• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular Modulation of Structure and Ferroelectric Performance of Poly(vinylidene fluoride) Free Standing Films from Aspects of Molecular Weight and Crystallization Temperature

    2022-03-08 13:11:32MENGNanLIAOYaozu廖耀祖
    關(guān)鍵詞:耀祖

    MENG Nan(孟 楠), LIAO Yaozu(廖耀祖)*

    1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China2 College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

    Abstract: Ferroelectric polymer poly(vinylidene fluoride) (PVDF) has received great research interest because of its special electroactive properties which are strongly dependent on the crystalline structures and in turn processing conditions. The effect of molecular weight and crystallization temperature on the micro-structure and macro-properties of PVDF films casted from dimethyl sulfoxide (DMSO) solvent is investigated. The results demonstrated that a low molecular weight (180 kg/mol) and a low evaporation temperature (50 ℃) favored the formation of polar γ-phase, while a high molecular weight (1 000 kg/mol) and a high evaporation temperature (125 ℃) made PVDF crystallize into α-phase. Compared with films casted at 50 ℃, films casted at 125 ℃ exhibited higher dielectric loss at a low electric field and less loss conductivity at a high electric field, which was due to their low degrees of crystallinity and fine evaporation of the solvent, respectively. PVDF with a molecular weight of 180 kg/mol casted at 125 ℃ exhibited the highest remnant polarization (0.062 C/m2) among all of the solution-processed films, being a result of high chain mobility resulted from the low molecular weight.

    Key words: ferroelectric polymer; poly(vinylidene fluoride)(PVDF); solution casting; remnant polarization; dielectric constant

    Introduction

    Recently, as an important category of functional polymers, poly(vinylidene fluoride) (PVDF) based ferroelectric polymers have raised great academic and industrial interests, being mainly ascribed to their excellent electroactive properties such as dielectric, piezoelectric, and ferroelectric properties[1-4]. These properties enable them to be utilized in various applications, especially in dielectric capacitors for energy storage, pressure sensors and touch screens, non-volatile memories,etc.[5-8].

    PVDF is a semi-crystalline polymer with at least four crystalline phases[9], arising from differently adopted chain conformations:α-phase with trans-gauche (TG) chain conformation (antiparallel packing of two adjacent chains),δ-phase with TG chain conformation (parallel packing of two adjacent chains),β-phase with all-trans (TTT) chain conformation, andγ-phase with mixed chain conformation of T3GT3G′. Among all of these phases,α-phase is non-polar because of the self-cancellation of dipole moment. When cooled from the melt, theα-plase usually forms and undergoes a phase transition toδ-phase at an applied electric field of 170 kV/mm, and further toβ-phase at 500 kV/mm[10-11]. Bothδ-phase andβ-phase are polar phases, and especiallyβ-phase has the highest dipole moment 7×10-30C·m perpendicular to the chain axis, and favourable piezoelectric and ferroelectric properties (piezoelectric coefficientd33: about 20-30 pC/N; spontaneous polarization: 0.13 C/m2)[9,12]. Treatingα-phase at a relatively high temperature (167-180 ℃) and high pressure (200 kPa) can transform the material toγ-phase[13].γ-phase can be also formed with the inclusions of specific fillers such as clays[14]or carbon materials[15]. Even thoughβ-phase exhibits the highest polarity, the transparency ofβ-PVDF is deteriorated on account of post-treatment[16], which makes the highly transparentγ-PVDF more attractive for practical applications. It was documented thatγ-phase could exhibit better dielectric energy storage properties compared toβ-phase because of the absence of early polarization saturation[17-18]. It was also reported that pureγ-phase could be formed when crystallized from the solvent[11]. However, there are controversies with respect to the formed crystalline phases using solution casting methods[19-20]. Herein, in order to clarify the crystalline structures of PVDF formed during solvent crystallization, PVDF with different molecular weightsMw(180, 534, and 1 000 kg/mol) is casted from dimethyl sulfoxide (DMSO) solvent at two different temperatures of 50 ℃ and 125 ℃. Through the characterization of structure, dielectric and ferroelectric properties, the crystallization features and ferroelectric properties of solution casting processed PVDF are analyzed.

