• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular Modulation of Structure and Ferroelectric Performance of Poly(vinylidene fluoride) Free Standing Films from Aspects of Molecular Weight and Crystallization Temperature

    2022-03-08 13:11:32MENGNanLIAOYaozu廖耀祖
    關(guān)鍵詞:耀祖

    MENG Nan(孟 楠), LIAO Yaozu(廖耀祖)*

    1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China2 College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

    Abstract: Ferroelectric polymer poly(vinylidene fluoride) (PVDF) has received great research interest because of its special electroactive properties which are strongly dependent on the crystalline structures and in turn processing conditions. The effect of molecular weight and crystallization temperature on the micro-structure and macro-properties of PVDF films casted from dimethyl sulfoxide (DMSO) solvent is investigated. The results demonstrated that a low molecular weight (180 kg/mol) and a low evaporation temperature (50 ℃) favored the formation of polar γ-phase, while a high molecular weight (1 000 kg/mol) and a high evaporation temperature (125 ℃) made PVDF crystallize into α-phase. Compared with films casted at 50 ℃, films casted at 125 ℃ exhibited higher dielectric loss at a low electric field and less loss conductivity at a high electric field, which was due to their low degrees of crystallinity and fine evaporation of the solvent, respectively. PVDF with a molecular weight of 180 kg/mol casted at 125 ℃ exhibited the highest remnant polarization (0.062 C/m2) among all of the solution-processed films, being a result of high chain mobility resulted from the low molecular weight.

    Key words: ferroelectric polymer; poly(vinylidene fluoride)(PVDF); solution casting; remnant polarization; dielectric constant

    Introduction

    Recently, as an important category of functional polymers, poly(vinylidene fluoride) (PVDF) based ferroelectric polymers have raised great academic and industrial interests, being mainly ascribed to their excellent electroactive properties such as dielectric, piezoelectric, and ferroelectric properties[1-4]. These properties enable them to be utilized in various applications, especially in dielectric capacitors for energy storage, pressure sensors and touch screens, non-volatile memories,etc.[5-8].

    PVDF is a semi-crystalline polymer with at least four crystalline phases[9], arising from differently adopted chain conformations:α-phase with trans-gauche (TG) chain conformation (antiparallel packing of two adjacent chains),δ-phase with TG chain conformation (parallel packing of two adjacent chains),β-phase with all-trans (TTT) chain conformation, andγ-phase with mixed chain conformation of T3GT3G′. Among all of these phases,α-phase is non-polar because of the self-cancellation of dipole moment. When cooled from the melt, theα-plase usually forms and undergoes a phase transition toδ-phase at an applied electric field of 170 kV/mm, and further toβ-phase at 500 kV/mm[10-11]. Bothδ-phase andβ-phase are polar phases, and especiallyβ-phase has the highest dipole moment 7×10-30C·m perpendicular to the chain axis, and favourable piezoelectric and ferroelectric properties (piezoelectric coefficientd33: about 20-30 pC/N; spontaneous polarization: 0.13 C/m2)[9,12]. Treatingα-phase at a relatively high temperature (167-180 ℃) and high pressure (200 kPa) can transform the material toγ-phase[13].γ-phase can be also formed with the inclusions of specific fillers such as clays[14]or carbon materials[15]. Even thoughβ-phase exhibits the highest polarity, the transparency ofβ-PVDF is deteriorated on account of post-treatment[16], which makes the highly transparentγ-PVDF more attractive for practical applications. It was documented thatγ-phase could exhibit better dielectric energy storage properties compared toβ-phase because of the absence of early polarization saturation[17-18]. It was also reported that pureγ-phase could be formed when crystallized from the solvent[11]. However, there are controversies with respect to the formed crystalline phases using solution casting methods[19-20]. Herein, in order to clarify the crystalline structures of PVDF formed during solvent crystallization, PVDF with different molecular weightsMw(180, 534, and 1 000 kg/mol) is casted from dimethyl sulfoxide (DMSO) solvent at two different temperatures of 50 ℃ and 125 ℃. Through the characterization of structure, dielectric and ferroelectric properties, the crystallization features and ferroelectric properties of solution casting processed PVDF are analyzed.

    1 Experiments

    1.1 Materials

    PVDF (molecular weight: 180 kg/mol and 534 kg/mol) was purchased from Sigma-Aldrich Limited Liability Company(Missouri, USA). PVDF (Solef?5130; molecular weight: 1 000-1 200 kg/mol) was purchased from Solvay (Brussels, Belgium). DMSO (anhydrous, ≥99.9% in mass fraction, Sigma-Aldrich, Missouri, USA) with a density of 1.10 g/cm3was used as casting solvent.

    1.2 Preparation of PVDF films

    Appropriate amounts of PVDF powders or pellets were dissolved into DMSO to obtain a solution with a weight concentration of 10%. The mixtures were magnetically stirred at 70 ℃ for 2 h to fully dissolve PVDF. The solution was then casted on a glass petri dish, which was then incubated in a vacuum oven at 50 ℃ and 125 ℃ for at least 24 h. The thickness of solution casted(SC) films was about 50-100 μm. A list of films produced in this work is presented in Table 1.

