we created a lighting environment of around 150 lx in a darkroom. Twelve viewers were invited for the test, of which 8 were men and 4 were women of ages 20?35 years. The visual acuity (or corrected visual acuity) of all volunteers was greater than 1.0,with no color blindness or color weakness. The specific experimental environment referred to GY/T134'The method of the subjective assessment of the quality of digital television picture'[33], as shown in Table 1.

    Tab. 1 Key parameters of test environment表1 測(cè)試環(huán)境參數(shù)

    3.1 Solid color experiment

    Figure 1(a) shows the schematic diagram of the solid color experiment. The QLED TV and YAG TV were placed in the same horizontal plane and the viewing angle is kept the same for both of the TVs.Three colors R, G, B were emitted through the same HDMI source. The luminance of the QLED TV was adjusted by the viewers to match the perceived brightness of the YAG TV. Based on the measured luminance of the QLED TV and the YAG TV, the perceived brightness QD/YAG ratio was calculated.

    Fig. 1 (a)Schematic diagram for the solid color experiment; (b) schematic diagram for the multicolor experiment圖1 (a)純色實(shí)驗(yàn)測(cè)試示意圖;(b)彩色實(shí)驗(yàn)測(cè)試示意圖

    3.2 Multicolor experiments

    We selected two groups of pictures for the test.Group I contained colorful pictures with red flowers and green leaves. Group II had plain pictures with a field and a portrait.

    To avoid variation in the chip, we used a modified TV to display different color gamuts as shown in Figure 1(b). The edge-lit TV used separated light guide plate and the optics film from the middle to realize different color gamut on the left and right.The luminance on the left and right side can be adjusted by controlling DC sources. For the same viewers, the luminance of the YAG TV was adjusted to get the same perceived brightness on both the QLED TV and YAG TV.

    3.3 Subjective preference experiment

    Twenty observers were invited for a subjective preference experiment with 10 test pictures that are symmetric or nearly symmetric. The experiment was carried out under 200 nit, 270 nit and 350 nit perceived brightnesses (the measured luminance was different).

    4 Results and discussion

    4.1 Results and discussion of solid color experiment

    Figure 2(a) (color online) shows the emission spectra of the QLED and YAG-LED TVs. The yellow and blue lines represent the white spectrum of the QLED and YAG TVs. The Full Width at Half-Maximum (FWHM) of the QLED TV is about 27 nm for green emission and 26 nm for red emission,which is much narrower than that of the YAG TV.Figure 2(b) (color online) shows the color gamut of QLED TV and YAG TV, indicating that the color gamut of the QLED TV is higher. The white color coordinates of the QLED TV and the YAG TV are consistent.

    Fig. 2 (a)White light spectrum and (b) color gamut of QLED TV and YAG-LED TV圖2 量子點(diǎn)電視與YAG電視的(a)白光光譜及(b)色域圖

    Figure 3 (color online) shows the measured and calculated brightness ratio (QD/YAG) under different luminances. The dots represent the measured values, the black dotted lines represent the average measured values, the green and blue dotted lines represent the theoretical values calculated according to the Kaiser model and the Nayatani model respectively. The smaller QD/YAG ratio represents the more significant H-K effect. Since the blue light of both the QLED and YAG TVs generated by the GaN chip, the blue light perception only shows a slight difference. In this work, we focus on the H-K effect of red light and green light. It can be seen that the measured average values of red and green are 0.75±0.04 and 0.86±0.04, indicating that the H-K effect of a QLED TV is very significant, in particular for red. By comparing the calculated values based on the Kaiser model and the Nayatani model,the Nayatani model of red is consistent with the measured values, while the Kaiser model in green is consistent with the measured values.The measured values were different from the theoretical values,which may be explained by the differences of individual viewers as well as the test environment. The perceptual differences may be due to the color perception ability differences of different people[34].

    Fig. 3 Comparison of theoretical calculation results and measured values of brightness ratio (QD/YAG) in solid color experiment圖3 純色實(shí)驗(yàn)QD/YAG的理論值與實(shí)測(cè)值對(duì)比

    4.2 Results and discussion of multicolor experiments

    To study the H-K effect of QLED TV, two groups of test pictures were applied for further comparison. Group I consists of colorful pictures with red flowers and green leaves. Group II has plain pictures with fields and portraits.

    Figure 4 (color online) shows the QD/YAG of colorful and plain pictures under different luminances. The red and green dashed lines represent the QD/YAG of red flowers and green leaves, the purple and yellow dashed lines represent the QD/YAG of portrait and field. The results show that the H-K effect becomes weaker and flattens in the range of 200 nit to 500 nit for colorful images. The H-K effect of colorful images is more pronounced than that of plain images, and the smallest QD/YAG of red images can reach 0.74. For plain pictures,QLED TV and YAG TV have the same color performance. These results indicate that the display of colorful pictures in a QLED TV creates more acute perception for brightness.

    Fig. 4 The curves of QD/YAG of different pictures in multicolor experiment圖4 彩色實(shí)驗(yàn)不同圖片QD/YAG實(shí)測(cè)值對(duì)比曲線

    4.3 Subjective preference experiment

    We further carried out the subjective preference experiment. Figure 5 (color online) shows the results of viewers' preference ratio for the QLED TV and the YAG TV under the same perceived brightness. The experimental results show that, under the same perceived brightness, the QLED TV is generally preferred. The proportions of subjects who preferred QLED TV at 200 nit, 270 nit and 350 nit are 54.3%, 55.0% and 58.0%, respectively.Even though the perceived brightness of the QLED TV and the YAG TV were kept the same, the viewers still preferred the QLED TV. The QLED TV had a great advantage in red and green pictures. As many as 73.8% of subjects preferred the QLED TV when its luminance was 350 nit, while YAG TV had an advantage in blue and yellow pictures. As luminance increased, the preference for the QLED TV grew. In addition, the preference results were not affected by the genders of the subjects.

