• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Three Sizes of Sliding Windows on Principle Component Analysis Fault Detection of Air Conditioning Systems

    2022-03-08 13:02:56YANGXuebin楊學賓MAYanyun馬艷云HERuru何如如WANGJiLUOWenjun羅雯軍

    YANG Xuebin(楊學賓), MA Yanyun(馬艷云), HE Ruru(何如如), WANG Ji(王 吉), LUO Wenjun(羅雯軍)

    1 College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China2 Shanghai Division, China Ship Development and Design Center, Shanghai 201108, China

    Abstract: Principal component analysis(PCA) has been already employed for fault detection of air conditioning systems. The sliding window, which is composed of some parameters satisfying with thermal load balance, can select the target historical fault-free reference data as the template which is similar to the current snapshot data. The size of sliding window is usually given according to empirical values, while the influence of different sizes of sliding windows on fault detection of an air conditioning system is not further studied. The air conditioning system is a dynamic response process, and the operating parameters change with the change of the load, while the response of the controller is delayed. In a variable air volume(VAV) air conditioning system controlled by the total air volume method, in order to ensure sufficient response time, 30 data points are selected first, and then their multiples are selected. Three different sizes of sliding windows with 30, 60 and 90 data points are applied to compare the fault detection effect in this paper. The results show that if the size of the sliding window is 60 data points, the average fault-free detection ratio is 80.17% in fault-free testing days, and the average fault detection ratio is 88.47% in faulty testing days.

    Key words: sliding window; principal component analysis(PCA); fault detection; sensitivity analysis; air conditioning system

    Introduction

    Air handling units(AHUs) are an important part of air conditioning systems. Their operating condition significantly affects the system performance and thermal comfort of heating, ventilating and air conditioning systems. Unfortunately, many faults from sensors, controllers, filters, fans or even coils could affect the normal operation of AHU system and could increase energy consumption.

    Many researchers have proposed various fault detection methods to solve the problem[1-2]. Principal component analysis(PCA) method based on multivariate statistics has been widely employed in the field of automated fault detection and diagnosis(AFDD) of AHU[3-4]. Considering the data preprocessing problem of PCA method, Li and Wen[5]proposed a pattern matching method, which adopted sliding windows to search for the historical data windows similar to the current snapshot data. One of the important problems was the selection of training data for PCA method. The training data should be selected accurately or concisely to improve the sensitivity of fault detection. In addition, some measuring errors or system operation uncertainties, might reduce the fault detection performance of PCA method.

    The sliding window and sliding speed has been employed in some published literatures. Singhal and Seborg[6-7]used the sliding window with 1 024 data points, and selected 1/10, 1/5, 1/3 and 1/2 of the sliding window size as the sliding speedw. The performance of pattern matching decreased slowly with the increase ofw, and it was suggested thatwcould be 1/10 to 1/5 of the window size, which could match very effectively. Lietal.[8]proposed a method to select the length of time window in dynamic PCA, and found that compared with the traditional PCA method, the dynamic PCA method with appropriate time window length and sliding window width could detect and identify faults better. Ayechetal.[9]selected fixed sliding window sizes with 40, 60, 80 data points, and compared with their PCA fault detection effects based on adaptive sliding windows. Deng and Tian[10]proposed a method of fault pattern recognition, the size of sliding window was 10-60 data points, and pattern recognition was carried out in the selected 300 sample observations. In Ref. [11], the sliding window of 50 data points was employed to simulate and test five kinds of faulty pattern data including 700 samples. Li and Wen[5]adopted the sliding window with 30 data points, and the sliding speedwwas from 1/10 to 1/5 of the sliding window size according to the empirical value. They tested the static pressure sensor bias, outdoor air damper stuck, cooling coil air side fouling, heating coil valve leakage and other faults of the AHU system, and achieved remarkable fault detection effect. Chen and Wen[12]used the sliding window with 30 data points to search for similar historical data. Sheriffetal.[13]proposed a sliding window generalized likelihood ratio detection method based on multi-scale PCA, and compared it with the traditional PCA method. Sukhanovetal.[14]proposed a real-time pattern matching method to support multiple templates. The window size was dynamic, and it showed better performance than other pattern matching methods. Zhuangetal.[15]studied dynamic functional connectivity based on the sliding window method, calculated and verified the window size of single scale time-dependent in dynamic functional connectivity analysis.