    1 Experiments

    1.1 Materials

    PVDF (molecular weight: 180 kg/mol and 534 kg/mol) was purchased from Sigma-Aldrich Limited Liability Company(Missouri, USA). PVDF (Solef?5130; molecular weight: 1 000-1 200 kg/mol) was purchased from Solvay (Brussels, Belgium). DMSO (anhydrous, ≥99.9% in mass fraction, Sigma-Aldrich, Missouri, USA) with a density of 1.10 g/cm3was used as casting solvent.

    1.2 Preparation of PVDF films

    Appropriate amounts of PVDF powders or pellets were dissolved into DMSO to obtain a solution with a weight concentration of 10%. The mixtures were magnetically stirred at 70 ℃ for 2 h to fully dissolve PVDF. The solution was then casted on a glass petri dish, which was then incubated in a vacuum oven at 50 ℃ and 125 ℃ for at least 24 h. The thickness of solution casted(SC) films was about 50-100 μm. A list of films produced in this work is presented in Table 1.

    Table 1 Denoted names, preparation temperatures and molecular weights of produced films

    1.3 Instruments

    Scanning electron microscopy (SEM) (FEI Inspector-F, the Netherlands) was used to characterize the morphology of the film surface. Fourier-transform infrared spectroscopy (FTIR) (Tensor 27, Bruker Optik GmbH, Germany) and X-ray diffraction (XRD) with Cu/Kα(λ= 0.154 18 nm) and 2θrange of 5°-70° (X’Pert Pro, PANalytical, the Netherlands) were used to characterize the crystalline structure of PVDF films. The thermal analysis of PVDF films was conducted using differential scanning calorimetry (DSC) (DSC 25, TA Instruments, Belgium) with a temperature range of 25-200 ℃ and a heating rate of 10 ℃/min. The frequency dependence of dielectric spectra under an applied voltage of 0.5 V was characterized using a Precision Impendence Analyzer (4294A, Agilent, USA) at room temperature with frequency ranging from 100 Hz to 100 MHz. The ferroelectric hysteresis loops were measured using a ferroelectric tester (National Physical Laboratory, UK) with a triangle waveform at room temperature and 10 Hz[21]. Gold was sputtered on both sides of films to serve as electrodes for electric measurement. The diameter of electrodes for dielectric and ferroelectric characterization was 5 mm and 2 mm, respectively.

    2 Results and Discussion

    2.1 Morphology control of solution casted PVDF films

    The morphology analysis was elucidated using SEM. Films crystallized at 50 ℃ were highly porous and contained some slackly aggregated beads except for samples with ultrahigh molecular weight (1 000-1 200 kg/mol) which displayed a homogenous and smooth morphology shown in Fig. 1(a). The formed beads are suggested to be crystals since PVDF is a semi-crystalline polymer. Films formed from solution at 125 ℃ clearly displayed the morphology of spherulites shown in Fig. 1(b), where large spherulites with a diameter of about 40-50 μm could be seen in samples with a low molecular weight (180 kg/mol), and slightly irregular and smaller spherulites (about 25 μm) were formed in samples with a moderately higher molecular weight (534 kg/mol). A different morphology, ring-banded spherulite with separated lamellae bundles[22], was obtained in films produced at 125 ℃ with ultrahigh molecular weight (1 000 kg/mol). More details about crystallization characteristics will be discussed in section 2.2.

    Fig. 1 SEM images for the surface of SC PVDF films with different molecular weights at different casting temperatures: (a) 50 ℃ with Mw of 180 kg/mol; (b) 50 ℃ with Mw of 534 kg/mol; (c) 50 ℃ with Mw of 1 000 kg/mol; (d) 125 ℃ with Mw of 180 kg/mol; (e) 125 ℃ with Mw of 534 kg/mol; (f) 125 ℃ with Mw of 1 000 kg/mol

    2.2 Crystallization features of SC PVDF films

    2.2.1Determinationofcrystallinephase

    The crystalline structure of PVDF films was determined using FTIR shown in Fig. 2(a) and XRD shown in Fig. 2(b). FTIR shows characteristic bands for different phases[23-24].α-phase: 612, 766, 975, and 1 212 cm-1;β-phase: 840 cm-1and 1 270 cm-1;γ-phase: 812, 835, 840, and 1 234 cm-1. The sample with the highest molecular weight (1 000 kg/mol) casted at 125 ℃ (SC-125-1000) showed the invisible band at 835-840 cm-1, which suggested the almost pureα-phase crystallized in SC-125-1000 sample. The other films show the appearance of 835-840 cm-1, which demonstrates the possible existence of polarβ-phase andγ-phase. Bands at 1 270 cm-1(exclusive toβ-phase) and 1 234 cm-1(exclusive toγ-phase) were used to resolve the crystalline characterization. The absence of 1 270 cm-1band (β-) and the presence of 1 234 cm-1(γ-) highlighted the fact that the 835-840 cm-1band was only ascribed toγ-phase not to the combined contributions ofβ-phase andγ-phase, which suggested that PVDF did not form intoβ-phase when casted from DMSO solvent (dipole moment: 1.32×10-29C·m).