    Fig. 5 Preferential ratio under the same perceived brightness圖5 相同感知亮度下的主觀喜好比例

    5 Conclusion

    In conclusion, we investigated the H-K effect of a QLED TV through a comparative study between QLED backlights and YAG-LED backlights. The results of the solid color experiment were analyzed by considering the Kaiser model and the Nayatani model. The influence of color gamut on perceived brightness and subjective preference was discussed based on the experimental results of multicolor tests. The results indicated that the QLED TV exhibits significant H-K effect, and the perceived brightness was significantly higher than that for the YAG TV. Under the same perceived brightness, the average measured brightness ratio QD/YAG for red and green were 0.75±0.05 and 0.86±0.04. The minimum brightness ratio QD/YAG of colorful pictures was 0.74. Under the same perceived brightness, the QLED TV with a higher color gamut was more popular, and that preference grows strong as the brightness increases. Under the same perceived brightness, the QLED TV is not only less luminant, but also more popular with viewers. This conclusion is of significant importance for developing healthier LCD screens[35].

    In addition, it is worth noting that China's LCD industry has become the world's largest, accounting for 70% of the world's LCD output in 2020.Quantum dots backlight technology is the core technology of the extended LCD industry[36-37]. This study provides a theoretical basis for the popularization of quantum dots technology.

    ——中文對(duì)照版——

    1 引 言

    顯示技術(shù)是信息交互的重要媒介,過去的20年中,顯示技術(shù)層出不窮。色域是影響顯示器色彩表現(xiàn)的關(guān)鍵指標(biāo),也是消費(fèi)者選擇產(chǎn)品時(shí)的首要考慮因素,它代表顯示器所能展現(xiàn)的最大色彩范圍。1931年,國(guó)際照明委員會(huì)(International Commission on Illumination,CIE)首次定義了色彩空間,紅綠藍(lán)三基色對(duì)應(yīng)色點(diǎn)所圍成的三角形代表顯示器的色域,其面積越大,即色域越高,可顯示 的 色 彩 越 多[1]。NTSC(National Television Standards Committee)是美國(guó)國(guó)家電視標(biāo)準(zhǔn)委員會(huì)制定的高清電視顯示標(biāo)準(zhǔn)[2]。傳統(tǒng)的液晶顯示器(LCD)大多使用基于YAG熒光粉的白光LED作為背光源,白光LED光譜是決定顯示色域的主要因素,使用YAG-LED的液晶顯示器的色域一般小于70% NTSC[3-4]。量子點(diǎn)是納米尺寸的半導(dǎo)體晶體,具有發(fā)光波長(zhǎng)窄、顏色可調(diào)、量子產(chǎn)率高等特點(diǎn)[5-7],可顯著提升顯示的色彩品質(zhì),搭載量子點(diǎn)背光的液晶顯示器色域高達(dá)120%NTSC[8-13]。2013年,SONY[14]和QD Vision公司率先在國(guó)際消費(fèi)電子展(CES)展出了搭載量子點(diǎn)背光技術(shù)的液晶電視(量子點(diǎn)電視,QLED),隨后,TCL、三星、海信等廠商也紛紛推出了量子點(diǎn)電視[15-17],2020年,量子點(diǎn)電視的銷量已經(jīng)超過千萬臺(tái)。

    亥姆霍茲-科爾勞施效應(yīng)(簡(jiǎn)稱H-K效應(yīng))指的是人眼對(duì)色光的感知亮度隨著色純度的增加而提升的現(xiàn)象[18-20],是表征顯示器件色彩特性的重要特征??逻_(dá)OLED研發(fā)部的Tsujimura等人報(bào)道了有機(jī)發(fā)光二極管(OLED)中的H-K效應(yīng)[21],Liao等人報(bào)道了LED投影儀中的H-K效應(yīng)[22-23]。盡管人們很早就預(yù)測(cè)量子點(diǎn)電視擁有更顯著的H-K效應(yīng)[24-25],然而尚沒有針對(duì)量子點(diǎn)電視H-K效應(yīng)研究的報(bào)道。本論文通過觀看者亮度感知實(shí)驗(yàn),對(duì)比了YAG熒光粉白光LED背光電視(YAG電視)和量子點(diǎn)電視的H-K效應(yīng)差異,根據(jù)Kaiser模型與Nayatani模型分析純色實(shí)驗(yàn)的測(cè)試結(jié)果,并通過彩色實(shí)驗(yàn)探究了顯示器的色域?qū)Ω兄炼扰c主觀偏好的影響。

    2 H-K效應(yīng)理論與數(shù)學(xué)模型

    在顯示領(lǐng)域,物理亮度(Luminance)和感知亮度(Brightness)的概念有所不同,物理亮度是一個(gè)可測(cè)量的物理概念,不考慮人眼的感知,而感知亮度不僅受到光源自身影響,還受到觀看環(huán)境、觀看者的心理因素等影響[26]。Helmholtz定義了色純度(%P):

    式中,S是評(píng)估色點(diǎn),N是白點(diǎn)的色坐標(biāo)位置,DW是主波長(zhǎng)。對(duì)于主波長(zhǎng)相同的不同色點(diǎn),其色純度%P越高,感知亮度/物理亮度(B/L值)越高[18]。H-K效應(yīng)揭示了亮度與色度之間的關(guān)系,為了更好地量化此效應(yīng),Dowling與Nayatani等人提出了不同的數(shù)學(xué)模型來描述H-K效應(yīng)。

    2.1 Kaiser模型

    Kaiser等人基于實(shí)驗(yàn)結(jié)果,提出了Kaiser模型[27-30]。感知亮度L**主要受兩個(gè)因素影響,即顏色分量F和物理亮度分量log(Y)。其公式表示如下:

    其中,Y表示顏色的物理亮度,x,y為顏色的CIE 1931色坐標(biāo)。當(dāng)兩塊物理亮度不同的屏幕(Y1與Y2)具有相同的感知亮度時(shí),其物理亮度比值被稱為感知相對(duì)亮度,用RB表示,RB如式(5)所示:

    其中,Y2/Y1為實(shí)測(cè)值,為理論計(jì)算值。RB表示感知亮度相同的情況下,兩塊屏幕物理量度的比值。實(shí)驗(yàn)中,F(xiàn)1與F2可通過色坐標(biāo)求得,進(jìn)而得出理論計(jì)算值;通過調(diào)節(jié)兩塊屏幕的亮度使二者的感知亮度相同,再測(cè)量實(shí)際屏幕的物理亮度可得到Y(jié)1與Y2,進(jìn)而可求得RB。

    2.2 Nayatani模型

    1991年,Nayatani提出計(jì)算H-K效應(yīng)的數(shù)學(xué)模型,并在1997年進(jìn)一步完善,Nayatani認(rèn)為,模型不僅需要考慮待測(cè)光本身,還需要考慮環(huán)境的影響[31-32]。本實(shí)驗(yàn)在Nayatani模型的基礎(chǔ)上,提出H-K效應(yīng)的計(jì)算模型:

    式中γVAC用于衡量待測(cè)光的H-K效應(yīng),Leq是與測(cè)試光感知亮度相同的白光物理亮度,L是測(cè)試光的物理亮度。

    式中v′與u′為待測(cè)光在CIEUV空間中的色坐標(biāo),可由x,y轉(zhuǎn)換得到,vc′與uc′為白光在CIEUV空間中的色坐標(biāo)。

    式中La為環(huán)境亮度。

    綜上,Nayatani模型通過測(cè)定環(huán)境光、待測(cè)光與參考光的參數(shù),獲得γVAC值。本論文根據(jù)上述兩種模型開展了觀看者亮度感知實(shí)驗(yàn),通過實(shí)驗(yàn)測(cè)試結(jié)果與模型計(jì)算結(jié)果的對(duì)比,分析了量子點(diǎn)電視的H-K效應(yīng)。

    3 實(shí)驗(yàn)部分

    選取TCL 55F8(YAG電視)和TCL 55C715(量子點(diǎn)電視)做為樣機(jī),分別代表普通LCD電視和量子點(diǎn)LCD電視。為了模擬客廳使用環(huán)境,在暗室中創(chuàng)建了150 lx左右的光照環(huán)境。邀請(qǐng)11名觀看者參加測(cè)試,年齡在20~35歲之間。所有觀看者的視力(或矯正視力)均大于1.0,無色盲和色弱。具體實(shí)驗(yàn)環(huán)境參照GY/T134 《數(shù)字電視圖像質(zhì)量主觀評(píng)價(jià)方法》[33],如表1所示。

    3.1 純色實(shí)驗(yàn)

    純色實(shí)驗(yàn)場(chǎng)景如圖1(a)所示,將量子點(diǎn)電視和YAG電視置于同一水平桌面上,使觀看者處于兩臺(tái)電視機(jī)的中垂線上,且與兩臺(tái)電視機(jī)視角一致。采用相同的HDMI信源,依次輸入R、G、B3個(gè)純色畫面。固定YAG電視的亮度不變,觀看者通過調(diào)試量子點(diǎn)電視亮度使其與YAG電視的感知亮度一致,并同時(shí)實(shí)測(cè)量子點(diǎn)電視和YAG電視的物理亮度,二者的物理亮度之比用“QD/YAG”表示。

    3.2 彩色實(shí)驗(yàn)

    在純色實(shí)驗(yàn)的基礎(chǔ)上,將畫面替換為兩組彩色畫面。一組為鮮艷畫面:紅花與綠葉;一組為平淡畫面:田野與人像。為了便于觀測(cè)者觀察,所有試驗(yàn)圖片均為軸對(duì)稱圖形。

    為了去除機(jī)芯對(duì)畫質(zhì)的影響,展示不同畫質(zhì)的電視機(jī)必須保持機(jī)芯統(tǒng)一。本實(shí)驗(yàn)采用兩臺(tái)TCL 65C8(側(cè)入式機(jī)型),分別做以下改裝:(1)導(dǎo)光板從中間一分為二,量子點(diǎn)膜只保留左半邊,左邊均采用藍(lán)色LED燈條;右邊采用YAG燈條;為了防止左右兩邊光互相干擾,導(dǎo)光板分界線處貼有導(dǎo)光板側(cè)面反射膜。(2)燈條通過直流源供電,以實(shí)現(xiàn)左右兩邊亮度不一致;(3)樣機(jī)在顯示白場(chǎng)畫面時(shí),確保左右兩邊白場(chǎng)色點(diǎn)、色溫一致。改裝好的樣機(jī)與測(cè)試示意圖如圖1(b)所示。調(diào)節(jié)量子點(diǎn)電視燈條的電流,使之可以處于200 nit、300 nit、400 nit、500 nit任意檔位,觀看者調(diào)節(jié)YAG電視燈條的電流使其感知亮度與量子點(diǎn)電視相同,測(cè)量YAG電視的物理亮度,計(jì)算QD/YAG值。

    3.3 主觀喜好實(shí)驗(yàn)

    邀請(qǐng)20名觀看者進(jìn)行測(cè)試,使用賣場(chǎng)宣傳視頻的10幅截圖,所有圖形均為左右對(duì)稱或接近左右對(duì)稱。進(jìn)行200 nit、270 nit和350 nit等感知亮度(實(shí)測(cè)亮度不一樣)下的喜好實(shí)驗(yàn)。