    It is crucial to evaluate the fault detection effect of pattern matching combined with PCA method. Singhal and Seborg[16]applied the accuracy of candidate pool, searching efficiency and their average to evaluate the effectiveness of pattern matching method. Many researchers[17-20]employed fault detection ratio to express the percent whether the squared prediction error(SPE)Eswas greater than the threshold. Some researchers[21-22]adopted evaluation indexes such as fault detection accuracy, false alarm rate, and compared the fault time to evaluate the sensitivity of fault detection.

    From the above research, literatures have seldom investigated on the optimal sliding window size especially for air conditioning systems. Most of them applied the sliding window with a given size, but did not further study the influence of different sliding window sizes on fault detection. In this paper, based on the field measuring data of a variable air volume(VAV) air conditioning system controlled by total air volume method, three different sizes of sliding windows with 30, 60 and 90 data points are selected, and the fault detection ratio is taken as the evaluation index to compare the influence of different sizes of sliding windows on the PCA fault detection of an air conditioning system.

    1 Fault Detection Method Based on Different Sliding Window Sizes

    The fault detection process based on different sizes of the sliding window is shown in Fig. 1. The method is divided into two stages. The first stage is the threshold training stage, which employs three different sizes of sliding windows to search for the historical fault-free reference data similar to the current snapshot data. The similarity factor values are sorted in a descending order, and the top five data windows with the highest similarity factor value are selected into the candidate pool. The second stage is the online detection stage, which collects the measuring data, selects the current snapshot data window, carries on the standardized processing, calculates the value of SPE, also known asQstatistics, and compares the SPE value with the thresholdδ. If the SPE value is greater thanδ, a fault is flagged.

    Fig. 1 Flow chart of the fault detection method based on different sliding window sizes

    1.1 Sliding window

    The sliding window moves on the historical fault-free reference data, and the sliding speedwis from 1/10 to 1/5 of the sliding window size. One similarity factor for each time point is calculated, and all the similarity factors are sorted in a descending order. The historical fault-free data windows with the largest similarity factor are selected to form the historical fault-free reference data. If duplicate data appear in the reference data, new data from the next top data windows will be selected to replace the duplicate data.

    1.2 PCA similarity factor

    The similarity factor is an important measuring parameter for pattern matching, which is used to characterize the similarity between current snapshot data and historical fault-free reference data. The current snapshot data are defined asSand the historical fault-free reference data are defined asH. Both are composed ofnvariables andmdata points. Suppose thatk1andk2are the principal components ofSandH, respectively, the firstkprincipal components are selected to form the eigenvector matrices ofLandM, and the PCA similarity factor is calculated by

    (1)

    whereSprepresents PCA similarity factor, tr is a computer term to calculate the sum of diagonal elements of a two-dimensional square matrix,Ldenotes principal component space ofS,Mmeans principal component space ofH, andkis the number of principal components.

    1.3 Fault detection ratio

    If SPE value of the data point is greater than thresholdδ, it means that the data point is faulty, otherwise it is fault-free. Fault detection ratioRis the ratio of the number of faulty data points to the total number of data points in the current snapshot data window. Since the field measuring data in this paper is collected per minute, the fault detection ratio can also be expressed by the time proportion of SPE exceeding the thresholdδin a period of time. The fault detection ratioRis calculated by

    (2)

    whereNfdenotes the number of time points which detects a fault andNmeans total number of time points.

    2 Results and Discussion

    The field measured data of 5 fault-free testing days and 18 faulty testing days were employed to explore the influence of three sizes of sliding windows. The data were recorded from 9:00 to 17:00 every day. The sizes of the sliding windows are 30, 60 and 90 data points, respectively, which are the same as those of the current snapshot data windows. The sliding speed is 1/6 of the size of a data window according to the empirical value. The sliding window is adopted to accurately reflect the time-variant air conditioning systems.

    2.1 Fault-free condition

    For the fault-free test, all the fault-free data other than the current snapshot data are taken as the historical fault-free dataset. July 25 and September 7 are taken as the examples of fault-free testing days to study the influence of sliding window sizes on PCA fault detection.

