• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental investigation on propagation characteristics of vortex beams in underwater turbulence with different salinity

    2022-03-08 03:48:22LUTengfeiLIUYongxinWUZhijun
    中國(guó)光學(xué) 2022年1期

    LU Teng-fei,LIU Yong-xin,WU Zhi-jun

    (Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen 361021)

    Abstract: It is very important to study the propagation characteristics of light beams in ocean turbulence. In order to get closer to the actual situation, we build a device which can control both the salinity and the intensity of underwater turbulence to study the propagation characteristics of vortex beams and a Gaussian beam in underwater turbulence. The results show that compared with the underwater turbulence without sea salt, the light spot will be more diffuse and the light intensity will be weaker in the underwater turbulence with sea salt. When the topological charge m is 2, the scintillation index of the vortex beam in the underwater turbulence with salinity of 4.35‰ is larger than that in the underwater turbulence with salinity of 2.42‰, no matter it is strong turbulence or weak turbulence. When the vortex beam with m=2 propagates to the same distance, the scintillation index increases with the increment of the salinity and the intensity of underwater turbulence. Under different salinity conditions, the radial scintillation index of the vortex beam with m=2 decreases firstly and then increases with the increase of the radial distance. In addition, we set up another experimental device which can transmit a longer distance. The scintillation index of the vortex beam with m=2 is much higher than that of the Gaussian beam in the underwater turbulence within 20 m propagation distance,and the scintillation indices of both the vortex beam with m=2 and the Gaussian beam increase with the increase of the propagation distance.

    Key words: vortex beam; underwater turbulence; scintillation index; salinity; propagation

    1 Introduction

    Turbulence causes intensity fluctuations when the laser beam propagates in the random media,which is called scintillation[1-2]. The intensity fluctuation (scintillation) can reduces the signal-to-noise ratio and increases the bit error rate. Investigations of scintillation of laser beams in ocean turbulence become more and more important because of their wide applications in underwater optical communication and imaging[3-8]. In recent years, people have studied the scintillation index of laser beams in ocean transmission[9-19]. In Ref. [16], the scintillation of optical plane and spherical waves were investigated, and the results show that just like in the atmosphere, in underwater media the plane wave is more affected by turbulence as compared to the spherical wave. In Ref. [17], the aperture-averaged scintillations of plane and spherical waves were calculated. It was found that the adoption of the aperture-averaging technique in an underwater optical communication system can significantly extend its reliable communication distance. In Ref. [18], the on-axis scintillation index of a Phase-locked Partially Coherent Flat-Topped (PCFT) laser array beam in oceanic turbulence was studied, and the results show that in the sense of scintillation index reduction, using the PCFT array laser beams has a considerable benefit in comparison with the single PCFT or Gaussian laser beams and also Gaussian array beams. In Ref. [19], considering the pointing errors caused by the slight incline of underwater platform, the scintillation index of partially coherent beams propagating through weak oceanic turbulence were calculated. However, the above studies were all theoretical studies of scintillation index,and there were no experiments.

    A beam with a spiral phase is called a vortex beam, and each photon of the vortex beam carries orbital angular momentum[20]. The research of the vortex beam is an important subject due to its potential applications in area such as optical micro manipulation, optical information encoding and transmission and other fields[21-24]. Based on the Huygens Fresnel principle, the spectral density, the spectral degree of coherence and the spectral degree of polarization of stochastic electromagnetic vortex beams in ocean turbulence were studied[25]. The propagation properties of the vortex beam in ocean turbulence were studied by using the spatial light modulator to show turbulence[26]. However, it is very difficult to do experiment in a real marine environment. Most of the relevant research results are obtained by computer numerical simulation. Targeting at above problem, we set up an experimental system containing underwater turbulence to investigate the scintillation index of the vortex beam in underwater turbulence, and research the influence of the different turbulence on the scintillation index[27]. In this paper, our main concern is the effects of salinity and propagation distance on the scintillation index and the intensity distribution of the vortex beams. We also establish another experimental equipment to make the beam propagate as far as 20 meters, which is longer than 12.6 meters in reference.