    4 結(jié)果與討論

    4.1 純色實(shí)驗(yàn)結(jié)果與討論

    兩臺(tái)樣機(jī)的白場(chǎng)色點(diǎn)保持一致,圖2(a)(彩圖見期刊電子版)給出了兩臺(tái)樣機(jī)的光譜圖,黃線與藍(lán)線分別表示量子點(diǎn)電視與YAG電視的白光光譜,量子點(diǎn)電視的光譜半峰寬更窄;圖2(b)(彩圖見期刊電子版)給出了兩臺(tái)電視機(jī)的色域圖,量子點(diǎn)電視的色域更高。

    圖3(彩圖見期刊電子版)給出了不同亮度下的QD/YAG實(shí)測(cè)值與模型計(jì)算值,圓點(diǎn)表示實(shí)測(cè)值,黑色虛線表示實(shí)測(cè)值平均值,綠色虛線與藍(lán)色虛線分別表示根據(jù)Kaiser模型與Nayatani模型計(jì)算得到的理論值,理論計(jì)算值與實(shí)測(cè)值越小,HK效應(yīng)越明顯。由于量子點(diǎn)電視和YAG電視的藍(lán)光都是由GaN芯片發(fā)出的,藍(lán)光感知的差異非常小,本文主要對(duì)比了紅光與綠光的H-K效應(yīng)。從實(shí)驗(yàn)數(shù)據(jù)可以看出:紅、綠光的實(shí)測(cè)平均值在分別為0.75±0.045、0.86±0.040,說明量子點(diǎn)電視的H-K效應(yīng)非常顯著,特別是紅光。通過對(duì)比Kaisar模型與Nayatani模型的計(jì)算值可知,Nayatani模型在紅色與實(shí)測(cè)值更吻合,Kaisar模型在綠色與實(shí)測(cè)值更吻合。實(shí)測(cè)值與理論值存在差異的原因可能是抽樣總體和實(shí)驗(yàn)設(shè)置的不同。Kaiser模型和Nayatani模型基于白種人,而本文的測(cè)試結(jié)果基于黃種人,人種眼睛的差異可能是造成上述感知差異的主要原因[34]。

    4.2 彩色實(shí)驗(yàn)結(jié)果與討論

    為進(jìn)一步研究量子點(diǎn)電視的H-K效應(yīng),本實(shí)驗(yàn)采用兩組測(cè)試畫面做進(jìn)一步對(duì)比研究,一組為鮮艷畫面:紅花與綠葉;一組為平淡畫面:田野與人像。

    圖4(彩圖見期刊電子版)給出了不同亮度下彩色與平淡畫面的QD/YAG值,紅色與綠色虛線分別表示紅花與綠葉畫面的QD/YAG值,紫色與黃色虛線分別表示人像與田野的QD/YAG值。結(jié)果表明:對(duì)于鮮艷畫面,在電視燈條電流由200 nit提升到500 nit的過程中,H-K效應(yīng)逐漸變?nèi)醪②呌谄骄?,鮮艷畫面的H-K效應(yīng)比平淡畫面更顯著,紅花圖像的QD/YAG最小值可達(dá)0.74。對(duì)于平淡畫面,量子點(diǎn)電視與YAG電視的色彩表現(xiàn)能力相當(dāng)。由上述結(jié)果可知:量子點(diǎn)電視對(duì)于鮮艷畫面的表現(xiàn)能力更強(qiáng),給人更加明亮的感覺。

    4.3 主觀喜好實(shí)驗(yàn)

    研究發(fā)現(xiàn),在純色與彩色實(shí)驗(yàn)中,即使量子點(diǎn)電視與YAG電視的感知亮度相同,同一畫面下,觀看者更加青睞量子點(diǎn)電視,本論文進(jìn)一步開展了主觀喜好實(shí)驗(yàn)。圖5(彩圖見期刊電子版)給出了相同感知亮度下,觀看者對(duì)量子點(diǎn)電視與YAG電視的喜好情況。實(shí)驗(yàn)結(jié)果表明:同等感知亮度下,量子點(diǎn)電視總體占優(yōu)勢(shì),量子點(diǎn)電視在200 nit、270 nit、350 nit的喜好比例分別為54.3%、55.0%、58.0%;這種偏好與性別、與是否為背光行業(yè)人員無明顯關(guān)系;量子點(diǎn)電視在紅綠畫面具有很大優(yōu)勢(shì),在量子點(diǎn)電視亮度為350 nit時(shí),紅綠畫面的喜好比例可達(dá)73.8%,YAG在藍(lán)黃畫面具有優(yōu)勢(shì);隨著電視亮度的提升,喜好量子點(diǎn)電視的人越來越多。

    5 結(jié) 論

    本論文通過觀看者亮度感知實(shí)驗(yàn),對(duì)比了YAG電視和量子點(diǎn)電視的H-K效應(yīng)差異,根據(jù)Kaiser模型與Nayatani模型分析純色實(shí)驗(yàn)的測(cè)試結(jié)果,并通過彩色實(shí)驗(yàn)探究了顯示器的色域?qū)Ω兄炼扰c主觀偏好的影響。實(shí)驗(yàn)結(jié)果表明:量子點(diǎn)電視具有更為顯著的H-K效應(yīng),感知亮度明顯高于傳統(tǒng)YAG電視;在同樣的感知亮度下,紅、綠的QD/YAG的實(shí)測(cè)平均值分別為0.75±0.05、0.86±0.04;鮮艷畫面的QD/YAG最小值可達(dá)0.74;在相同感知亮度下,高色域的量子點(diǎn)電視更受歡迎,并且喜好趨勢(shì)將隨著亮度的增加而增加??傊?,在同等感知亮度下,量子點(diǎn)電視不僅物理亮度低,而且更受用戶喜愛,對(duì)于健康顯示的發(fā)展具有重要意義[35]。