    2.1.1Fault-freetest1

    For the fault-free testing day on July 25, the fault detection results of different sliding window sizes are shown in Fig. 2. The values of fault detection ratios are labelled during each time period. The average fault detection ratio is 56.04% if the sliding window is 30 data points. The fault detection ratios of 9:00-10:00, 10:30-11:00, 11:30-12:30, 14:00-14:30, 15:00-16:00 and 16:30-17:00 are higher than 83.33%. Some fault is falsely detected in these four and a half hours, and no fault is detected in the rest of the time. The average fault detection ratio is 25.21% if the sliding window is 60 data points, and the fault detection ratios of 9:00-11:00 are all 100.00%. The fault is detected in these two hours, and no fault is detected in the rest of the time. The average fault detection ratio is 20.00% if the sliding window is 90 data points, and the fault detection ratio of 9:00-10:30 is 67.78%. The fault is detected within one and a half hours, and no fault is detected in the rest of the time.

    Fig. 2 Fault-free detection results of different sizes of sliding windows on July 25: (a) 30 data points; (b) 60 data points; (c) 90 data points

    2.1.2Fault-freetest2

    For the fault-free testing on September 7, the fault detection results of different sliding window sizes are shown in Fig. 3. The average fault detection ratio is 15.21% if the sliding window is 30 data points, and the fault detection ratios of 9:00-9:30 and 16:00-16:30 are 43.33% and 50.00%, respectively. The fault detection ratio of 10:30-11:00 is 100.00%, and no fault is detected in the rest of the time. The average fault detection ratio is 15.83% if the sliding window is 60 data points, and the fault detection ratio of 12:00-13:00 is 100.00%. The fault is detected in this hour and no fault is detected in the rest of the time. The average fault detection ratio is 35.33% if the sliding window is 90 data points, and the fault detection ratios of 9:00-10:30 and 12:00-13:30 are 72.22% and 100.00%, respectively. The fault is detected in these three hours, and no fault is detected in the rest of the time.

    Fig. 3 Fault-free detection results of different sizes of sliding windows on September 7:(a) 30 data points;(b) 60 data points;(c) 90 data points

    2.2 Fault condition

    For the fault test, all the fault-free data are taken as the historical fault-free datasets. Two testing days on July 29 and August 25 are taken as the examples to illustrate the influence of sliding window sizes on PCA fault detection.

    2.2.1AHUcoolingcoilvalvestuckfaulttest

    For the fault testing day on July 29 under the fault of AHU cooling coil valve stuck at 15% opening, the fault detection results are shown in Fig. 4. The average fault detection ratio is 88.54% if the sliding window is 30 data points. The fault detection ratios of 16:00-17:00 are lower than 16.67%. No or less fault is detected in these two half-hour, and the fault can be detected in the rest of the time. The average fault detection ratio is 93.54% if the sliding window is 60 data points, and the fault detection ratio of 16:00-17:00 is 48.33%. The fault can be detected in the rest of the time. The average fault detection ratio is 76.00% if the sliding window is 90 data points. The fault detection ratio of 15:00-16:30 is 24.44%, and no fault is detected in these one and a half hours. The fault detection ratio of 12:00-13:30 is 56.67%. The fault can be detected in the rest of the time.

    2.2.2Supplyairtemperaturesensorfaulttest

    For the fault testing day on August 25, the system had a fault of supply air temperature sensor. As shown in Fig. 5, the average fault detection ratio is 92.92% if the sliding window is 30 data points. The fault detection ratio of 14:30-15:00 is 33.33%, and no fault is detected in this half an hour. The fault can be detected in the rest of the time. The average fault detection ratio is 98.75% if the sliding window is 60 data points, and the fault can be detected all the time. The average fault detection ratio is 93.00% if the sliding window is 90 data points, and the fault can also be detected all the time.

    Fig. 4 Fault detection results of different sizes of sliding windows on July 29:(a) 30 data points;(b) 60 data points;(c) 90 data points

    Fig. 5 Fault detection results of different sizes of sliding windows on August 25:(a) 30 data points;(b) 60 data points;(c) 90 data points

    3 Performance Evaluation

    The size of the sliding window might have significant effect on PCA fault detection. Table 1 and Table 2 show the fault-free detection results and the fault detection results with different sliding window sizes. If the size of the sliding window is 60 data points, the average fault-free detection ratio is 80.17% in fault-free testing days and the average fault detection ratio is 88.47% in faulty testing days. The fault detection performance is the best one among three sizes of sliding windows.