    Table 1 Denoted names, preparation temperatures and molecular weights of produced films

    1.3 Instruments

    Scanning electron microscopy (SEM) (FEI Inspector-F, the Netherlands) was used to characterize the morphology of the film surface. Fourier-transform infrared spectroscopy (FTIR) (Tensor 27, Bruker Optik GmbH, Germany) and X-ray diffraction (XRD) with Cu/Kα(λ= 0.154 18 nm) and 2θrange of 5°-70° (X’Pert Pro, PANalytical, the Netherlands) were used to characterize the crystalline structure of PVDF films. The thermal analysis of PVDF films was conducted using differential scanning calorimetry (DSC) (DSC 25, TA Instruments, Belgium) with a temperature range of 25-200 ℃ and a heating rate of 10 ℃/min. The frequency dependence of dielectric spectra under an applied voltage of 0.5 V was characterized using a Precision Impendence Analyzer (4294A, Agilent, USA) at room temperature with frequency ranging from 100 Hz to 100 MHz. The ferroelectric hysteresis loops were measured using a ferroelectric tester (National Physical Laboratory, UK) with a triangle waveform at room temperature and 10 Hz[21]. Gold was sputtered on both sides of films to serve as electrodes for electric measurement. The diameter of electrodes for dielectric and ferroelectric characterization was 5 mm and 2 mm, respectively.

    2 Results and Discussion

    2.1 Morphology control of solution casted PVDF films

    The morphology analysis was elucidated using SEM. Films crystallized at 50 ℃ were highly porous and contained some slackly aggregated beads except for samples with ultrahigh molecular weight (1 000-1 200 kg/mol) which displayed a homogenous and smooth morphology shown in Fig. 1(a). The formed beads are suggested to be crystals since PVDF is a semi-crystalline polymer. Films formed from solution at 125 ℃ clearly displayed the morphology of spherulites shown in Fig. 1(b), where large spherulites with a diameter of about 40-50 μm could be seen in samples with a low molecular weight (180 kg/mol), and slightly irregular and smaller spherulites (about 25 μm) were formed in samples with a moderately higher molecular weight (534 kg/mol). A different morphology, ring-banded spherulite with separated lamellae bundles[22], was obtained in films produced at 125 ℃ with ultrahigh molecular weight (1 000 kg/mol). More details about crystallization characteristics will be discussed in section 2.2.

    Fig. 1 SEM images for the surface of SC PVDF films with different molecular weights at different casting temperatures: (a) 50 ℃ with Mw of 180 kg/mol; (b) 50 ℃ with Mw of 534 kg/mol; (c) 50 ℃ with Mw of 1 000 kg/mol; (d) 125 ℃ with Mw of 180 kg/mol; (e) 125 ℃ with Mw of 534 kg/mol; (f) 125 ℃ with Mw of 1 000 kg/mol

    2.2 Crystallization features of SC PVDF films

    2.2.1Determinationofcrystallinephase

    The crystalline structure of PVDF films was determined using FTIR shown in Fig. 2(a) and XRD shown in Fig. 2(b). FTIR shows characteristic bands for different phases[23-24].α-phase: 612, 766, 975, and 1 212 cm-1;β-phase: 840 cm-1and 1 270 cm-1;γ-phase: 812, 835, 840, and 1 234 cm-1. The sample with the highest molecular weight (1 000 kg/mol) casted at 125 ℃ (SC-125-1000) showed the invisible band at 835-840 cm-1, which suggested the almost pureα-phase crystallized in SC-125-1000 sample. The other films show the appearance of 835-840 cm-1, which demonstrates the possible existence of polarβ-phase andγ-phase. Bands at 1 270 cm-1(exclusive toβ-phase) and 1 234 cm-1(exclusive toγ-phase) were used to resolve the crystalline characterization. The absence of 1 270 cm-1band (β-) and the presence of 1 234 cm-1(γ-) highlighted the fact that the 835-840 cm-1band was only ascribed toγ-phase not to the combined contributions ofβ-phase andγ-phase, which suggested that PVDF did not form intoβ-phase when casted from DMSO solvent (dipole moment: 1.32×10-29C·m).

    Fig. 2 Phase determination of SC PVDF films with different molecular weights at different casting temperatures: (a) FTIR; (b) XRD; (c) content of γ-phase of SC samples calculated from FTIR data; (d) average mean size of crystallites calculated from XRD data

    The above results are consistent with the previous studies thatβ-phase only forms from the solvent with high dipole moment. For example, PVDF casted from hexamethylphosphoramide (HMPA) (dipole moment: 1.85×10-29C·m) can crystallize intoβ-phase regardless of casting temperatures ranging from 60-140 ℃[25]. PVDF with the lowest molecular weight (180 kg/mol) crystallized into the pureγ-phase when casted at a low temperature of 50 ℃ (SC-50-180), as concluded from the absence ofα-characteristic bands (766 cm-1and 612 cm-1). FTIR can also be used to determine the phase content of PVDF. The SC PVDF films only containedα-phase andγ-phase. Therefore, the content ofγ-phaseF(γ)[23]was calculated by

    (1)

    whereAαandAγare the absorbances at 766 cm-1and 835 cm-1, respectively;KαandKγare the corresponding absorbance coefficients, which are 0.365 μm-1and 0.150 μm-1, respectively. The calculated results are depicted in Fig. 2(c). It is clearly concluded that the low casting temperature and the low molecular weight favour the formation of polarγ-phase.