    值得關(guān)注的是,中國(guó)液晶顯示產(chǎn)業(yè)已經(jīng)位居世界第一,2020年液晶產(chǎn)量占全世界的70%。量子點(diǎn)背光技術(shù)是延長(zhǎng)液晶產(chǎn)業(yè)的核心技術(shù)。我國(guó)的量子點(diǎn)顯示技術(shù)在國(guó)際上處于第一集團(tuán),在量子點(diǎn)LED領(lǐng)域的核心材料、器件以及集成方面都有了先發(fā)優(yōu)勢(shì)[36-37]。此外,TCL、京東方等國(guó)內(nèi)龍頭企業(yè)已于2020年發(fā)布了基于印刷技術(shù)的量子點(diǎn)電致發(fā)光顯示技術(shù)樣機(jī)。本研究為推廣量子點(diǎn)技術(shù)提供了理論依據(jù)。

    猜你喜歡
    純色色域實(shí)測(cè)值
    ±800kV直流輸電工程合成電場(chǎng)夏季實(shí)測(cè)值與預(yù)測(cè)值比對(duì)分析
    遠(yuǎn)不止DCI色域,輕量級(jí)機(jī)身中更蘊(yùn)含強(qiáng)悍的亮度表現(xiàn) 光峰(Appptronics)C800
    三基色激光顯示中白平衡點(diǎn)的選擇研究
    常用高溫軸承鋼的高溫硬度實(shí)測(cè)值與計(jì)算值的對(duì)比分析
    哈爾濱軸承(2020年1期)2020-11-03 09:16:22
    說說DCI-P3色域的那些事
    市售純牛奶和巴氏殺菌乳營(yíng)養(yǎng)成分分析
    為什么4K廣色域投影機(jī)會(huì)很貴?
    趣味針織
    一種基于實(shí)測(cè)值理論計(jì)算的導(dǎo)航臺(tái)電磁干擾分析方法
    電子制作(2018年23期)2018-12-26 01:01:22
    純色更出彩
    中文字幕精品免费在线观看视频| 亚洲电影在线观看av| 亚洲精品美女久久久久99蜜臀| 校园春色视频在线观看| 女人高潮潮喷娇喘18禁视频| 一进一出抽搐gif免费好疼| 日韩欧美国产一区二区入口| 国产成人欧美| 制服诱惑二区| 亚洲一区二区三区色噜噜| 久久精品成人免费网站| 又黄又爽又免费观看的视频| 大型av网站在线播放| 熟妇人妻久久中文字幕3abv| 国内毛片毛片毛片毛片毛片| 精品久久久精品久久久| 黄色视频,在线免费观看| 亚洲午夜理论影院| 国内毛片毛片毛片毛片毛片| 老司机深夜福利视频在线观看| 制服丝袜大香蕉在线| 亚洲国产精品合色在线| 狠狠狠狠99中文字幕| 色播亚洲综合网| 久久性视频一级片| 免费在线观看影片大全网站| 国产极品粉嫩免费观看在线| 日韩精品青青久久久久久| 可以在线观看的亚洲视频| 久久欧美精品欧美久久欧美| x7x7x7水蜜桃| 欧美日本亚洲视频在线播放| 欧美成人免费av一区二区三区| 男人舔女人下体高潮全视频| 国产精品一区二区在线不卡| 亚洲男人天堂网一区| 一级毛片精品| 成在线人永久免费视频| 亚洲自偷自拍图片 自拍| cao死你这个sao货| 激情视频va一区二区三区| 99香蕉大伊视频| 国产亚洲欧美在线一区二区| 午夜福利在线观看吧| av网站免费在线观看视频| 久久中文字幕一级| 国产91精品成人一区二区三区| 亚洲 国产 在线| av免费在线观看网站| 亚洲 国产 在线| 久久国产精品人妻蜜桃| 俄罗斯特黄特色一大片| 国产亚洲av高清不卡| 久久久精品国产亚洲av高清涩受| 亚洲国产精品sss在线观看| 每晚都被弄得嗷嗷叫到高潮| 成人国产一区最新在线观看| 欧美成人免费av一区二区三区| 亚洲精品久久成人aⅴ小说| 精品一区二区三区av网在线观看| 国产精品爽爽va在线观看网站 | 免费在线观看黄色视频的| 黄频高清免费视频| 国产成年人精品一区二区| 亚洲少妇的诱惑av| 91av网站免费观看| 欧美乱码精品一区二区三区| 日本 欧美在线| 日韩精品青青久久久久久| 亚洲第一电影网av| 国产午夜精品久久久久久| 国产精品国产高清国产av| 亚洲成av人片免费观看| 色在线成人网| 久久国产精品人妻蜜桃| 免费看美女性在线毛片视频| 亚洲人成网站在线播放欧美日韩| 无人区码免费观看不卡| 国产又色又爽无遮挡免费看| 88av欧美| 亚洲熟妇中文字幕五十中出| 香蕉久久夜色| 午夜免费激情av| 国产男靠女视频免费网站| 欧美国产日韩亚洲一区| av片东京热男人的天堂| 国产精品永久免费网站| 我的亚洲天堂| 九色国产91popny在线| 国产精品自产拍在线观看55亚洲| 一级a爱片免费观看的视频| 亚洲,欧美精品.| 日韩三级视频一区二区三区| 亚洲色图av天堂| 99久久国产精品久久久| 男人舔女人下体高潮全视频| 99国产精品99久久久久| 视频在线观看一区二区三区| 午夜免费成人在线视频| 久久人妻av系列| 亚洲一码二码三码区别大吗| 亚洲国产欧美日韩在线播放| 亚洲av电影不卡..