    2 Experimental device of vortex beams passing through underwater turbulence

    The experimental system configuration for generating a vortex beam and measuring its intensity fluctuation in underwater turbulence is shown in Fig. 1. The laser with wavelength of 532 nm is utilized as a light source. The beam is propagating through a telescope system consisting of two lenses(L1andL2), whose focal lengths are 5 cm and 15 cm, respectively. The expanded beam is converted into a vortex beam by passing through a Spiral Phase Plate (SPP). The topological charge of the vortex beam is determined by the structure of the SPP. The generated the vortex beam then transmits through an underwater turbulence simulation device(called Simulator), where the intensity of underwater turbulence is controlled by the flow rate of circulating pump water. Figure 2 shows the practical photo of the experimental device, where Fig. 2 (a) is weak turbulence and Fig. 2 (b) is strong turbulence.Since the length of Simulator is 1.8 meters, in order to enable the beam transmit over the longer distance, the reflectors M1and M2are used. A detector for measuring the scintillation index is employed,which contains an opto-electron detector with a round role of 5 mm in diameter. The optical signal is converted electrical signal by opto-electron detector, and then the Scintillator is used to collect the electrical signal to measure the scintillation index.

    Fig. 1 Schematic diagram of vortex beams propagating in underwater turbulence. L1, L2, thin lenses; SPP,spiral phase plate; M1, M2, reflectors

    Fig. 2 The practical photos of the experimental device. (a)Weak turbulence; (b) strong turbulence

    Fig. 3 The scintillation of the vortex beam with m=2 transmitted to 3.6 meters in weak underwater turbulence with the SA =2.42 ‰

    Figure 3 shows the scintillation index of the vortex beam withm=2 transmitted to 3.6 m in weak underwater turbulence with salinity of 2.42 ‰, the horizontal coordinate is time, and the vertical coordinate is the scintillation index measured in real time. The sampling time is set to 1ms during the experiment, and the sampling frequency is set to 1000 times.

    In this study, the scintillation index is measured by a detector with a round role of 5 mm in diameter, which means that the scintillation refers to area scintillation index. Recently, the aperture averaged scintillation has been proposed to study the scintillation in a certain region, which is defined as[28]

    where

    3 Experimental results and analysis

    Now we discuss the intensities of the vortex beam withm=2 propagating through different underwater turbulences in the experiment. The spot is taken by the beam analyzer. In order to avoid overexposure during shooting, the attenuator is used to attenuate the light intensity, resulting in the loss of a little detail of the spot. Figure 4 (Color online)shows the intensity patterns of the vortex beam withm=2 propagating in both the weak and strong underwater turbulences with salinity of 0. As shown in Fig.4, the light intensity is obviously weakened with the increasing transmission distance in both the weak and strong underwater turbulence. While, the disturbance of the beam in the strong turbulence is significantly higher than that of the beam in the weak turbulence. Figure 5 (Color online) shows the intensity patterns of the vortex beam withm=2 propagating in both the weak and strong underwater turbulence with the salinity of 2.42‰. By comparing the experimental results in Fig. 4 and Fig. 5, it can be found that in the presence of sea salt, the light spots are more diffuse and the light intensity is weaker.

    Fig. 4 The intensity patterns of the vortex beam with m=2 propagating in both the weak and strong underwater turbulences with salinity of 0. (a) z=3.6 m, weak turbulence; (b) z=3.6 m, strong turbulence; (c) z=5.4 m, weak turbulence;(d) z=5.4 m, strong turbulence

    Fig. 5 The intensity patterns of the vortex beam with m=2 propagating in both the weak and strong underwater turbulences with the salinity of 2.42 ‰. (a) z=3.6 m, weak turbulence; (b) z=3.6 m, strong turbulence; (c) z=5.4 m, weak turbulence;(d) z=5.4 m, strong turbulence

    Figure 6 presents the scintillation index of the vortex beam withm=2 varying with propagation distance in the turbulence with different salinities. It can be found from Fig. 6 that the scintillation index of the vortex beam in the underwater with salinity of 4.35‰ is bigger than that of in the underwater with salinity of 2.42‰, no matter it is strong turbulence or weak turbulence. This is because that increasing the salinity of underwater is approximately equivalent to increasing the turbulence of underwater. Figure 7 illustrates the effect of the salinity on scintillation index of the vortex beam withm=2 at 3.6 m propagation distance. We can also find that the greater the salinity of seawater is, the larger the scintillation index is in both weak and strong turbulence, and the scintillation index of the vortex beam withm=2 in the strong turbulence is higher than that of the vortex beam withm=2 in the weak turbulence.