    Fig. 2 Phase determination of SC PVDF films with different molecular weights at different casting temperatures: (a) FTIR; (b) XRD; (c) content of γ-phase of SC samples calculated from FTIR data; (d) average mean size of crystallites calculated from XRD data

    The above results are consistent with the previous studies thatβ-phase only forms from the solvent with high dipole moment. For example, PVDF casted from hexamethylphosphoramide (HMPA) (dipole moment: 1.85×10-29C·m) can crystallize intoβ-phase regardless of casting temperatures ranging from 60-140 ℃[25]. PVDF with the lowest molecular weight (180 kg/mol) crystallized into the pureγ-phase when casted at a low temperature of 50 ℃ (SC-50-180), as concluded from the absence ofα-characteristic bands (766 cm-1and 612 cm-1). FTIR can also be used to determine the phase content of PVDF. The SC PVDF films only containedα-phase andγ-phase. Therefore, the content ofγ-phaseF(γ)[23]was calculated by

    (1)

    whereAαandAγare the absorbances at 766 cm-1and 835 cm-1, respectively;KαandKγare the corresponding absorbance coefficients, which are 0.365 μm-1and 0.150 μm-1, respectively. The calculated results are depicted in Fig. 2(c). It is clearly concluded that the low casting temperature and the low molecular weight favour the formation of polarγ-phase.

    Contrary to FTIR, XRD can only be used to qualitatively analyze the crystalline structure of PVDF, sinceα-phase,β-phase andγ-phase show diffraction peaks at very close position (about 20.0°-21.0°), 20.0° (110) for pureα-phase, 20.7° (110)/(200) for pureβ-phase, and 20.4° (110)/(101) for pureγ-phase[11].

    All of the films show diffraction peaks at 20.0°-20.4° with no appearance of a peak at 20.7°, being consistent with FTIR data that DMSO SC PVDF films does not crystallize intoβ-phase. In addition to 20.0° (110),α-PVDF also exhibits peaks at 17.8°, 18.4° and 26.6°, which corresponds to the diffraction of (100), (020), and (021). Similarly,γ-PVDF shows diffraction peaks at 18.5° and 39.0° which are ascribed to the crystal planes of (020) and (211). The peak at 26.6° (021) is exclusive toα-phase. Samples with a higher content ofα-phase (weight ratio >15%) for example PVDF with the highest molecular weight (1 000 kg/mol) and the one with a moderate molecular weight casted at a high temperature (534 kg/mol at 125 ℃) clearly displayed peaks at 26.6°. The average size of crystalliteτwas evaluated using the diffraction at 2θ≈20° and Scherrer equation, which was shown as

    (2)

    whereKis dimensionless shape factor and equals 0.89;γis the wavelength of X-ray and is 0.154 06 nm;Bis the full width at half maximum (FWHM);θis a Bragg angle that corresponds to diffraction of (110)αand (110)/(101)γ. The calculated values are described in Fig. 2(d), where films formed at a low temperature (50 ℃) show a smaller mean size of crystallites (about 6 nm), being half of the samples ( about 12 nm) casted at a high temperature (125 ℃).

    2.2.2Thermalanalysis

    The thermal properties of SC films were characterized using DSC (shown in Fig. 3). The degree of crystallinity was evaluated using the ratio between the experimental fusion enthalpy and the theoretical value for a fully crystalline PVDF (104.6 J/g)[26]. The melting temperatureTmof PVDF samples is in the range of 160-172 ℃, and for PVDF with the same molecular weight, theTmpeaks are at almost the same position. However, the degree of crystallinity varies with the solution casting temperature. Films formed at 50 ℃ exhibit higher degrees of crystallinity (about 55%) compared to samples formed at 125 ℃ (40%-45%).