在线观看| 亚洲av日韩精品久久久久久密| 国产精品免费视频内射| 操出白浆在线播放| 久久婷婷人人爽人人干人人爱 | 啦啦啦免费观看视频1| 国产欧美日韩一区二区三| 宅男免费午夜| 欧美日韩瑟瑟在线播放| 久久久精品国产亚洲av高清涩受| 久久中文看片网| 岛国在线观看网站| av福利片在线| 在线永久观看黄色视频| 欧美绝顶高潮抽搐喷水| 在线观看免费午夜福利视频| 久久草成人影院| 给我免费播放毛片高清在线观看| 美女大奶头视频| 久久精品国产综合久久久| 久9热在线精品视频| 他把我摸到了高潮在线观看| 天天一区二区日本电影三级 | 九色亚洲精品在线播放| 亚洲成国产人片在线观看| 亚洲熟妇中文字幕五十中出| 一级黄色大片毛片| 人妻久久中文字幕网| 欧美日韩亚洲综合一区二区三区_| 国产一区二区三区视频了| 国内久久婷婷六月综合欲色啪| 欧美激情高清一区二区三区| 韩国精品一区二区三区| 免费在线观看日本一区| 国产亚洲av嫩草精品影院| 欧美午夜高清在线| 国语自产精品视频在线第100页| 精品免费久久久久久久清纯| 国产精品国产高清国产av| 国产欧美日韩一区二区精品| 欧美激情 高清一区二区三区| 久久婷婷成人综合色麻豆| 欧美日韩亚洲国产一区二区在线观看| 欧美激情高清一区二区三区| 97碰自拍视频| 热re99久久国产66热| 又紧又爽又黄一区二区| 美女大奶头视频| 国产免费男女视频| 久久久精品国产亚洲av高清涩受| 女生性感内裤真人,穿戴方法视频| 亚洲 欧美 日韩 在线 免费| 欧美大码av| 18美女黄网站色大片免费观看| 两性夫妻黄色片| 免费在线观看黄色视频的| 欧美日韩亚洲国产一区二区在线观看| 国产1区2区3区精品| 在线av久久热| 亚洲九九香蕉| 亚洲国产毛片av蜜桃av| 亚洲国产看品久久| 岛国视频午夜一区免费看| 亚洲欧美一区二区三区黑人| 久久这里只有精品19| 免费一级毛片在线播放高清视频 | avwww免费| 日韩 欧美 亚洲 中文字幕| 日韩精品免费视频一区二区三区| av欧美777| 亚洲激情在线av| 日韩精品青青久久久久久| 不卡av一区二区三区| 亚洲国产精品久久男人天堂| 一本久久中文字幕| 日韩三级视频一区二区三区| 日韩欧美国产一区二区入口| 搞女人的毛片| 国产精品久久电影中文字幕| 中文字幕最新亚洲高清| 波多野结衣巨乳人妻| 日韩中文字幕欧美一区二区| 怎么达到女性高潮| 高清黄色对白视频在线免费看| 少妇粗大呻吟视频| 一级a爱视频在线免费观看| 成人av一区二区三区在线看| av中文乱码字幕在线| 啦啦啦免费观看视频1| 一区二区日韩欧美中文字幕| 国产91精品成人一区二区三区| 中文字幕人妻丝袜一区二区| 成在线人永久免费视频| 宅男免费午夜| 精品人妻1区二区| 欧美国产精品va在线观看不卡| 欧美日韩精品网址| 亚洲国产看品久久| 久久精品国产亚洲av高清一级| 99久久精品国产亚洲精品| 精品高清国产在线一区| 91麻豆av在线| 高清毛片免费观看视频网站| 国产三级黄色录像| 久久国产精品男人的天堂亚洲| 精品少妇一区二区三区视频日本电影| 国产99久久九九免费精品| 日韩一卡2卡3卡4卡2021年| 亚洲欧美一区二区三区黑人| 国产精品,欧美在线| 天天躁夜夜躁狠狠躁躁| 女性被躁到高潮视频| 国产一级毛片七仙女欲春2 | 乱人伦中国视频| 国产又色又爽无遮挡免费看| 日韩中文字幕欧美一区二区| 热re99久久国产66热| 法律面前人人平等表现在哪些方面| 好男人在线观看高清免费视频 | 两个人免费观看高清视频| 亚洲一区二区三区色噜噜| 搡老熟女国产l中国老女人| 国产高清videossex| 精品一区二区三区四区五区乱码| 人成视频在线观看免费观看| АⅤ资源中文在线天堂| 啦啦啦免费观看视频1| 国产成人欧美| 老司机深夜福利视频在线观看| 久久热在线av| 久久久国产成人精品二区| 亚洲va日本ⅴa欧美va伊人久久| 色av中文字幕| 操出白浆在线播放| 亚洲国产欧美一区二区综合| 长腿黑丝高跟| 在线观看一区二区三区| 女人被躁到高潮嗷嗷叫费观| 欧美激情久久久久久爽电影 | 啦啦啦免费观看视频1| 亚洲成人久久性| 又黄又爽又免费观看的视频| 啦啦啦韩国在线观看视频| 色综合欧美亚洲国产小说| 久久九九热精品免费| 午夜亚洲福利在线播放| 午夜福利,免费看| 久久国产精品男人的天堂亚洲| 99久久久亚洲精品蜜臀av| 国语自产精品视频在线第100页| 中文字幕高清在线视频| 国产精品 欧美亚洲| 日本撒尿小便嘘嘘汇集6| 两性夫妻黄色片| 免费人成视频x8x8入口观看| 久久久久久国产a免费观看| 国产精品久久久人人做人人爽| 免费看a级黄色片| 久久久久久免费高清国产稀缺| 色婷婷久久久亚洲欧美| 亚洲中文日韩欧美视频| 成人18禁高潮啪啪吃奶动态图| 国产单亲对白刺激| 操出白浆在线播放| 嫁个100分男人电影在线观看| 性色av乱码一区二区三区2| 19禁男女啪啪无遮挡网站| 人人妻人人澡人人看| 丝袜美足系列| 亚洲国产精品sss在线观看| 久久久久九九精品影院| 