    Contrary to FTIR, XRD can only be used to qualitatively analyze the crystalline structure of PVDF, sinceα-phase,β-phase andγ-phase show diffraction peaks at very close position (about 20.0°-21.0°), 20.0° (110) for pureα-phase, 20.7° (110)/(200) for pureβ-phase, and 20.4° (110)/(101) for pureγ-phase[11].

    All of the films show diffraction peaks at 20.0°-20.4° with no appearance of a peak at 20.7°, being consistent with FTIR data that DMSO SC PVDF films does not crystallize intoβ-phase. In addition to 20.0° (110),α-PVDF also exhibits peaks at 17.8°, 18.4° and 26.6°, which corresponds to the diffraction of (100), (020), and (021). Similarly,γ-PVDF shows diffraction peaks at 18.5° and 39.0° which are ascribed to the crystal planes of (020) and (211). The peak at 26.6° (021) is exclusive toα-phase. Samples with a higher content ofα-phase (weight ratio >15%) for example PVDF with the highest molecular weight (1 000 kg/mol) and the one with a moderate molecular weight casted at a high temperature (534 kg/mol at 125 ℃) clearly displayed peaks at 26.6°. The average size of crystalliteτwas evaluated using the diffraction at 2θ≈20° and Scherrer equation, which was shown as

    (2)

    whereKis dimensionless shape factor and equals 0.89;γis the wavelength of X-ray and is 0.154 06 nm;Bis the full width at half maximum (FWHM);θis a Bragg angle that corresponds to diffraction of (110)αand (110)/(101)γ. The calculated values are described in Fig. 2(d), where films formed at a low temperature (50 ℃) show a smaller mean size of crystallites (about 6 nm), being half of the samples ( about 12 nm) casted at a high temperature (125 ℃).

    2.2.2Thermalanalysis

    The thermal properties of SC films were characterized using DSC (shown in Fig. 3). The degree of crystallinity was evaluated using the ratio between the experimental fusion enthalpy and the theoretical value for a fully crystalline PVDF (104.6 J/g)[26]. The melting temperatureTmof PVDF samples is in the range of 160-172 ℃, and for PVDF with the same molecular weight, theTmpeaks are at almost the same position. However, the degree of crystallinity varies with the solution casting temperature. Films formed at 50 ℃ exhibit higher degrees of crystallinity (about 55%) compared to samples formed at 125 ℃ (40%-45%).

    Fig. 3 DSC analysis of SC PVDF films with different molecular weights at different casting temperatures

    2.2.3Discussionofcrystallizationfeatures

    The formed crystalline phase of PVDF is under the combined influence of crystallization temperatures and molecular weights. The high polarity of DMSO at a low temperature of 50 ℃ enables strong interaction between PVDF and DMSO, which induces the rotation of C—F bonds around polymer chain backbones and the formation of polar phases. However, the polarity of DMSO decreased and the chain mobility of PVDF increased at a high temperature of 125 ℃, which hindered the interaction between PVDF and DMSO, leading to the formation ofα-phase with trans-gauche chain conformation. As a result, PVDF with a molecular weight of 180 kg/mol crystallized into pureγ-phase when casted at 50 ℃ shown in Fig. 2(c). With respect to the molecular weight, a high molecular weight corresponds to low chain mobility, which is similar to the effect of decreasing the crystallization temperature. Therefore, PVDF with a high molecular weight of 1 000 kg/mol tended to crystallize intoα-phase. Apart from the crystalline phase, the low casting temperature enhances the degree of crystallinity of processed PVDF films shown in Fig. 3. One possible reason could be that the crystallization time was extended at a low evaporation temperature[27], giving PVDF more time to crystallize. Moreover, a low casting temperature favours the process of nucleation but hinders the growth of crystallites, as a result, PVDF films casted at 50 ℃ have smaller crystallites compared to films produced at 125 ℃ because of the reduction of the nucleus and the obstruction of crystal growth.