    Table 1 Fault-free detection results with different sliding window sizes

    Table 2 Fault detection results with different sliding window sizes

    4 Conclusions

    This study explores the influence of three sizes of sliding windows on PCA fault detection results. The tests are conducted by the measuring data of a VAV air conditioning system. The fault detection ratio is used to evaluate the detection performance.

    (1) If the size of the sliding window is defined as 60 data points, the average fault-free detection ratio is 80.17% in fault-free testing days, and the average fault detection ratio is 88.47% in faulty testing days.

    (2) For the actual air conditioning system, the size of data window should be selected appropriately, which is beneficial to identify fault-free and fault status more efficiently and accurately, and thus improve the PCA fault detection performance.

    真人一进一出gif抽搐免费| 99在线视频只有这里精品首页| 五月伊人婷婷丁香| 成人国产综合亚洲| 在线国产一区二区在线| 久久草成人影院| 男插女下体视频免费在线播放| 国产一区二区亚洲精品在线观看| 国产三级在线视频| 日本黄色视频三级网站网址| 日韩,欧美,国产一区二区三区 | 亚洲熟妇中文字幕五十中出| 22中文网久久字幕| 在线天堂最新版资源| netflix在线观看网站| 国产精品永久免费网站| 乱系列少妇在线播放| 一区二区三区四区激情视频 | 99精品久久久久人妻精品| 免费观看人在逋| 久久久精品欧美日韩精品| АⅤ资源中文在线天堂| 日韩中字成人| 在线观看av片永久免费下载| .国产精品久久| 国产精品亚洲美女久久久| 中文字幕久久专区| 九九爱精品视频在线观看| 两人在一起打扑克的视频| a在线观看视频网站| 亚洲av日韩精品久久久久久密| 男女做爰动态图高潮gif福利片| 自拍偷自拍亚洲精品老妇| 中文字幕av成人在线电影| 久久精品国产亚洲av涩爱 | 人人妻人人澡欧美一区二区| 国产精品久久久久久久电影| 国产精品不卡视频一区二区| 国产高清三级在线| 国产视频内射| 亚洲最大成人手机在线| 毛片一级片免费看久久久久 | 在现免费观看毛片| 国产成人影院久久av| 久久久精品欧美日韩精品| 亚洲国产精品久久男人天堂| 欧美zozozo另类| 超碰av人人做人人爽久久| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产精品合色在线| netflix在线观看网站| 最近最新中文字幕大全电影3| 精品无人区乱码1区二区| 毛片女人毛片| 18禁裸乳无遮挡免费网站照片| 欧美在线一区亚洲| 俄罗斯特黄特色一大片| 91久久精品国产一区二区三区| 国产精品日韩av在线免费观看| 成年女人永久免费观看视频| 国产精品,欧美在线| 热99在线观看视频| 久久精品久久久久久噜噜老黄 | 午夜福利在线在线| 看片在线看免费视频| 欧美激情久久久久久爽电影| 日韩欧美在线二视频| 日本一二三区视频观看| 国产爱豆传媒在线观看| 中文字幕高清在线视频| 又黄又爽又刺激的免费视频.