亚洲中文日韩欧美视频| 久久国产精品男人的天堂亚洲| 国产伦人伦偷精品视频| 国产人伦9x9x在线观看| 身体一侧抽搐| 叶爱在线成人免费视频播放| 老司机午夜福利在线观看视频| 精品不卡国产一区二区三区| 人人妻人人爽人人添夜夜欢视频| 一夜夜www| 在线播放国产精品三级| 亚洲欧美激情在线| 激情视频va一区二区三区| 免费无遮挡裸体视频| 女人爽到高潮嗷嗷叫在线视频| 免费观看精品视频网站| 国产片内射在线| 国产亚洲欧美精品永久| 一进一出抽搐动态| 国产熟女午夜一区二区三区| 日韩高清综合在线| 久久精品国产亚洲av高清一级| 国产精品精品国产色婷婷| 视频区欧美日本亚洲| 亚洲熟妇中文字幕五十中出| 18禁国产床啪视频网站| 久久精品国产亚洲av香蕉五月| 久久久久国内视频| 欧美国产日韩亚洲一区| 天天躁夜夜躁狠狠躁躁| 黄色 视频免费看| 精品不卡国产一区二区三区| 国产精品98久久久久久宅男小说| www日本在线高清视频| 国产亚洲av高清不卡| 亚洲成av片中文字幕在线观看| 国产精华一区二区三区| 91老司机精品| 国产精品一区二区免费欧美| 9色porny在线观看| xxx96com| 亚洲欧美日韩高清在线视频| 欧美一级a爱片免费观看看 | 一区二区三区激情视频| 在线观看免费视频日本深夜| 在线观看免费视频日本深夜| 999久久久精品免费观看国产| 日韩三级视频一区二区三区| 国产亚洲欧美98| 亚洲自偷自拍图片 自拍| 此物有八面人人有两片| 人人妻人人爽人人添夜夜欢视频| 久久亚洲真实| 欧美一级毛片孕妇| 亚洲一区二区三区不卡视频| 亚洲av片天天在线观看| 亚洲va日本ⅴa欧美va伊人久久| 又黄又爽又免费观看的视频| 久热爱精品视频在线9| 精品国产超薄肉色丝袜足j| 久久久久久人人人人人| 亚洲全国av大片| 色在线成人网| 人人妻人人澡人人看| 久久久久国内视频| tocl精华| 三级毛片av免费| 性少妇av在线| 久久久久国产一级毛片高清牌| 美国免费a级毛片| avwww免费| 免费人成视频x8x8入口观看| 精品日产1卡2卡| 亚洲一区二区三区不卡视频| 日本 av在线| 久久这里只有精品19| 又黄又爽又免费观看的视频| av有码第一页| 欧美中文日本在线观看视频| 丝袜美足系列| 黑人巨大精品欧美一区二区蜜桃| 国产黄a三级三级三级人| 亚洲色图 男人天堂 中文字幕| 三级毛片av免费| 精品久久久久久成人av| 我的亚洲天堂| 亚洲一区二区三区不卡视频| 亚洲欧美精品综合一区二区三区| 日韩精品青青久久久久久| 日韩av在线大香蕉| 最近最新中文字幕大全电影3 | 琪琪午夜伦伦电影理论片6080| 嫩草影院精品99| 夜夜爽天天搞| 别揉我奶头~嗯~啊~动态视频| 成人国语在线视频| 级片在线观看| 亚洲情色 制服丝袜| 级片在线观看| 久久久久久久久中文| 亚洲av五月六月丁香网| 动漫黄色视频在线观看| 亚洲精品在线美女| 乱人伦中国视频| 黄色女人牲交| 一个人免费在线观看的高清视频| 啪啪无遮挡十八禁网站| 久久久国产成人免费| 成年女人毛片免费观看观看9| 最新美女视频免费是黄的| 麻豆一二三区av精品| 少妇熟女aⅴ在线视频| 91麻豆精品激情在线观看国产| 最新在线观看一区二区三区| 动漫黄色视频在线观看| 午夜福利欧美成人| 免费高清视频大片| а√天堂www在线а√下载| 国产精华一区二区三区| 久久久久久亚洲精品国产蜜桃av| 成人18禁在线播放| 精品国产国语对白av| 久久国产精品影院| 午夜免费成人在线视频| 国产精品自产拍在线观看55亚洲| 中文字幕最新亚洲高清| 国产三级在线视频| 亚洲成av人片免费观看| 国产精品乱码一区二三区的特点 | 欧美另类亚洲清纯唯美| 亚洲人成网站在线播放欧美日韩| av天堂在线播放| 在线免费观看的www视频| 欧美丝袜亚洲另类 | 日韩欧美一区二区三区在线观看| 91成年电影在线观看| a在线观看视频网站| 亚洲成国产人片在线观看| 中文字幕久久专区| 激情在线观看视频在线高清| 久久人人97超碰香蕉20202| av视频免费观看在线观看| 露出奶头的视频| 国产色视频综合| 亚洲avbb在线观看| 国产亚洲精品综合一区在线观看 | 国产黄a三级三级三级人| 国产精品久久视频播放| 国产区一区二久久| 一级毛片女人18水好多| 国产精品99久久99久久久不卡| 韩国精品一区二区三区| 婷婷六月久久综合丁香| 极品教师在线免费播放| 国产熟女午夜一区二区三区| 国产精品 欧美亚洲| 又黄又粗又硬又大视频| 精品一区二区三区视频在线观看免费| 国产xxxxx性猛交| 一个人免费在线观看的高清视频| 国产亚洲av嫩草精品影院| 很黄的视频免费| 黄片播放在线免费| 亚洲精品一卡2卡三卡4卡5卡| 日日爽夜夜爽网站| 麻豆一二三区av精品| 国产欧美日韩精品亚洲av| 国产av一区在线观看免费| 国产一区在线观看成人免费| 人成视频在线观看免费观看| av片东京热男人的天堂| 男男h啪啪无遮挡| 久久香蕉精品热| 午夜福利欧美成人| 极品教师在线免费播放| 