    Fig. 3 DSC analysis of SC PVDF films with different molecular weights at different casting temperatures

    2.2.3Discussionofcrystallizationfeatures

    The formed crystalline phase of PVDF is under the combined influence of crystallization temperatures and molecular weights. The high polarity of DMSO at a low temperature of 50 ℃ enables strong interaction between PVDF and DMSO, which induces the rotation of C—F bonds around polymer chain backbones and the formation of polar phases. However, the polarity of DMSO decreased and the chain mobility of PVDF increased at a high temperature of 125 ℃, which hindered the interaction between PVDF and DMSO, leading to the formation ofα-phase with trans-gauche chain conformation. As a result, PVDF with a molecular weight of 180 kg/mol crystallized into pureγ-phase when casted at 50 ℃ shown in Fig. 2(c). With respect to the molecular weight, a high molecular weight corresponds to low chain mobility, which is similar to the effect of decreasing the crystallization temperature. Therefore, PVDF with a high molecular weight of 1 000 kg/mol tended to crystallize intoα-phase. Apart from the crystalline phase, the low casting temperature enhances the degree of crystallinity of processed PVDF films shown in Fig. 3. One possible reason could be that the crystallization time was extended at a low evaporation temperature[27], giving PVDF more time to crystallize. Moreover, a low casting temperature favours the process of nucleation but hinders the growth of crystallites, as a result, PVDF films casted at 50 ℃ have smaller crystallites compared to films produced at 125 ℃ because of the reduction of the nucleus and the obstruction of crystal growth.

    2.3 Dielectric and ferroelectric properties

    The frequency dependence of dielectric spectra is shown in Fig. 4. All of the films exhibit similar values(about 12±2) of dielectric constants at 100 Hz, and display relaxation loss peaks above 100 kHz which is related to the dipolar relaxation of polymer chains in amorphous regions[28]. SC-50-1000 shows the lowest dielectric constant, being ascribed to the low mobility of polymer chains due to the ultrahigh molecular weight, which discourages the response of dipoles to applied external voltage. It is clearly suggested that the relaxation peaks of films casted at 125 ℃ show higher values of loss compared to films casted at 50 ℃. The dielectric response at low voltage (0.5 V) mainly arises from dipoles in the amorphous region. A high loss relaxation peak can be linked to a low degree of crystallinity, which is consistent with DSC results suggesting that films casted at 125 ℃ exhibit low degrees of crystallinity.

    Fig. 4 Frequency dependence of dielectric properties of SC PVDF films with different molecular weights at different casting temperatures

    The ferroelectric properties of current-electric field (I-E) and displacement-electric field (D-E) loops of SC PVDF films are shown in Fig. 5. PVDF with a low molecular weight of 180 kg/mol displayed an obvious ferroelectric switching feature with switching current peaks at an electric field of 70-80 kV/mm. However, PVDF with a high molecular weight (534 kg/mol and 1 000 kg/mol) exhibited high loss conductivity corresponding to large slopes of I-E loops, and did not show apparent switching current peaks especially for PVDF casted at 50 ℃. The high loss conductivity can be attributed to the residual solvent caused by a low evaporation temperature. A high molecular weight contributes to low chain mobility that could be the reason for less obvious peaks of switching current, since the ferroelectric switching of PVDF is accomplished by the collaborative long-range rotation of polymer chains, and low chain mobility hinders the rotation of polymer chains[29]. Especially for PVDF with 180 kg/mol, films casted at 125 ℃ showed the highest remnant polarization (0.062 C/m2), being a result of a high fraction of polarγ-phase (about 90%) and well evaporation of DMSO solvent.

    Fig. 5 Ferroelectric properties of PVDF films with different molecular weight solution casted at 50 ℃ and 125 ℃: (a) 180 kg/mol; (b) 534 kg/mol; (c) 1 000 kg/mol

    3 Conclusions

    The crystallization characteristics of PVDF casted from DMSO solvent were studied in this work, where the crystalline phase, crystallinity and average crystallite size are influenced by the molecular weight and the evaporation temperature of the solvent. A low molecular weight (180 kg/mol) and a low evaporation temperature (50 ℃) favour the formation of polarγ-phase, while PVDF with a high molecular weight (1 000 kg/mol) casted at a high temperature (125 ℃) predominantly crystallized intoα-phase. Films casted at 125 ℃ exhibited high dielectric loss, being a result of a low degree of crystallinity. On the contrary, films casted at a high temperature showed less conductivity loss at 200 kV/mm, which was ascribed to the fine evaporation of the solvent. Moreover, high chain mobility resulted from a low molecular weight allowed PVDF to display obvious ferroelectric switching. As a result, PVDF with 180 kg/mol casted at 125 ℃ exhibited the highest remnant polarization (0.062 C/m2) among all of the solution-processed films.