    2.3 Dielectric and ferroelectric properties

    The frequency dependence of dielectric spectra is shown in Fig. 4. All of the films exhibit similar values(about 12±2) of dielectric constants at 100 Hz, and display relaxation loss peaks above 100 kHz which is related to the dipolar relaxation of polymer chains in amorphous regions[28]. SC-50-1000 shows the lowest dielectric constant, being ascribed to the low mobility of polymer chains due to the ultrahigh molecular weight, which discourages the response of dipoles to applied external voltage. It is clearly suggested that the relaxation peaks of films casted at 125 ℃ show higher values of loss compared to films casted at 50 ℃. The dielectric response at low voltage (0.5 V) mainly arises from dipoles in the amorphous region. A high loss relaxation peak can be linked to a low degree of crystallinity, which is consistent with DSC results suggesting that films casted at 125 ℃ exhibit low degrees of crystallinity.

    Fig. 4 Frequency dependence of dielectric properties of SC PVDF films with different molecular weights at different casting temperatures

    The ferroelectric properties of current-electric field (I-E) and displacement-electric field (D-E) loops of SC PVDF films are shown in Fig. 5. PVDF with a low molecular weight of 180 kg/mol displayed an obvious ferroelectric switching feature with switching current peaks at an electric field of 70-80 kV/mm. However, PVDF with a high molecular weight (534 kg/mol and 1 000 kg/mol) exhibited high loss conductivity corresponding to large slopes of I-E loops, and did not show apparent switching current peaks especially for PVDF casted at 50 ℃. The high loss conductivity can be attributed to the residual solvent caused by a low evaporation temperature. A high molecular weight contributes to low chain mobility that could be the reason for less obvious peaks of switching current, since the ferroelectric switching of PVDF is accomplished by the collaborative long-range rotation of polymer chains, and low chain mobility hinders the rotation of polymer chains[29]. Especially for PVDF with 180 kg/mol, films casted at 125 ℃ showed the highest remnant polarization (0.062 C/m2), being a result of a high fraction of polarγ-phase (about 90%) and well evaporation of DMSO solvent.

    Fig. 5 Ferroelectric properties of PVDF films with different molecular weight solution casted at 50 ℃ and 125 ℃: (a) 180 kg/mol; (b) 534 kg/mol; (c) 1 000 kg/mol

    3 Conclusions

    The crystallization characteristics of PVDF casted from DMSO solvent were studied in this work, where the crystalline phase, crystallinity and average crystallite size are influenced by the molecular weight and the evaporation temperature of the solvent. A low molecular weight (180 kg/mol) and a low evaporation temperature (50 ℃) favour the formation of polarγ-phase, while PVDF with a high molecular weight (1 000 kg/mol) casted at a high temperature (125 ℃) predominantly crystallized intoα-phase. Films casted at 125 ℃ exhibited high dielectric loss, being a result of a low degree of crystallinity. On the contrary, films casted at a high temperature showed less conductivity loss at 200 kV/mm, which was ascribed to the fine evaporation of the solvent. Moreover, high chain mobility resulted from a low molecular weight allowed PVDF to display obvious ferroelectric switching. As a result, PVDF with 180 kg/mol casted at 125 ℃ exhibited the highest remnant polarization (0.062 C/m2) among all of the solution-processed films.