    Fig. 6 Scintillation index of the vortex beam with m=2 varying with propagation distance in the water turbulence with different salinities in (a) weak turbulence and (b) strong turbulence

    Fig. 7 The effect of salinity on scintillation index of the vortex beam with m=2 at 3.6 m propagation distance in (a) weak turbulence and (b) strong turbulence

    Figure 8 shows the scintillation index varying with the radial distance of the transverse plane in the underwater with different salinities. It can be seen from the Fig. 8, the radial scintillation index of the vortex beam withm=2 decreases firstly and then increases with increasing the radial distance. In addition, the center of the vortex beam has a dark core surrounded by a bright ring. The intensity increases at first, and then decreases. Thus, the change of scintillation index with radial distance is opposite to that of intensity with radial distance.

    As the current experimental device needs mirror reflections for a long-distance transmission, the light intensity becomes weak and cannot transmit further. So, we build another experimental device to directly transmit the beam over a longer distance without mirror reflection, as shown in Figure 9.Figure 10 presents the scintillation indices of the vortex beam and a Gaussian beam varying with propagation distance. In Fig. 10, we can find that within the 20 m propagation distance, the scintillation index of the Gaussian beam is much smaller than that of the vortex beam withm=2, and the scintillation indices of both the vortex beam and the Gaussian beam increase with the increment of the propagation distance. This can be in part understood by their intensity distribution. The vortex beam does not travel long enough, so the vortex beam does not evolve into Gaussian distribution.The light intensity in the center of the vortex beam is much weaker than that of the Gaussian beam, the same turbulence may produce greater fluctuation for the vortex beam, so the scintillation index of the vortex beam withm=2 is much larger than that of the Gaussian beam. The evolution of scintillation indices of the vortex beam and a Gaussian beam is similar with the results obtained in Ref. [27], but for a longer distance.

    Fig. 8 Scintillation index of the vortex beam with m=2 at 3.6 m propagation distance in (a) weak turbulence and (b) strong turbulence

    Fig. 9 Experimental device of direct long-distance transmission

    Fig. 10 Scintillation indices of the vortex beam and the Gaussian beam varying with propagation distance(no turbulence)

    4 Conclusion

    In conclusion, we have experimentally investigated the intensity fluctuations when vortex beam and Gaussian beam is propagating in underwater turbulence. The light intensity is obviously weakened with the increasing transmission distance in both the weak and strong underwater turbulence with salinity of 0. It can be found that in the presence of sea salt, the light spots are more diffuse and the light intensity is weaker. It is shown that the scintillation indices of both the vortex beam and the Gaussian beam increase with the increment of the propagation distance. It also can be found that the scintillation index of the vortex beam in the underwater with salinity of 4.35‰ is bigger than that of the vortex beam in the underwater with salinity of 2.42‰, no matter it is strong turbulence or weak turbulence. At 3.6 m, the radial scintillation index of the vortex beam withm=2 decreases firstly and then increases in underwater turbulence. In order to make the beam travel a longer distance, we set up another experimental device. Within the 20 m propagation distance, the scintillation index of the vortex beam withm=2 is much larger than that of the Gaussian beam,and the scintillation indices of both the vortex beam withm=2 and the Gaussian beam increase with the increment of the propagation distance. The research results obtained by our experiments have important value in exploring the application of vortex beams in oceanic turbulence.