    猜你喜歡
    耀祖
    Preparation of Polyaniline/Cellulose Nanofiber Aerogel for Efficient Removal of Cr(VI) from Aqueous Solution
    李鳳群和她的《伙伴》
    規(guī)矩
    扶貧可以很另類
    吳耀祖先生作品選登
    今日華人(2019年15期)2019-12-17 08:16:45
    男女有別
    北大留美碩士拉黑父母:“為你好”真的會(huì)“讓我痛”
    北大留美碩士拉黑父母:『為你好』真的會(huì)『讓我痛』
    有一種傷害叫關(guān)愛:北大留美碩士為何拉黑父母
    同鄉(xiāng)小妹之死:有求必應(yīng)的大哥扛不住了
    h视频一区二区三区| 高清午夜精品一区二区三区| av国产久精品久网站免费入址| 日本wwww免费看| 亚洲欧美精品自产自拍| 观看免费一级毛片| 中文乱码字字幕精品一区二区三区| 免费观看性生交大片5| 欧美精品国产亚洲| 国产亚洲91精品色在线| 搡女人真爽免费视频火全软件| 亚洲精品aⅴ在线观看| 亚洲成人av在线免费| 久久久精品免费免费高清| 亚洲av综合色区一区| 精品一区二区三区视频在线| 精品久久久久久久末码| 男人添女人高潮全过程视频| 能在线免费看毛片的网站| 亚洲精品国产色婷婷电影| 各种免费的搞黄视频| 精品亚洲成国产av| 国产欧美另类精品又又久久亚洲欧美| 精品人妻视频免费看| 肉色欧美久久久久久久蜜桃| 岛国毛片在线播放| 另类亚洲欧美激情| 欧美高清成人免费视频www| 久久久久久久亚洲中文字幕| 直男gayav资源| 蜜桃久久精品国产亚洲av| 国产亚洲一区二区精品| 国产成人aa在线观看| videossex国产| 青春草亚洲视频在线观看| 精品午夜福利在线看| 99久久精品热视频| 国产精品秋霞免费鲁丝片| 成人毛片a级毛片在线播放| 91精品一卡2卡3卡4卡| 国产日韩欧美在线精品| 国产精品伦人一区二区| 国产精品国产三级国产专区5o| 高清欧美精品videossex| 亚洲国产精品一区三区| 久久久精品94久久精品| 精品午夜福利在线看| 亚洲精品乱久久久久久| 日本色播在线视频| 国产乱人视频| 99视频精品全部免费 在线| 黑丝袜美女国产一区| 人人妻人人爽人人添夜夜欢视频 | 内射极品少妇av片p| 免费人成在线观看视频色| 亚洲国产精品国产精品| 国产爽快片一区二区三区| 久久久久国产精品人妻一区二区| 亚洲国产精品成人久久小说| av国产精品久久久久影院| 超碰av人人做人人爽久久| a级毛片免费高清观看在线播放| 在线观看一区二区三区| 汤姆久久久久久久影院中文字幕| 午夜福利高清视频| 亚洲精品乱码久久久久久按摩| 国产精品一区二区性色av| 精品国产一区二区三区久久久樱花 | 国产精品国产三级国产av玫瑰| 亚洲av成人精品一二三区| 国产精品福利在线免费观看| 日韩av不卡免费在线播放| 蜜臀久久99精品久久宅男| av免费观看日本| 只有这里有精品99| 日本wwww免费看| 免费播放大片免费观看视频在线观看| 日本av免费视频播放| av免费观看日本| 亚洲欧洲国产日韩| 日韩精品有码人妻一区| 在线观看一区二区三区| 精品人妻视频免费看| 亚洲熟女精品中文字幕| 久久精品久久久久久噜噜老黄| 国产精品秋霞免费鲁丝片| 久久久成人免费电影| 国产成人91sexporn| 高清av免费在线| 久久久精品94久久精品| 91久久精品国产一区二区三区| 麻豆国产97在线/欧美| 