| 欧美极品一区二区三区四区| 色av中文字幕| 一级av片app| 女人被狂操c到高潮| 亚洲国产色片| 精品久久久久久久末码| 国产黄色小视频在线观看| 色哟哟·www| 91麻豆精品激情在线观看国产| 黄片wwwwww| 国产一区二区三区av在线 | 听说在线观看完整版免费高清| 97超视频在线观看视频| 欧美日韩精品成人综合77777| 免费看a级黄色片| 欧美日本亚洲视频在线播放| 日韩一本色道免费dvd| 免费无遮挡裸体视频| 亚洲中文日韩欧美视频| 国产精品电影一区二区三区| 免费在线观看日本一区| 中文字幕久久专区| 色尼玛亚洲综合影院| 一级av片app| 国产精品久久久久久久久免| 男人狂女人下面高潮的视频| 免费在线观看成人毛片| 欧美xxxx性猛交bbbb| av女优亚洲男人天堂| 国内精品宾馆在线| 日本欧美国产在线视频| 嫁个100分男人电影在线观看| 精品久久久久久久末码| 成人午夜高清在线视频| 久久精品综合一区二区三区| 日本 av在线| 久久久久久伊人网av| 久久中文看片网| 国产91精品成人一区二区三区| 国产高清激情床上av| 少妇丰满av| 婷婷色综合大香蕉| 日本色播在线视频| 日韩欧美精品v在线| 无遮挡黄片免费观看| 亚洲自拍偷在线| 3wmmmm亚洲av在线观看| 精华霜和精华液先用哪个| 久久精品久久久久久噜噜老黄 | 中文资源天堂在线| 成人欧美大片| 午夜日韩欧美国产| 欧美高清成人免费视频www| 淫妇啪啪啪对白视频| 久久久久久久亚洲中文字幕| 精品午夜福利视频在线观看一区| aaaaa片日本免费| 在线免费十八禁| 九九热线精品视视频播放| 男女边吃奶边做爰视频| 乱人视频在线观看| 99九九线精品视频在线观看视频| 国产一区二区亚洲精品在线观看| 国产一区二区在线av高清观看| 有码 亚洲区| 国产精品女同一区二区软件 | 大又大粗又爽又黄少妇毛片口| 真实男女啪啪啪动态图| 国产在线精品亚洲第一网站| 亚洲在线自拍视频| 免费在线观看日本一区| 特级一级黄色大片| 久久久久国产精品人妻aⅴ院| 欧美不卡视频在线免费观看| 熟女电影av网| 自拍偷自拍亚洲精品老妇| 亚洲精品日韩av片在线观看| 久久精品国产自在天天线| 在线观看一区二区三区| 在线观看一区二区三区| 欧美三级亚洲精品| 999久久久精品免费观看国产| 免费在线观看影片大全网站| netflix在线观看网站| 尾随美女入室| 真实男女啪啪啪动态图| 国产精品人妻久久久久久| 亚洲最大成人中文| 亚洲人成网站在线播放欧美日韩| 亚洲成人久久性| 午夜福利18| 国产蜜桃级精品一区二区三区| 亚洲18禁久久av| 噜噜噜噜噜久久久久久91| 一区二区三区四区激情视频 | 国产伦在线观看视频一区| 又黄又爽又免费观看的视频| 国产午夜福利久久久久久| 午夜福利在线在线| 久久精品国产自在天天线| 亚洲av美国av| 日韩强制内射视频| 99国产精品一区二区蜜桃av| 夜夜爽天天搞| 国产麻豆成人av免费视频| 成人亚洲精品av一区二区| 精品久久久噜噜| 看黄色毛片网站| av福利片在线观看| 日韩一本色道免费dvd| 精品人妻偷拍中文字幕| 亚洲精品日韩av片在线观看| avwww免费| 天堂√8在线中文| 国产精品精品国产色婷婷| 欧美在线一区亚洲| 狂野欧美白嫩少妇大欣赏| 欧洲精品卡2卡3卡4卡5卡区| 国产av麻豆久久久久久久| 黄色日韩在线| 日本黄大片高清| 久久这里只有精品中国| 噜噜噜噜噜久久久久久91| 嫁个100分男人电影在线观看| 老司机午夜福利在线观看视频| 国产探花在线观看一区二区| 天天一区二区日本电影三级| 亚洲一区二区三区色噜噜| 久久精品国产自在天天线| 99在线人妻在线中文字幕| 国产精品女同一区二区软件 | 国产精品一区二区三区四区免费观看 | 国内精品久久久久久久电影| 级片在线观看| 亚洲,欧美,日韩| 1000部很黄的大片| www日本黄色视频网| 国产成人福利小说| 欧美成人一区二区免费高清观看| 乱系列少妇在线播放| 欧美极品一区二区三区四区| 久久久久久久久中文| av.