    国产精品爽爽va在线观看网站| 国产淫片久久久久久久久| 免费av不卡在线播放| 国产日韩欧美亚洲二区| 亚洲国产色片| 成人漫画全彩无遮挡| 亚洲欧美成人综合另类久久久| 亚洲精品日韩av片在线观看| 成人毛片a级毛片在线播放| 九九在线视频观看精品| 国产在线视频一区二区| 亚洲三级黄色毛片| 晚上一个人看的免费电影| 国产精品久久久久久精品电影小说 | 寂寞人妻少妇视频99o| 国产色婷婷99| 狠狠精品人妻久久久久久综合| av国产久精品久网站免费入址| 男女国产视频网站| 亚洲精品色激情综合| 午夜福利高清视频| 国产成人一区二区在线| 国产大屁股一区二区在线视频| 成年人午夜在线观看视频| 成人影院久久| 搡女人真爽免费视频火全软件| 日日啪夜夜撸| av.在线天堂| 内射极品少妇av片p| 日韩国内少妇激情av| 性色av一级| 中文字幕精品免费在线观看视频 | 国产有黄有色有爽视频| 国产成人freesex在线| 久久亚洲国产成人精品v| 日韩成人伦理影院| 在线精品无人区一区二区三 | 国产欧美另类精品又又久久亚洲欧美| 国产熟女欧美一区二区| 日韩在线高清观看一区二区三区| 国产在线男女| 国产伦理片在线播放av一区| 新久久久久国产一级毛片| 欧美 日韩 精品 国产| 男人爽女人下面视频在线观看| 深爱激情五月婷婷| 精品一区在线观看国产| 狂野欧美激情性xxxx在线观看| 亚州av有码| 日韩大片免费观看网站| 高清日韩中文字幕在线| 五月玫瑰六月丁香| 爱豆传媒免费全集在线观看| 爱豆传媒免费全集在线观看| 日日撸夜夜添| 国产伦精品一区二区三区视频9| 黄片wwwwww| 黄片无遮挡物在线观看| 1000部很黄的大片| 国产高清不卡午夜福利| 黄色日韩在线| av福利片在线观看| 精品国产一区二区三区久久久樱花 | 国产乱来视频区| 在线免费十八禁| 欧美精品亚洲一区二区| 啦啦啦啦在线视频资源| 18禁动态无遮挡网站| 欧美极品一区二区三区四区| 又爽又黄a免费视频| 国产日韩欧美亚洲二区| 在线观看人妻少妇| 国产色婷婷99| 亚洲国产精品999| 狠狠精品人妻久久久久久综合| 蜜桃久久精品国产亚洲av| 久久精品国产鲁丝片午夜精品| 免费黄频网站在线观看国产| 久久婷婷青草| 国产伦理片在线播放av一区| 在线精品无人区一区二区三 | 国产伦精品一区二区三区视频9| 熟女电影av网| 亚洲成色77777| 久久久欧美国产精品| 中国美白少妇内射xxxbb| 久久鲁丝午夜福利片| 国产av精品麻豆| 永久免费av网站大全| 日韩一本色道免费dvd| 国产精品偷伦视频观看了| 免费高清在线观看视频在线观看| 国产一区二区三区av在线| 亚洲怡红院男人天堂| 国产精品国产三级国产av玫瑰| 国产男女内射视频| 男女边吃奶边做爰视频| 日韩强制内射视频| 国产av国产精品国产| 欧美成人一区二区免费高清观看| 国产精品久久久久成人av| 亚洲人与动物交配视频| 国产中年淑女户外野战色| 国产精品蜜桃在线观看| 亚洲不卡免费看| 国产日韩欧美在线精品| 欧美高清成人免费视频www| 精品酒店卫生间| 熟女电影av网| 寂寞人妻少妇视频99o| 国产高潮美女av| 亚洲欧美精品专区久久| av国产免费在线观看| 国产一区有黄有色的免费视频| 国产欧美日韩一区二区三区在线 | 久久女婷五月综合色啪小说| 国产在线免费精品| 高清午夜精品一区二区三区| 欧美精品一区二区免费开放| 国产成人91sexporn| 成人国产av品久久久| 国产欧美日韩一区二区三区在线 | 日韩一本色道免费dvd| 黄片wwwwww| 