国产国拍精品亚洲av在线观看| 在线观看三级黄色| 亚洲国产欧美人成| 一级二级三级毛片免费看| 亚洲婷婷狠狠爱综合网| 午夜老司机福利剧场| av女优亚洲男人天堂| 午夜激情福利司机影院| 男人狂女人下面高潮的视频| 亚洲精品乱码久久久v下载方式| 国产亚洲av片在线观看秒播厂| 成人黄色视频免费在线看| 亚洲欧美精品专区久久| 久久99热这里只有精品18| 亚州av有码| 一边亲一边摸免费视频| 青青草视频在线视频观看| 99久久综合免费| 五月天丁香电影| 人妻系列 视频| 18禁动态无遮挡网站| 亚洲av在线观看美女高潮| 免费黄频网站在线观看国产| 久久精品熟女亚洲av麻豆精品| 亚洲精品一二三| 亚洲色图av天堂| 亚洲第一区二区三区不卡| 亚洲一区二区三区欧美精品| 99热国产这里只有精品6| 亚洲怡红院男人天堂| 中文精品一卡2卡3卡4更新| 免费观看无遮挡的男女| 我要看黄色一级片免费的| 麻豆精品久久久久久蜜桃| 香蕉精品网在线| 中文在线观看免费www的网站| 大又大粗又爽又黄少妇毛片口| 久久av网站| 高清午夜精品一区二区三区| 日韩人妻高清精品专区| 久久精品国产自在天天线| 久久久成人免费电影| 啦啦啦在线观看免费高清www| 日本爱情动作片www.在线观看| av国产精品久久久久影院| 欧美成人a在线观看| 在线免费十八禁| 国产精品蜜桃在线观看| 亚洲国产精品国产精品| 国产成人精品一,二区| 久热这里只有精品99| 日韩,欧美,国产一区二区三区| av天堂中文字幕网| 中文字幕av成人在线电影| 久久精品久久久久久噜噜老黄| 一级片'在线观看视频| 黑人猛操日本美女一级片| 成人18禁高潮啪啪吃奶动态图 | 久久久久性生活片| 国产久久久一区二区三区| 国产淫语在线视频| 亚洲,欧美,日韩| 久久久久久久久久人人人人人人| 人妻夜夜爽99麻豆av| 国产爱豆传媒在线观看| 日本av免费视频播放| 各种免费的搞黄视频| 久久久久人妻精品一区果冻| 欧美xxxx黑人xx丫x性爽| 日韩一区二区三区影片| av在线app专区| 精品视频人人做人人爽| 成人免费观看视频高清| 国产乱人视频| 亚洲美女视频黄频| 亚洲内射少妇av| 亚洲成人手机| 99热6这里只有精品| 免费黄网站久久成人精品| 赤兔流量卡办理| 人妻一区二区av| 欧美区成人在线视频| 久久久午夜欧美精品| 日韩不卡一区二区三区视频在线| 麻豆国产97在线/欧美| tube8黄色片| av在线蜜桃| 亚洲欧美精品专区久久| 亚洲精品乱久久久久久| 日韩成人av中文字幕在线观看| 日本欧美国产在线视频| 免费看av在线观看网站| 99久久精品一区二区三区| 成人亚洲欧美一区二区av| 久久国产乱子免费精品| 国产男女内射视频| 毛片一级片免费看久久久久| 一级黄片播放器| 晚上一个人看的免费电影| 中文字幕人妻熟人妻熟丝袜美| 少妇精品久久久久久久| 国产亚洲av片在线观看秒播厂| 国国产精品蜜臀av免费| 七月丁香在线播放| 人体艺术视频欧美日本| 亚洲美女黄色视频免费看| 黄色配什么色好看| 欧美日韩综合久久久久久| 亚洲av.av天堂| 久久青草综合色| av不卡在线播放| 欧美高清性xxxxhd video| 国产伦理片在线播放av一区| 99精国产麻豆久久婷婷| 欧美精品一区二区免费开放| 中国三级夫妇交换| 久久青草综合色| 最近的中文字幕免费完整| 国产色爽女视频免费观看| 80岁老熟妇乱子伦牲交| 久久久久久久久久人人人人人人| 日本av免费视频播放| 自拍欧美九色日韩亚洲蝌蚪91 | xxx大片免费视频| 久久6这里有精品| 97精品久久久久久久久久精品| 在线观看人妻少妇| 女性生殖器流出的白浆| 亚洲精品,欧美精品| 亚洲国产欧美人成| 美女内射精品一级片tv| 亚洲av综合色区一区| 精品一区二区三卡| 精品国产露脸久久av麻豆| 男女下面进入的视频免费午夜| 国产视频首页在线观看| 一本一本综合久久| av线在线观看网站| 欧美老熟妇乱子伦牲交| av.