日韩有码中文字幕| 国语自产精品视频在线第100页| 99在线人妻在线中文字幕| 欧美大码av| 色在线成人网| 国产av精品麻豆| 久久久精品国产亚洲av高清涩受| 免费在线观看日本一区| 亚洲国产高清在线一区二区三 | 国产精品一区二区在线不卡| 国产亚洲精品第一综合不卡| 成人手机av| 日韩国内少妇激情av| 人人妻,人人澡人人爽秒播| 国产午夜精品久久久久久| 国产av又大| 中文字幕久久专区| 在线观看www视频免费| 51午夜福利影视在线观看| 色尼玛亚洲综合影院| 巨乳人妻的诱惑在线观看| 欧美成人性av电影在线观看| 欧美丝袜亚洲另类 | 久久国产精品影院| 国产免费av片在线观看野外av| 免费人成视频x8x8入口观看| 欧美日韩亚洲国产一区二区在线观看| 色婷婷久久久亚洲欧美| 中文字幕人成人乱码亚洲影| 欧美成人性av电影在线观看| 成熟少妇高潮喷水视频| 一边摸一边抽搐一进一出视频| 日韩 欧美 亚洲 中文字幕| 国产成人精品无人区| av天堂久久9| 久久精品aⅴ一区二区三区四区| 欧美成人免费av一区二区三区| 欧美国产精品va在线观看不卡| 啦啦啦免费观看视频1| 国产成人一区二区三区免费视频网站| 欧美一区二区精品小视频在线| 欧美成狂野欧美在线观看| 欧美日韩瑟瑟在线播放| 国产精品九九99| 日本在线视频免费播放| 精品电影一区二区在线| 日韩三级视频一区二区三区| 夜夜夜夜夜久久久久| 一级a爱视频在线免费观看| 99re在线观看精品视频| 一个人观看的视频www高清免费观看 | 亚洲五月婷婷丁香| 99精品在免费线老司机午夜| 亚洲av成人不卡在线观看播放网| 香蕉丝袜av| 久久伊人香网站| 国产午夜福利久久久久久| 久久久久久国产a免费观看| 两人在一起打扑克的视频| 免费在线观看视频国产中文字幕亚洲| 中文字幕人成人乱码亚洲影| 亚洲精品久久国产高清桃花| 精品久久久久久久久久免费视频| 女人被躁到高潮嗷嗷叫费观| 麻豆av在线久日| 欧美不卡视频在线免费观看 | 亚洲午夜理论影院| 国产精品一区二区三区四区久久 | 一夜夜www| 中文字幕高清在线视频| 亚洲成av片中文字幕在线观看| 亚洲人成伊人成综合网2020| 亚洲av五月六月丁香网| 十八禁网站免费在线| 最新在线观看一区二区三区| av免费在线观看网站| 国产午夜精品久久久久久| 国产精品亚洲av一区麻豆| 精品少妇一区二区三区视频日本电影| 亚洲熟妇熟女久久| 精品久久蜜臀av无| 激情在线观看视频在线高清| 岛国视频午夜一区免费看| 很黄的视频免费| 国产精品99久久99久久久不卡| 老汉色av国产亚洲站长工具| 欧美黄色淫秽网站| 日韩中文字幕欧美一区二区| 90打野战视频偷拍视频| 欧美另类亚洲清纯唯美| 丝袜在线中文字幕| 日本a在线网址| 午夜免费鲁丝| 日本欧美视频一区| 国产精华一区二区三区| 美国免费a级毛片| 精品乱码久久久久久99久播| 国内精品久久久久久久电影| 麻豆成人av在线观看| 精品久久久久久久毛片微露脸| 精品欧美一区二区三区在线| 999久久久精品免费观看国产| 欧美日韩亚洲综合一区二区三区_| 伦理电影免费视频| 婷婷精品国产亚洲av在线| 亚洲五月天丁香| 久久久久久久久中文| 一进一出好大好爽视频| 一进一出抽搐动态| 亚洲精品一卡2卡三卡4卡5卡| videosex国产| 国产精品 欧美亚洲| 嫩草影视91久久| 亚洲精品久久国产高清桃花| 精品国产国语对白av| 宅男免费午夜| 可以免费在线观看a视频的电影网站| 国产一级毛片七仙女欲春2 | 99热只有精品国产| 中文字幕另类日韩欧美亚洲嫩草| 国产片内射在线| 波多野结衣av一区二区av| 精品欧美国产一区二区三| 又黄又爽又免费观看的视频| 国产成人精品久久二区二区91| 欧美国产精品va在线观看不卡| 亚洲人成电影观看| 嫩草影视91久久| 精品欧美一区二区三区在线| 久久天堂一区二区三区四区| 啦啦啦观看免费观看视频高清 | 在线观看日韩欧美| 亚洲五月色婷婷综合| 日本免费a在线| 可以在线观看毛片的网站| 精品国产美女av久久久久小说| 最新在线观看一区二区三区| 亚洲成人久久性| 日韩大码丰满熟妇| 欧美激情久久久久久爽电影 | 级片在线观看| 精品国产一区二区三区四区第35| 非洲黑人性xxxx精品又粗又长| 久久久久久免费高清国产稀缺| 一个人观看的视频www高清免费观看 | 少妇 在线观看| 亚洲精品中文字幕一二三四区| 成人欧美大片| 欧美黑人欧美精品刺激| 欧美国产日韩亚洲一区| 97人妻精品一区二区三区麻豆 | 欧美av亚洲av综合av国产av| 无人区码免费观看不卡| 亚洲一区二区三区色噜噜| 免费看十八禁软件| 亚洲午夜精品一区,二区,三区| 成人免费观看视频高清| 50天的宝宝边吃奶边哭怎么回事| 久热这里只有精品99| 久久精品国产99精品国产亚洲性色 | 一区二区三区国产精品乱码| 深夜精品福利| 伦理电影免费视频| av欧美777| 久久久国产成人免费| 中文字幕精品免费在线观看视频| 精品久久久久久久毛片微露脸|