中国三级夫妇交换| 91久久精品国产一区二区三区| 91狼人影院| 99精国产麻豆久久婷婷| 亚洲av中文av极速乱| 国产 一区精品| 激情五月婷婷亚洲| 一区二区三区免费毛片| av不卡在线播放| 精品99又大又爽又粗少妇毛片| 精品视频人人做人人爽| 色综合色国产| 亚洲精品日韩在线中文字幕| 搡女人真爽免费视频火全软件| 国产精品免费大片| 久久综合国产亚洲精品| 亚洲成人手机| 久久人人爽人人片av| 久久精品国产a三级三级三级| 亚洲第一av免费看| 国产精品99久久久久久久久| 高清午夜精品一区二区三区| 一区在线观看完整版| 国产一区亚洲一区在线观看| 国产视频首页在线观看| 国产免费视频播放在线视频| 亚洲欧美一区二区三区国产| 成年av动漫网址| 亚洲人成网站在线观看播放| 人妻制服诱惑在线中文字幕| 一级毛片黄色毛片免费观看视频| 亚洲成人中文字幕在线播放| 高清av免费在线| 亚洲高清免费不卡视频| 韩国av在线不卡| 免费少妇av软件| 黄色配什么色好看| 国产免费福利视频在线观看| 国产真实伦视频高清在线观看| 爱豆传媒免费全集在线观看| 国产av精品麻豆| 久久女婷五月综合色啪小说| 亚洲av日韩在线播放| 99热国产这里只有精品6| 啦啦啦在线观看免费高清www| 国产综合精华液| 亚洲欧美清纯卡通| 色视频www国产| 国产日韩欧美亚洲二区| 日韩在线高清观看一区二区三区| 久久久久久久久久人人人人人人| 欧美精品一区二区大全| 一区在线观看完整版| 国产精品免费大片| 91精品国产国语对白视频| 国产片特级美女逼逼视频| 国产深夜福利视频在线观看| av视频免费观看在线观看| 一个人看的www免费观看视频| 两个人的视频大全免费| 3wmmmm亚洲av在线观看| 一级毛片电影观看| 欧美日韩国产mv在线观看视频 | 寂寞人妻少妇视频99o| 精品人妻视频免费看| 国产一区亚洲一区在线观看| 超碰av人人做人人爽久久| 日韩免费高清中文字幕av| 国产精品伦人一区二区| 联通29元200g的流量卡| 国产精品.久久久| 亚洲av中文av极速乱| 国产精品人妻久久久影院| 亚洲色图综合在线观看| 高清欧美精品videossex| 麻豆精品久久久久久蜜桃| 伊人久久国产一区二区| 亚洲最大成人中文| 在线观看av片永久免费下载| 亚洲综合色惰| 深爱激情五月婷婷| 国产淫片久久久久久久久| 一级av片app| 午夜免费观看性视频| 国产有黄有色有爽视频| 国产一区二区在线观看日韩| 亚洲国产欧美人成| 毛片女人毛片| 香蕉精品网在线| 秋霞伦理黄片| 亚洲经典国产精华液单| 男人舔奶头视频| 亚洲国产av新网站| 久久99热这里只频精品6学生| 韩国av在线不卡| 亚洲av中文字字幕乱码综合| 人体艺术视频欧美日本| 国产真实伦视频高清在线观看| 18禁裸乳无遮挡动漫免费视频| 久久韩国三级中文字幕| 热re99久久精品国产66热6| 成人午夜精彩视频在线观看| 国产熟女欧美一区二区| 少妇人妻一区二区三区视频| 久久久国产一区二区| 一二三四中文在线观看免费高清| 精品人妻熟女av久视频| 久久精品国产鲁丝片午夜精品| 久久久久久久久久成人| 亚洲精品久久久久久婷婷小说| 国产男女内射视频| 亚洲va在线va天堂va国产| av线在线观看网站| 九草在线视频观看| 日本与韩国留学比较| 欧美精品国产亚洲| 高清不卡的av网站| av不卡在线播放| 欧美成人午夜免费资源| 国产伦理片在线播放av一区| av播播在线观看一区| 亚洲精品乱久久久久久| 久久97久久精品| 黄色视频在线播放观看不卡| 精品亚洲成国产av| 