    猜你喜歡
    耀祖
    Preparation of Polyaniline/Cellulose Nanofiber Aerogel for Efficient Removal of Cr(VI) from Aqueous Solution
    李鳳群和她的《伙伴》
    規(guī)矩
    扶貧可以很另類
    吳耀祖先生作品選登
    今日華人(2019年15期)2019-12-17 08:16:45
    男女有別
    北大留美碩士拉黑父母:“為你好”真的會(huì)“讓我痛”
    北大留美碩士拉黑父母:『為你好』真的會(huì)『讓我痛』
    有一種傷害叫關(guān)愛:北大留美碩士為何拉黑父母
    同鄉(xiāng)小妹之死:有求必應(yīng)的大哥扛不住了
    国产一区二区三区av在线| www.自偷自拍.com| 久久国产精品人妻蜜桃| 亚洲,一卡二卡三卡| xxxhd国产人妻xxx| 久久热在线av| 黄色毛片三级朝国网站| 亚洲av电影在线观看一区二区三区| 国产成人91sexporn| 精品久久蜜臀av无| 久久久久视频综合| 成人国语在线视频| 午夜激情久久久久久久| 成人国语在线视频| av一本久久久久| 国精品久久久久久国模美| 婷婷色综合www| 国产一级毛片在线| 老汉色av国产亚洲站长工具| 婷婷色综合大香蕉| 日日摸夜夜添夜夜爱| 亚洲三区欧美一区| 国产精品香港三级国产av潘金莲 | 日本一区二区免费在线视频| 啦啦啦视频在线资源免费观看| 建设人人有责人人尽责人人享有的| 精品亚洲成a人片在线观看| 黄色一级大片看看| 亚洲欧洲国产日韩| 精品高清国产在线一区| 老汉色∧v一级毛片| 蜜桃在线观看..| 纵有疾风起免费观看全集完整版| 一级毛片电影观看| 一边摸一边抽搐一进一出视频| 波多野结衣av一区二区av| 老司机影院毛片| 精品熟女少妇八av免费久了| 国产成人a∨麻豆精品| 天天躁夜夜躁狠狠躁躁| 黑丝袜美女国产一区| 国产成人一区二区三区免费视频网站 | 黄片小视频在线播放| 日韩一本色道免费dvd| 2018国产大陆天天弄谢| 少妇 在线观看| 久久亚洲精品不卡| 超色免费av| 欧美少妇被猛烈插入视频| 老司机影院成人| 国产精品麻豆人妻色哟哟久久| 国产av精品麻豆| 久久久精品国产亚洲av高清涩受| 亚洲欧美日韩高清在线视频 | 一本久久精品| 亚洲av在线观看美女高潮| 看十八女毛片水多多多| 中文字幕色久视频| 精品福利观看| 国产精品香港三级国产av潘金莲 | 丝袜在线中文字幕| 色网站视频免费| 亚洲欧美成人综合另类久久久| 久久国产亚洲av麻豆专区| 亚洲精品中文字幕在线视频| 久久精品人人爽人人爽视色| 18禁裸乳无遮挡动漫免费视频| av电影中文网址| 97在线人人人人妻| av网站免费在线观看视频| 91麻豆av在线| 99热全是精品| 看十八女毛片水多多多| 色综合欧美亚洲国产小说| 超碰成人久久| 两个人免费观看高清视频| 亚洲一码二码三码区别大吗| www.精华液| 黄色视频在线播放观看不卡| 午夜福利,免费看| 大香蕉久久成人网| 亚洲,一卡二卡三卡| 成年av动漫网址| videosex国产| 亚洲国产欧美在线一区| 精品少妇一区二区三区视频日本电影| 久久亚洲国产成人精品v| 欧美亚洲 丝袜 人妻 在线| 久久久久精品国产欧美久久久 | 久久久久国产精品人妻一区二区| 亚洲精品美女久久久久99蜜臀 | 老熟女久久久| 成人亚洲精品一区在线观看| 777米奇影视久久| 久久久久网色| 日韩 欧美 亚洲 中文字幕| 纵有疾风起免费观看全集完整版| 精品一区在线观看国产| 老司机亚洲免费影院| 久久久国产欧美日韩av| 国产伦人伦偷精品视频| 精品久久久久久电影网| 国产精品99久久99久久久不卡| 午夜免费观看性视频| 这个男人来自地球电影免费观看| 人人妻人人添人人爽欧美一区卜| www.自偷自拍.com| 亚洲黑人精品在线| 黄片播放在线免费| 韩国精品一区二区三区| 久久99一区二区三区| 高清av免费在线| 777久久人妻少妇嫩草av网站| 午夜福利一区二区在线看| 国产黄色免费在线视频| 少妇猛男粗大的猛烈进出视频| 婷婷成人精品国产| 国产男女内射视频| 老司机深夜福利视频在线观看 | 性色av乱码一区二区三区2| 国产成人欧美在线观看 | 免费高清在线观看视频在线观看| 午夜福利视频精品| 精品一区二区三卡| 亚洲美女黄色视频免费看| 脱女人内裤的视频| 国产精品麻豆人妻色哟哟久久| 亚洲黑人精品在线| 久久热在线av| 伊人久久大香线蕉亚洲五| 黑丝袜美女国产一区| 大片电影免费在线观看免费| 晚上一个人看的免费电影| 亚洲av日韩精品久久久久久密 | 精品少妇一区二区三区视频日本电影| 亚洲av日韩精品久久久久久密 | 成年av动漫网址| 欧美激情高清一区二区三区| 伦理电影免费视频| 精品人妻1区二区| 欧美xxⅹ黑人| 久久99热这里只频精品6学生| 久久人人97超碰香蕉20202| 最近中文字幕2019免费版| 日韩伦理黄色片| 精品久久久精品久久久| kizo精华| 国产精品 国内视频| 久久久久国产一级毛片高清牌| 777久久人妻少妇嫩草av网站| 91麻豆精品激情在线观看国产 | 久久久久久久久免费视频了| 国产亚洲av片在线观看秒播厂| 国产免费福利视频在线观看| 午夜免费鲁丝| 亚洲成人免费av在线播放| 亚洲av欧美aⅴ国产| 欧美大码av| 久久久久久久大尺度免费视频| 亚洲av日韩精品久久久久久密 | 亚洲图色成人| 人成视频在线观看免费观看| 精品一区二区三区av网在线观看 | 啦啦啦视频在线资源免费观看| 国产野战对白在线观看| 只有这里有精品99| 中文字幕精品免费在线观看视频| 欧美变态另类bdsm刘玥| 女人精品久久久久毛片| 丝袜脚勾引网站| 捣出白浆h1v1| 操美女的视频在线观看| 日韩中文字幕欧美一区二区 | 老司机影院成人| 亚洲av美国av| 日韩中文字幕视频在线看片| 国产精品久久久久久精品古装| 色94色欧美一区二区| 亚洲国产欧美在线一区| 国产爽快片一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 久久99热这里只频精品6学生| av线在线观看网站| 国产精品国产三级专区第一集| 少妇的丰满在线观看| 一本大道久久a久久精品| 国产日韩欧美在线精品| 亚洲七黄色美女视频| 国产精品欧美亚洲77777| 国产一级毛片在线| 日韩av不卡免费在线播放| 精品少妇久久久久久888优播| 老熟女久久久| 国产一区二区三区av在线| 最近手机中文字幕大全| 国产一区有黄有色的免费视频| 亚洲精品久久久久久婷婷小说| 国产成人免费无遮挡视频| 国产高清视频在线播放一区 | 老司机午夜十八禁免费视频| 久久人人爽人人片av| 80岁老熟妇乱子伦牲交| 18禁裸乳无遮挡动漫免费视频| 亚洲成人免费电影在线观看 | 丝袜脚勾引网站| 国产在线免费精品| 欧美另类一区| 午夜福利视频在线观看免费| 99国产综合亚洲精品| 欧美国产精品一级二级三级| 精品亚洲成国产av| 欧美亚洲 丝袜 人妻 在线| 一区二区三区乱码不卡18| 另类亚洲欧美激情| 日本wwww免费看| 久久国产精品影院| 免费观看av网站的网址| 9色porny在线观看| 男人添女人高潮全过程视频| 色婷婷av一区二区三区视频| 亚洲中文字幕日韩| 日本a在线网址| 久久精品久久精品一区二区三区| 日韩精品免费视频一区二区三区| 亚洲av男天堂| 纯流量卡能插随身wifi吗| cao死你这个sao货| 欧美精品av麻豆av| 日韩制服丝袜自拍偷拍| 亚洲一码二码三码区别大吗| 国语对白做爰xxxⅹ性视频网站| 久热这里只有精品99| 国产麻豆69| 久久久久网色| 90打野战视频偷拍视频| 人人澡人人妻人| 波多野结衣av一区二区av| 午夜av观看不卡| 欧美 亚洲 国产 日韩一| 黄片小视频在线播放| 各种免费的搞黄视频| 亚洲国产欧美日韩在线播放| 麻豆av在线久日| 在线观看免费高清a一片| 欧美黑人精品巨大| 七月丁香在线播放| 国产欧美日韩一区二区三区在线| 亚洲av日韩在线播放| 一级毛片女人18水好多 | 久久综合国产亚洲精品| 三上悠亚av全集在线观看| 成人亚洲欧美一区二区av| 成人国产av品久久久| 欧美成狂野欧美在线观看| 亚洲精品国产色婷婷电影| 久久精品国产亚洲av涩爱| 69精品国产乱码久久久| 一本久久精品| 日韩制服丝袜自拍偷拍| 久久精品国产亚洲av涩爱| av福利片在线| 亚洲成人手机| 午夜免费成人在线视频| 精品国产乱码久久久久久男人| 又粗又硬又长又爽又黄的视频| 亚洲精品第二区| 亚洲国产精品999| 亚洲熟女精品中文字幕| 亚洲情色 制服丝袜| 一级黄色大片毛片| 欧美变态另类bdsm刘玥| 久久性视频一级片| 丰满迷人的少妇在线观看| 亚洲熟女毛片儿| 国产成人一区二区在线| 精品国产乱码久久久久久小说| 欧美乱码精品一区二区三区| 日本欧美视频一区| 天天躁夜夜躁狠狠久久av| 女人爽到高潮嗷嗷叫在线视频| 中文字幕人妻丝袜一区二区| 高清av免费在线| 亚洲少妇的诱惑av| 国产极品粉嫩免费观看在线| 一级a爱视频在线免费观看| 国产有黄有色有爽视频| 大片免费播放器 马上看| a级片在线免费高清观看视频| 久久久久久亚洲精品国产蜜桃av| 午夜精品国产一区二区电影| 最新的欧美精品一区二区| av不卡在线播放| 