在线天堂| 国产黄频视频在线观看| 亚洲国产欧美人成| 中文乱码字字幕精品一区二区三区| 国产亚洲av片在线观看秒播厂| 亚洲国产精品999| 高清黄色对白视频在线免费看 | 欧美日韩视频精品一区| 日本猛色少妇xxxxx猛交久久| av卡一久久| 美女高潮的动态| h视频一区二区三区| 一级毛片黄色毛片免费观看视频| 亚洲伊人久久精品综合| 亚洲精品国产成人久久av| 国产精品嫩草影院av在线观看| 久久久久久人妻| 久久精品国产亚洲av涩爱| 久久国产精品大桥未久av | 日韩国内少妇激情av| 国产永久视频网站| 一本—道久久a久久精品蜜桃钙片| 亚洲av电影在线观看一区二区三区| 亚洲精品日本国产第一区| 国产 一区 欧美 日韩| 成人亚洲欧美一区二区av| 日本av免费视频播放| 日韩强制内射视频| 久久人人爽人人片av| 80岁老熟妇乱子伦牲交| 男女免费视频国产| 国产精品av视频在线免费观看| 超碰av人人做人人爽久久| 99热6这里只有精品| 国产欧美日韩精品一区二区| 午夜福利在线观看免费完整高清在| 97超视频在线观看视频| videossex国产| 亚洲美女搞黄在线观看| 十八禁网站网址无遮挡 | av网站免费在线观看视频| 五月伊人婷婷丁香| 日韩成人av中文字幕在线观看| 国产 精品1| 免费黄频网站在线观看国产| 久久女婷五月综合色啪小说| av国产免费在线观看| 噜噜噜噜噜久久久久久91| 在线 av 中文字幕| 美女中出高潮动态图| 两个人的视频大全免费| 黑人高潮一二区| 99久久综合免费| 高清毛片免费看| 人人妻人人澡人人爽人人夜夜| 精品国产乱码久久久久久小说| 亚洲,一卡二卡三卡| 极品教师在线视频| 久久久久久久久久久免费av| 美女主播在线视频| 亚洲aⅴ乱码一区二区在线播放| 国产爽快片一区二区三区| 亚洲经典国产精华液单| 日韩伦理黄色片| 久久韩国三级中文字幕| 中文字幕免费在线视频6| 大香蕉久久网| 3wmmmm亚洲av在线观看| 色视频www国产| 久久精品国产亚洲av天美| 日日啪夜夜爽| 久久女婷五月综合色啪小说| 1000部很黄的大片| 我的女老师完整版在线观看| 最后的刺客免费高清国语| 高清毛片免费看| 欧美日韩一区二区视频在线观看视频在线| 成人国产av品久久久| 纯流量卡能插随身wifi吗| 国产午夜精品一二区理论片| 一区二区三区精品91| 国产精品女同一区二区软件| 韩国av在线不卡| 国产精品99久久久久久久久| 街头女战士在线观看网站| 少妇裸体淫交视频免费看高清| 欧美日韩亚洲高清精品| 黄色一级大片看看| 色婷婷av一区二区三区视频| 日韩亚洲欧美综合| 99久久精品一区二区三区| 自拍偷自拍亚洲精品老妇| 国产黄片视频在线免费观看| 欧美 日韩 精品 国产| 黄色日韩在线| 亚洲精品乱久久久久久| 亚洲国产精品成人久久小说| 日韩在线高清观看一区二区三区| 国产黄频视频在线观看| 毛片一级片免费看久久久久| 国产大屁股一区二区在线视频| 久久久亚洲精品成人影院| 在线观看免费高清a一片| 国产深夜福利视频在线观看| 日本免费在线观看一区| 狂野欧美激情性xxxx在线观看| 亚洲av综合色区一区| 国产有黄有色有爽视频| 色哟哟·www| 天堂俺去俺来也www色官网| 