免费大片黄手机在线观看| 国产黄频视频在线观看| 亚洲欧洲国产日韩| 又粗又硬又长又爽又黄的视频| 亚洲国产欧美人成| 国产成人免费无遮挡视频| 欧美日韩亚洲高清精品| 国产在线视频一区二区| 免费人妻精品一区二区三区视频| 激情五月婷婷亚洲| 国产黄色视频一区二区在线观看| 国产淫语在线视频| 99热这里只有是精品50| 青春草亚洲视频在线观看| av天堂中文字幕网| 日韩av免费高清视频| 欧美成人午夜免费资源| 精品一区二区三卡| 99re6热这里在线精品视频| 人妻一区二区av| 国产黄色免费在线视频| 国产亚洲午夜精品一区二区久久| 亚洲精品日本国产第一区| av在线app专区| 人人妻人人爽人人添夜夜欢视频 | 久久人人爽av亚洲精品天堂 | 国产日韩欧美在线精品| 国产成人午夜福利电影在线观看| 亚洲国产精品999| 久久久久久久久久人人人人人人| 国产乱人视频| 久久久久久伊人网av| 超碰av人人做人人爽久久| av女优亚洲男人天堂| 精品亚洲乱码少妇综合久久| 欧美日韩综合久久久久久| 亚洲天堂av无毛| 国产免费视频播放在线视频| 妹子高潮喷水视频| 国产成人精品一,二区| 纵有疾风起免费观看全集完整版| 一区二区av电影网| 视频中文字幕在线观看| 晚上一个人看的免费电影| 大香蕉久久网| 精品国产乱码久久久久久小说| 97超视频在线观看视频| 国国产精品蜜臀av免费| 亚洲成人手机| 麻豆成人午夜福利视频| 中文在线观看免费www的网站| 亚洲欧美日韩东京热| 久久精品人妻少妇| 国产精品人妻久久久影院| 91精品国产国语对白视频| a级毛色黄片| 国产精品99久久久久久久久| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品视频女| 欧美精品国产亚洲| 少妇猛男粗大的猛烈进出视频| 天天躁日日操中文字幕| 在现免费观看毛片| 美女cb高潮喷水在线观看| 2021少妇久久久久久久久久久| 精品一区二区三区视频在线| 一级av片app| 精品一品国产午夜福利视频| 久久久久久久久久成人| 国产有黄有色有爽视频| 女人久久www免费人成看片| 最近中文字幕2019免费版| 一级毛片 在线播放| 国产精品久久久久成人av| 精品亚洲成国产av| 欧美日韩一区二区视频在线观看视频在线| 天天躁夜夜躁狠狠久久av| 国产精品秋霞免费鲁丝片| 久久人人爽av亚洲精品天堂 | 国产欧美日韩精品一区二区| 三级经典国产精品| 深夜a级毛片| 亚洲精品色激情综合| 18禁在线播放成人免费| 久久人人爽av亚洲精品天堂 | 日本欧美视频一区| 肉色欧美久久久久久久蜜桃| 亚洲欧美精品专区久久| 成人特级av手机在线观看| 久久午夜福利片| 青春草国产在线视频| 伊人久久国产一区二区| 另类亚洲欧美激情| 全区人妻精品视频| 寂寞人妻少妇视频99o| 日韩av在线免费看完整版不卡| 日本色播在线视频| 一本—道久久a久久精品蜜桃钙片| 久久6这里有精品| 国产深夜福利视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 午夜免费鲁丝| 丝瓜视频免费看黄片| 亚洲欧美日韩东京热| 亚洲经典国产精华液单| 深夜a级毛片| 日本午夜av视频| 97超视频在线观看视频| 亚洲色图综合在线观看| 午夜福利影视在线免费观看| 亚洲精品国产av蜜桃| 80岁老熟妇乱子伦牲交| 制服丝袜香蕉在线| 国产一区二区在线观看日韩| 丰满迷人的少妇在线观看| 最近的中文字幕免费完整| 免费大片黄手机在线观看| 国产精品一及| 插阴视频在线观看视频| 