国产精品九九99| 久久久精品94久久精品| 国产淫语在线视频| 精品欧美一区二区三区在线| 国产精品麻豆人妻色哟哟久久| 亚洲欧美成人综合另类久久久| 亚洲精品在线美女| 91国产中文字幕| 日韩 亚洲 欧美在线| 欧美xxⅹ黑人| 日本欧美国产在线视频| 国产熟女欧美一区二区| 黄色毛片三级朝国网站| 国产三级黄色录像| 丁香六月欧美| 亚洲精品美女久久av网站| 久久影院123| 日韩制服丝袜自拍偷拍| 精品国产一区二区久久| 九色亚洲精品在线播放| 成年美女黄网站色视频大全免费| 男男h啪啪无遮挡| 久久毛片免费看一区二区三区| 首页视频小说图片口味搜索 | 色综合欧美亚洲国产小说| 精品亚洲成a人片在线观看| 18禁黄网站禁片午夜丰满| 久久久久国产精品人妻一区二区| 欧美精品一区二区大全| 国产精品久久久久久精品电影小说| 成人亚洲精品一区在线观看| 色播在线永久视频| 五月开心婷婷网| 久久99热这里只频精品6学生| 欧美老熟妇乱子伦牲交| 日本猛色少妇xxxxx猛交久久| 午夜影院在线不卡| 成人国产av品久久久| 日日摸夜夜添夜夜爱| 欧美人与善性xxx| 国产片内射在线| 精品一区二区三卡| 国产激情久久老熟女| 日本91视频免费播放| 国产极品粉嫩免费观看在线| 日韩制服丝袜自拍偷拍| 少妇人妻久久综合中文| 男女午夜视频在线观看| 在线av久久热| 免费黄频网站在线观看国产| 国产一区亚洲一区在线观看| 亚洲欧美色中文字幕在线| 久久久久久亚洲精品国产蜜桃av| tube8黄色片| bbb黄色大片| 飞空精品影院首页| 亚洲一卡2卡3卡4卡5卡精品中文| 悠悠久久av| 亚洲人成77777在线视频| 欧美大码av| 欧美精品一区二区免费开放| 久久人人爽av亚洲精品天堂| 丰满饥渴人妻一区二区三| 岛国毛片在线播放| 色综合欧美亚洲国产小说| 侵犯人妻中文字幕一二三四区| 高清视频免费观看一区二区| 亚洲伊人久久精品综合| 精品少妇内射三级| av欧美777| 亚洲国产av影院在线观看| 亚洲国产最新在线播放| 18禁观看日本| 亚洲国产精品999| 人人妻人人澡人人看| 美女国产高潮福利片在线看| 成年人免费黄色播放视频| 首页视频小说图片口味搜索 | 欧美日韩综合久久久久久| 久久影院123| 欧美精品高潮呻吟av久久| 国产熟女午夜一区二区三区| 午夜福利影视在线免费观看| 久久精品国产亚洲av涩爱| 欧美日韩亚洲国产一区二区在线观看 | 青春草亚洲视频在线观看| 91成人精品电影| 亚洲一区二区三区欧美精品| 欧美日韩国产mv在线观看视频| av欧美777| 日本vs欧美在线观看视频| 欧美日韩av久久| 国产一区二区激情短视频 | av在线播放精品| 久久毛片免费看一区二区三区| 国产精品亚洲av一区麻豆| www.自偷自拍.com| 午夜av观看不卡| 久久久久国产精品人妻一区二区| 亚洲精品美女久久久久99蜜臀 | 色94色欧美一区二区| 好男人视频免费观看在线| 最近中文字幕2019免费版| 一本综合久久免费| 99国产精品一区二区蜜桃av | 如日韩欧美国产精品一区二区三区| 婷婷成人精品国产| 精品国产一区二区久久| 欧美av亚洲av综合av国产av| 午夜久久久在线观看| 国产主播在线观看一区二区 | 性高湖久久久久久久久免费观看| 欧美乱码精品一区二区三区| 亚洲一码二码三码区别大吗| 亚洲欧美日韩另类电影网站| 成人黄色视频免费在线看| 爱豆传媒免费全集在线观看| 久久久久久久国产电影| 亚洲免费av在线视频| 亚洲成人免费av在线播放| 亚洲国产欧美在线一区| 国产欧美日韩一区二区三 | 国精品久久久久久国模美| 看十八女毛片水多多多| 我要看黄色一级片免费的| 国产伦人伦偷精品视频| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲av成人精品一二三区| 久久人人97超碰香蕉20202| 99热网站在线观看| 成年动漫av网址| 男女边吃奶边做爰视频| 中文字幕人妻丝袜一区二区| 亚洲国产欧美网| 精品国产一区二区三区久久久樱花| 2021少妇久久久久久久久久久| 国产有黄有色有爽视频| 欧美日韩av久久| 欧美日韩成人在线一区二区| 999久久久国产精品视频| 操美女的视频在线观看| 成年动漫av网址| 中国国产av一级| 在线天堂中文资源库| netflix在线观看网站| 一级毛片黄色毛片免费观看视频| 美女国产高潮福利片在线看| 成人手机av| 成年av动漫网址| 欧美黄色淫秽网站| 日韩欧美一区视频在线观看| 久久午夜综合久久蜜桃| 五月开心婷婷网| 亚洲精品国产av成人精品| 永久免费av网站大全| 亚洲三区欧美一区| 一区二区三区精品91| 热re99久久精品国产66热6| 