在线天堂| 国产一区二区三区av在线 | 淫妇啪啪啪对白视频| 国产精品国产高清国产av| 此物有八面人人有两片| 草草在线视频免费看| 色哟哟·www| 久久久久国内视频| 精品无人区乱码1区二区| 久久人妻av系列| 亚洲最大成人中文| 亚洲av中文av极速乱 | 女人被狂操c到高潮| 久久久精品大字幕| 伊人久久精品亚洲午夜| 一进一出抽搐gif免费好疼| 午夜a级毛片| 十八禁网站免费在线| 日韩av在线大香蕉| 熟女电影av网| 国产男靠女视频免费网站| 精品一区二区三区人妻视频| 婷婷精品国产亚洲av| 白带黄色成豆腐渣| 91狼人影院| 啦啦啦韩国在线观看视频| 亚洲天堂国产精品一区在线| 免费黄网站久久成人精品| 亚洲人与动物交配视频| 亚洲国产色片| 国产欧美日韩一区二区精品| 久久国内精品自在自线图片| 午夜免费激情av| 久久久久九九精品影院| 成人无遮挡网站| 啪啪无遮挡十八禁网站| 99久久精品国产国产毛片| 亚洲欧美清纯卡通| 中亚洲国语对白在线视频| 特大巨黑吊av在线直播| 国产精品野战在线观看| 九九在线视频观看精品| 国产不卡一卡二| 最近视频中文字幕2019在线8| 国产淫片久久久久久久久| 久久久久精品国产欧美久久久| 成人高潮视频无遮挡免费网站| 亚洲av中文av极速乱 | 亚洲人成网站在线播| 国产亚洲精品av在线| 日本黄色视频三级网站网址| 久久亚洲精品不卡| 嫩草影院新地址| xxxwww97欧美| 波多野结衣巨乳人妻| 一区二区三区激情视频| 精品一区二区免费观看| 一区二区三区四区激情视频 | 日韩,欧美,国产一区二区三区 | 国产精品综合久久久久久久免费| 色吧在线观看| 91久久精品国产一区二区成人| 久久九九热精品免费| 精品人妻一区二区三区麻豆 | 欧美xxxx性猛交bbbb| 真实男女啪啪啪动态图| 国产精品1区2区在线观看.| 婷婷色综合大香蕉| 美女xxoo啪啪120秒动态图| 精品无人区乱码1区二区| 免费观看精品视频网站| 熟女电影av网| 我的女老师完整版在线观看| 天天躁日日操中文字幕| 亚洲人成网站在线播| 看片在线看免费视频| 我的老师免费观看完整版| 日韩欧美三级三区| 亚洲欧美清纯卡通| 日本一本二区三区精品| 免费观看在线日韩| 国产真实伦视频高清在线观看 | 小蜜桃在线观看免费完整版高清| 亚洲电影在线观看av| 日韩欧美三级三区| 18禁裸乳无遮挡免费网站照片| 又黄又爽又刺激的免费视频.| 亚洲专区国产一区二区| 搡女人真爽免费视频火全软件 | 搡老岳熟女国产| 亚洲无线在线观看| 在线看三级毛片| 欧美高清成人免费视频www| 日韩一本色道免费dvd| 天堂√8在线中文| 久久久久九九精品影院| 国产av一区在线观看免费| 国产白丝娇喘喷水9色精品| 黄片wwwwww| 欧美在线一区亚洲| 国产av一区在线观看免费| 在线观看免费视频日本深夜| 99热网站在线观看| 亚洲精品久久国产高清桃花| 99久久成人亚洲精品观看| 亚洲专区国产一区二区| 久久精品国产清高在天天线| 男插女下体视频免费在线播放| 国产aⅴ精品一区二区三区波| 成人特级黄色片久久久久久久| 天堂动漫精品| 人妻少妇偷人精品九色| 淫妇啪啪啪对白视频| 久久热精品热| 九九热线精品视视频播放| 国产中年淑女户外野战色| 国产成人一区二区在线| 91av网一区二区| 成人无遮挡网站| 成人美女网站在线观看视频| 午夜福利高清视频| 男女边吃奶边做爰视频| 亚洲人与动物交配视频| 国产精品亚洲美女久久久| 国产午夜精品久久久久久一区二区三区 | 美女被艹到高潮喷水动态| 人妻夜夜爽99麻豆av| 91久久精品国产一区二区三区| 两人在一起打扑克的视频| 日本熟妇午夜| 