久久久久久人妻| 少妇精品久久久久久久| 97超碰精品成人国产| 国产高清不卡午夜福利| 最黄视频免费看| 深爱激情五月婷婷| 国内精品宾馆在线| 久久久久久久国产电影| 日韩成人伦理影院| 纵有疾风起免费观看全集完整版| 精品国产三级普通话版| 久久久久人妻精品一区果冻| 黄色视频在线播放观看不卡| 国产高清三级在线| 女性生殖器流出的白浆| freevideosex欧美| 日韩大片免费观看网站| 天美传媒精品一区二区| 麻豆乱淫一区二区| 青春草视频在线免费观看| 熟女电影av网| 最黄视频免费看| 青青草视频在线视频观看| 亚洲国产精品成人久久小说| 中文在线观看免费www的网站| 麻豆成人av视频| 婷婷色麻豆天堂久久| 日本午夜av视频| 欧美zozozo另类| 91精品国产九色| 免费大片黄手机在线观看| 亚洲精品日韩av片在线观看| 最近最新中文字幕免费大全7| 日韩强制内射视频| 国精品久久久久久国模美| 啦啦啦啦在线视频资源| 免费看av在线观看网站| h日本视频在线播放| 我的老师免费观看完整版| 亚洲国产欧美人成| 久久久色成人| 国产精品国产av在线观看| 欧美亚洲 丝袜 人妻 在线| 日本av手机在线免费观看| 色视频www国产| 最近中文字幕2019免费版| 国产精品福利在线免费观看| 久久久久人妻精品一区果冻| 韩国av在线不卡| 国产午夜精品一二区理论片| av网站免费在线观看视频| 久久久久人妻精品一区果冻| 亚洲va在线va天堂va国产| 亚洲无线观看免费| 日产精品乱码卡一卡2卡三| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品日本国产第一区| 联通29元200g的流量卡| 日韩人妻高清精品专区| 一级片'在线观看视频| av女优亚洲男人天堂| 欧美极品一区二区三区四区| 另类亚洲欧美激情| 自拍偷自拍亚洲精品老妇| 国产欧美另类精品又又久久亚洲欧美| 久久亚洲国产成人精品v| 久久热精品热| 亚洲av欧美aⅴ国产| 十分钟在线观看高清视频www | 97精品久久久久久久久久精品| 欧美高清性xxxxhd video| 看免费成人av毛片| 亚洲精品日韩在线中文字幕| 欧美日韩国产mv在线观看视频 | 国产伦精品一区二区三区四那| 国产在线男女| 五月天丁香电影| 人妻少妇偷人精品九色| 直男gayav资源| 高清视频免费观看一区二区| 国产精品偷伦视频观看了| 久久久久久久久大av| 好男人视频免费观看在线| 涩涩av久久男人的天堂| 日韩人妻高清精品专区| 日本午夜av视频| 嫩草影院入口| 久久久久久久久久久丰满| 欧美xxⅹ黑人| 七月丁香在线播放| 男的添女的下面高潮视频| 中文字幕av成人在线电影| 国产精品偷伦视频观看了| 亚洲av中文av极速乱| 街头女战士在线观看网站| 男女国产视频网站| 中文字幕精品免费在线观看视频 | 国产成人精品福利久久| 国产精品福利在线免费观看| 国产精品三级大全| 啦啦啦啦在线视频资源| 岛国毛片在线播放| 日本猛色少妇xxxxx猛交久久| 成人无遮挡网站| 一区二区三区四区激情视频| 日本午夜av视频| 国模一区二区三区四区视频| 国产一区二区在线观看日韩| 能在线免费看毛片的网站| 欧美日韩国产mv在线观看视频 | 日本免费在线观看一区| 亚洲欧美成人综合另类久久久| 国产av国产精品国产| 亚洲国产精品专区欧美| 亚洲av不卡在线观看| 韩国高清视频一区二区三区| 国产v大片淫在线免费观看| 最后的刺客免费高清国语| 久久国产精品男人的天堂亚洲 | 一个人看的www免费观看视频| 