国产极品粉嫩免费观看在线| 国产精品久久久av美女十八| 欧美中文综合在线视频| 国产欧美日韩精品亚洲av| 精品一品国产午夜福利视频| 欧美+亚洲+日韩+国产| 亚洲成av片中文字幕在线观看| 如日韩欧美国产精品一区二区三区| 狂野欧美激情性bbbbbb| 精品久久久久久久毛片微露脸 | 日本a在线网址| 欧美日韩国产mv在线观看视频| av有码第一页| 国产视频首页在线观看| av线在线观看网站| 亚洲天堂av无毛| 精品高清国产在线一区| 午夜免费观看性视频| 色综合欧美亚洲国产小说| 国产1区2区3区精品| 18禁国产床啪视频网站| 又粗又硬又长又爽又黄的视频| 丝瓜视频免费看黄片| 午夜av观看不卡| 亚洲欧美中文字幕日韩二区| 你懂的网址亚洲精品在线观看| 色视频在线一区二区三区| 欧美激情 高清一区二区三区| 青春草亚洲视频在线观看| 日韩 欧美 亚洲 中文字幕| 桃花免费在线播放| 久久久精品区二区三区| 久久免费观看电影| 在线观看免费高清a一片| 国产一区二区三区综合在线观看| 在线观看国产h片| 91麻豆精品激情在线观看国产 | 在线观看www视频免费| 亚洲欧美精品自产自拍| 国产成人av教育| a级毛片黄视频| 欧美xxⅹ黑人| 午夜老司机福利片| 在线观看www视频免费| 青草久久国产| 亚洲欧美激情在线| 欧美在线一区亚洲| 日本欧美国产在线视频| 精品久久久久久久毛片微露脸 | 亚洲av男天堂| 免费在线观看影片大全网站 | 欧美国产精品一级二级三级| 91成人精品电影| 色婷婷av一区二区三区视频| 精品亚洲乱码少妇综合久久| 久久这里只有精品19| 国产亚洲精品第一综合不卡| 99香蕉大伊视频| 国产精品99久久99久久久不卡| 18禁观看日本| 波多野结衣av一区二区av| 国产精品国产三级专区第一集| 啦啦啦啦在线视频资源| 日本色播在线视频| 久热爱精品视频在线9| 亚洲精品自拍成人| 亚洲精品日本国产第一区| 久久精品国产亚洲av高清一级| av国产久精品久网站免费入址| 宅男免费午夜| 50天的宝宝边吃奶边哭怎么回事| 老汉色av国产亚洲站长工具| 在线观看免费高清a一片| 欧美日韩综合久久久久久| 婷婷色综合www| 国产女主播在线喷水免费视频网站| 老司机影院成人| 国产女主播在线喷水免费视频网站| 2021少妇久久久久久久久久久| 色94色欧美一区二区| 夜夜骑夜夜射夜夜干| 久久精品国产亚洲av高清一级| 曰老女人黄片| 天天操日日干夜夜撸| 97人妻天天添夜夜摸| 成年美女黄网站色视频大全免费| 99久久99久久久精品蜜桃| 久久中文字幕一级| 一本久久精品| 久久99一区二区三区| 亚洲欧美一区二区三区国产| 欧美精品人与动牲交sv欧美| 国产老妇伦熟女老妇高清| 欧美精品人与动牲交sv欧美| 丝袜脚勾引网站| 国产成人精品久久二区二区91| 超碰成人久久| 老鸭窝网址在线观看| 国产精品99久久99久久久不卡| 纵有疾风起免费观看全集完整版| 亚洲午夜精品一区,二区,三区| 欧美精品一区二区大全| 欧美日韩精品网址| 天天躁夜夜躁狠狠久久av| 一级黄色大片毛片| 国产精品偷伦视频观看了| 亚洲精品中文字幕在线视频| 日韩伦理黄色片| 十八禁高潮呻吟视频| 少妇的丰满在线观看| 国产精品久久久人人做人人爽| 搡老乐熟女国产| 久久久久精品人妻al黑| 99国产精品99久久久久| 欧美日韩综合久久久久久| www日本在线高清视频| 亚洲激情五月婷婷啪啪| 精品国产超薄肉色丝袜足j| 日本一区二区免费在线视频| 女人高潮潮喷娇喘18禁视频| 国产av精品麻豆| 超碰成人久久| a级毛片在线看网站| 韩国高清视频一区二区三区| 日韩伦理黄色片| 亚洲成人免费av在线播放| 大码成人一级视频| 精品人妻在线不人妻| 9色porny在线观看| 性高湖久久久久久久久免费观看| 咕卡用的链子| 大香蕉久久成人网| 巨乳人妻的诱惑在线观看| 久久 成人 亚洲| 婷婷色麻豆天堂久久| av在线老鸭窝| 黄色怎么调成土黄色| 欧美精品人与动牲交sv欧美| 日本五十路高清| 人人妻人人添人人爽欧美一区卜| 天天操日日干夜夜撸| 丝袜在线中文字幕| 日韩一卡2卡3卡4卡2021年| 精品一区二区三卡| 视频区图区小说| 91精品伊人久久大香线蕉| 大陆偷拍与自拍| 日本欧美国产在线视频| 亚洲精品自拍成人| 国产一级毛片在线| 精品国产一区二区久久| 亚洲欧美色中文字幕在线| 91老司机精品| 电影成人av| 免费黄频网站在线观看国产| 亚洲,一卡二卡三卡| 18在线观看网站| 一个人免费看片子| 亚洲色图综合在线观看| 国产精品 国内视频| 无遮挡黄片免费观看| 免费在线观看日本一区| 一级片免费观看大全| 99久久人妻综合| 校园人妻丝袜中文字幕|