婷婷色综合大香蕉| 我要看日韩黄色一级片| 欧美丝袜亚洲另类 | 久久久久久大精品| 少妇人妻精品综合一区二区 | 国产一区二区三区av在线 | 国产精品电影一区二区三区| 成人av一区二区三区在线看| 91久久精品国产一区二区三区| 欧美丝袜亚洲另类 | 日本a在线网址| 欧美国产日韩亚洲一区| 全区人妻精品视频| 成年女人永久免费观看视频| 精品一区二区三区视频在线| 99热精品在线国产| 中文字幕av成人在线电影| 天美传媒精品一区二区| 午夜福利成人在线免费观看| 国产白丝娇喘喷水9色精品| 亚洲国产欧美人成| 国内精品久久久久久久电影| 欧美高清成人免费视频www| 国产午夜精品久久久久久一区二区三区 | 中文字幕av在线有码专区| 99国产极品粉嫩在线观看| 亚洲七黄色美女视频| 九色国产91popny在线| 成人毛片a级毛片在线播放| 综合色av麻豆| 又爽又黄无遮挡网站| 99久久九九国产精品国产免费| 亚洲一级一片aⅴ在线观看| 一边摸一边抽搐一进一小说| 亚洲三级黄色毛片| 亚洲真实伦在线观看| 两个人视频免费观看高清| 亚洲天堂国产精品一区在线| 12—13女人毛片做爰片一| 精品免费久久久久久久清纯| 久久人妻av系列| 日韩一本色道免费dvd| 搡老妇女老女人老熟妇| 在线播放国产精品三级| 国产免费一级a男人的天堂| 精品久久国产蜜桃| 精品午夜福利视频在线观看一区| 国产精品98久久久久久宅男小说| 欧美精品国产亚洲| 亚洲成a人片在线一区二区| 成年版毛片免费区| 国产欧美日韩精品亚洲av| 男人狂女人下面高潮的视频| 国语自产精品视频在线第100页| 国产免费av片在线观看野外av| 亚洲av免费高清在线观看| 国产精品不卡视频一区二区| 日韩中字成人| 真人一进一出gif抽搐免费| 国产精品99久久久久久久久| 国产伦精品一区二区三区视频9| 午夜免费激情av| 尾随美女入室| 美女黄网站色视频| 99热6这里只有精品| 在线a可以看的网站| 有码 亚洲区| 91麻豆av在线| 中文亚洲av片在线观看爽| 亚洲最大成人av| 国产久久久一区二区三区| 国内少妇人妻偷人精品xxx网站| 久久久久久久精品吃奶| 一本精品99久久精品77| 午夜福利在线在线| 国产成人影院久久av| 亚洲av中文字字幕乱码综合| 波多野结衣高清无吗| 最近视频中文字幕2019在线8| 男人和女人高潮做爰伦理| 别揉我奶头 嗯啊视频| 老熟妇乱子伦视频在线观看| 老熟妇仑乱视频hdxx| 国产精品国产三级国产av玫瑰| 国产亚洲91精品色在线| 在线观看午夜福利视频| 老司机福利观看| 亚洲午夜理论影院| 神马国产精品三级电影在线观看| 啪啪无遮挡十八禁网站| 又爽又黄a免费视频| 免费看a级黄色片| 国产淫片久久久久久久久| 白带黄色成豆腐渣| 久久久久久久午夜电影| 亚洲图色成人| 亚洲精品日韩av片在线观看| 精品欧美国产一区二区三| 久久精品国产亚洲av涩爱 | 日韩大尺度精品在线看网址| 少妇人妻一区二区三区视频| 99在线视频只有这里精品首页| 我要看日韩黄色一级片| 国产毛片a区久久久久| 色综合站精品国产| 蜜桃久久精品国产亚洲av| 日韩欧美国产一区二区入口| 深爱激情五月婷婷| 日日夜夜操网爽| 国产不卡一卡二| bbb黄色大片| 婷婷精品国产亚洲av| 欧美性感艳星| 欧美最黄视频在线播放免费| 日韩中字成人| 麻豆精品久久久久久蜜桃| 国产熟女欧美一区二区| 最近中文字幕高清免费大全6 | 亚洲欧美日韩高清专用| 久久久久国产精品人妻aⅴ院| 欧美性猛交黑人性爽| 国产高清三级在线| 亚洲精品成人久久久久久| 在现免费观看毛片| 国产白丝娇喘喷水9色精品| 18禁在线播放成人免费| 亚洲av成人精品一区久久| 男女下面进入的视频免费午夜| 国产精品美女特级片免费视频播放器| 亚洲av二区三区四区| 深夜精品福利| 亚洲国产色片| 国产熟女欧美一区二区| 99国产精品一区二区蜜桃av| 日韩大尺度精品在线看网址| 国产蜜桃级精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 一级a爱片免费观看的视频| 久久精品国产99精品国产亚洲性色| 22中文网久久字幕| 国产亚洲精品久久久com| .