欧美另类一区| 舔av片在线| 日韩免费高清中文字幕av| 久久国产精品男人的天堂亚洲 | 亚洲欧洲日产国产| a 毛片基地| 国产伦在线观看视频一区| 你懂的网址亚洲精品在线观看| 日韩欧美 国产精品| 啦啦啦视频在线资源免费观看| videossex国产| 成人二区视频| 亚洲精品成人av观看孕妇| 亚洲av二区三区四区| 国产乱人视频| av国产久精品久网站免费入址| 亚洲精品日本国产第一区| 91精品一卡2卡3卡4卡| www.av在线官网国产| 波野结衣二区三区在线| 日本vs欧美在线观看视频 | 亚洲内射少妇av| 22中文网久久字幕| 亚洲精品国产色婷婷电影| 日韩一区二区三区影片| 极品教师在线视频| av在线蜜桃| 97在线视频观看| 韩国av在线不卡| 男的添女的下面高潮视频| 久久国产精品大桥未久av | 欧美激情国产日韩精品一区| 免费高清在线观看视频在线观看| 亚洲一级一片aⅴ在线观看| 精品久久久久久久久av| 国产69精品久久久久777片| 精品亚洲乱码少妇综合久久| 亚洲电影在线观看av| 成人亚洲精品一区在线观看 | 蜜桃亚洲精品一区二区三区| 日本黄色日本黄色录像| 欧美性感艳星| 亚洲精品国产av成人精品| 日韩成人伦理影院| 亚洲精品aⅴ在线观看| 午夜福利在线在线| 精品久久久久久久末码| 男人添女人高潮全过程视频| av播播在线观看一区| 亚洲伊人久久精品综合| 汤姆久久久久久久影院中文字幕| 国产免费视频播放在线视频| 插阴视频在线观看视频| 国产成人一区二区在线| av播播在线观看一区| 国内揄拍国产精品人妻在线| 少妇裸体淫交视频免费看高清| 欧美一区二区亚洲| av在线app专区| 日韩国内少妇激情av| 亚洲性久久影院| 日本午夜av视频| 男人舔奶头视频| 熟女电影av网| 久久久久久九九精品二区国产| 插阴视频在线观看视频| 午夜福利影视在线免费观看| 久久久久久久久久人人人人人人| 七月丁香在线播放| 晚上一个人看的免费电影| 国产在线免费精品| 2018国产大陆天天弄谢| 免费看av在线观看网站| 秋霞伦理黄片| 只有这里有精品99| 精品一区二区三区视频在线| 成年女人在线观看亚洲视频| 建设人人有责人人尽责人人享有的 | 高清av免费在线| 97在线人人人人妻| 九九在线视频观看精品| 欧美性感艳星| 3wmmmm亚洲av在线观看| 男女边摸边吃奶| 在线观看免费高清a一片| 久久婷婷青草| 精品一区二区免费观看| 久久久久网色| 亚洲成色77777| 少妇人妻久久综合中文| 午夜激情久久久久久久| 中文乱码字字幕精品一区二区三区| 免费观看性生交大片5| 亚洲av成人精品一区久久| 男的添女的下面高潮视频| 精品久久久精品久久久| 女的被弄到高潮叫床怎么办| 欧美丝袜亚洲另类| 久久久久久久久久久免费av| 在线免费观看不下载黄p国产| 国产免费一区二区三区四区乱码| 中文字幕久久专区| 中文天堂在线官网| 18禁在线播放成人免费| 婷婷色av中文字幕| 日韩av在线免费看完整版不卡| 亚洲精品,欧美精品| 黄色日韩在线| 久久久久久久久大av| 我要看日韩黄色一级片| 熟妇人妻不卡中文字幕| 午夜福利高清视频| 午夜福利在线在线| 色婷婷久久久亚洲欧美| 亚洲av在线观看美女高潮| 久久人妻熟女aⅴ| 女人十人毛片免费观看3o分钟| 美女福利国产在线 | 嫩草影院新地址| 国产高清三级在线| 不卡视频在线观看欧美| 国产亚洲91精品色在线| 国产亚洲一区二区精品| 1000部很黄的大片| 国产亚洲5aaaaa淫片| 最后的刺客免费高清国语| av国产久精品久网站免费入址|