国产精品久久| 99热网站在线观看| 国产精品久久电影中文字幕| 国产男靠女视频免费网站| 最近在线观看免费完整版| 全区人妻精品视频| 久久久久国内视频| 成年版毛片免费区| 国产高清有码在线观看视频| 国产精品人妻久久久久久| 九色成人免费人妻av| 别揉我奶头 嗯啊视频| eeuss影院久久| 国产精品伦人一区二区| 日韩人妻高清精品专区| 真人一进一出gif抽搐免费| 精品不卡国产一区二区三区| 少妇裸体淫交视频免费看高清| 美女被艹到高潮喷水动态| 国产精品国产三级国产av玫瑰| 内地一区二区视频在线| 亚洲精品一区av在线观看| 国产成人aa在线观看| 人妻夜夜爽99麻豆av| 中国美女看黄片| 看免费成人av毛片| 搡老妇女老女人老熟妇| 国产亚洲精品av在线| a级毛片免费高清观看在线播放| 久久人妻av系列| 亚洲av.av天堂| 亚洲国产精品久久男人天堂| 美女大奶头视频| 欧美成人免费av一区二区三区| 亚洲真实伦在线观看| 国内精品久久久久久久电影| 国产免费一级a男人的天堂| 日本一二三区视频观看| 又紧又爽又黄一区二区| 国产高清有码在线观看视频| 成人永久免费在线观看视频| 91久久精品国产一区二区三区| 欧美最黄视频在线播放免费| 88av欧美| 久久精品国产亚洲av天美| 美女免费视频网站| 最新在线观看一区二区三区| 我的老师免费观看完整版| a在线观看视频网站| 国产精品亚洲一级av第二区| 毛片一级片免费看久久久久 | 国产精品福利在线免费观看| 人妻少妇偷人精品九色| 久久久久国产精品人妻aⅴ院| 日本a在线网址| 欧美+日韩+精品| 亚洲av一区综合| 中文资源天堂在线| 天堂√8在线中文| 又黄又爽又刺激的免费视频.| 亚洲av.av天堂| 午夜久久久久精精品| 国产免费av片在线观看野外av| 亚洲国产精品久久男人天堂| eeuss影院久久| 亚洲精品456在线播放app | 在线看三级毛片| av中文乱码字幕在线| 久99久视频精品免费| 久久热精品热| 少妇人妻精品综合一区二区 | 俺也久久电影网| 亚洲专区国产一区二区| 精品免费久久久久久久清纯| 国产探花极品一区二区| 国内毛片毛片毛片毛片毛片| 不卡视频在线观看欧美| 欧美成人性av电影在线观看| 欧美日韩瑟瑟在线播放| 久久6这里有精品| 国产精品国产高清国产av| 久久6这里有精品| 亚洲精品一卡2卡三卡4卡5卡| 欧美xxxx黑人xx丫x性爽| 人妻制服诱惑在线中文字幕| 舔av片在线| 熟妇人妻久久中文字幕3abv| 国产黄色小视频在线观看| 老司机深夜福利视频在线观看| 欧美日韩乱码在线| 日韩,欧美,国产一区二区三区 | a在线观看视频网站| 国产一级毛片七仙女欲春2| 午夜精品久久久久久毛片777| 久久热精品热| 午夜爱爱视频在线播放| 久久欧美精品欧美久久欧美| 欧美中文日本在线观看视频| eeuss影院久久| 日韩欧美国产在线观看| 88av欧美| 波多野结衣巨乳人妻| 亚洲av一区综合| 免费无遮挡裸体视频| www.www免费av| 麻豆久久精品国产亚洲av| 美女 人体艺术 gogo| 国产男靠女视频免费网站| 精品午夜福利视频在线观看一区| 久久精品久久久久久噜噜老黄 | 亚洲av中文字字幕乱码综合| 99九九线精品视频在线观看视频| 日韩国内少妇激情av| 久久亚洲真实| 国产精品久久久久久久电影| 一本一本综合久久| 亚洲av中文av极速乱 | 亚洲精品亚洲一区二区| 在线看三级毛片| 国产一区二区三区av在线 | 国产高清视频在线观看网站| 成人欧美大片| 我要搜黄色片| 欧美最新免费一区二区三区| 日本一二三区视频观看| 国产爱豆传媒在线观看| 亚洲成a人片在线一区二区| 色噜噜av男人的天堂激情| 久久久久精品国产欧美久久久| 亚洲av成人av| 国产亚洲精品综合一区在线观看|