亚洲,欧美,日韩| 亚洲熟女精品中文字幕| 国模一区二区三区四区视频| 国产成人精品一,二区| 亚洲精品乱码久久久久久按摩| 久久综合国产亚洲精品| 精品99又大又爽又粗少妇毛片| 九九在线视频观看精品| 国产亚洲欧美精品永久| 最近的中文字幕免费完整| 国产成人freesex在线| 国产成人免费观看mmmm| 国产美女午夜福利| 麻豆成人av视频| 少妇人妻久久综合中文| 亚洲人与动物交配视频| 不卡视频在线观看欧美| 日本vs欧美在线观看视频 | 亚洲国产精品成人久久小说| 中国美白少妇内射xxxbb| 日韩精品有码人妻一区| 国产精品嫩草影院av在线观看| 麻豆成人av视频| 中国三级夫妇交换| 日韩 亚洲 欧美在线| 久久亚洲国产成人精品v| 久久久久精品久久久久真实原创| 毛片女人毛片| 国产又色又爽无遮挡免| av国产免费在线观看| 亚洲四区av| 国产成人freesex在线| 99久久中文字幕三级久久日本| 韩国av在线不卡| 人妻制服诱惑在线中文字幕| 精品午夜福利在线看| 成年免费大片在线观看| 久久久久久久久久人人人人人人| 自拍欧美九色日韩亚洲蝌蚪91 | 免费看日本二区| 99精国产麻豆久久婷婷| 伦理电影免费视频| 直男gayav资源| 午夜日本视频在线| 国产成人a∨麻豆精品| 久久久a久久爽久久v久久| 亚洲精品乱码久久久久久按摩| 免费观看性生交大片5| videos熟女内射| 男人舔奶头视频| 欧美成人一区二区免费高清观看| 在线观看免费视频网站a站| 久久99蜜桃精品久久| 一区二区三区免费毛片| 人人妻人人看人人澡| 国内揄拍国产精品人妻在线| 一本一本综合久久| 十八禁网站网址无遮挡 | 黑人高潮一二区| 麻豆乱淫一区二区| 大陆偷拍与自拍| 日韩强制内射视频| videos熟女内射| 亚洲欧美日韩无卡精品| 亚洲欧美清纯卡通| 人妻一区二区av| 国产精品人妻久久久影院| 亚洲精品456在线播放app| 国产成人精品久久久久久| 久久影院123| 老师上课跳d突然被开到最大视频| 日韩av不卡免费在线播放| 久久97久久精品| 美女中出高潮动态图| 日韩伦理黄色片| 国产精品国产三级国产专区5o| 欧美日韩综合久久久久久| 国产精品精品国产色婷婷| videos熟女内射| av国产免费在线观看| 下体分泌物呈黄色| 久久久久久久久久久免费av| 黑人猛操日本美女一级片| 丝瓜视频免费看黄片| 日韩av不卡免费在线播放| 一区二区三区免费毛片| 高清视频免费观看一区二区| 一本—道久久a久久精品蜜桃钙片| 国产亚洲一区二区精品| 肉色欧美久久久久久久蜜桃| 成人漫画全彩无遮挡| av线在线观看网站| 国产乱人视频| 精品久久久精品久久久| 久热这里只有精品99| 久久鲁丝午夜福利片| 搡女人真爽免费视频火全软件| 国产精品嫩草影院av在线观看| 内射极品少妇av片p| 免费不卡的大黄色大毛片视频在线观看| 国产视频内射| 精品国产一区二区三区久久久樱花 | 日韩欧美一区视频在线观看 | 免费观看在线日韩| 午夜免费鲁丝| 久久国产精品男人的天堂亚洲 | 香蕉精品网在线| 在线观看免费视频网站a站| 免费播放大片免费观看视频在线观看| 下体分泌物呈黄色| .国产精品久久| 国国产精品蜜臀av免费| 熟妇人妻不卡中文字幕| 欧美亚洲 丝袜 人妻 在线| 校园人妻丝袜中文字幕| 精品一区二区三卡| 色婷婷av一区二区三区视频| 亚洲国产成人一精品久久久| 国产爱豆传媒在线观看| 一级毛片我不卡| 精品少妇黑人巨大在线播放| 亚洲欧洲日产国产| 中文字幕制服av| 制服丝袜香蕉在线| 亚洲婷婷狠狠爱综合网| 久久婷婷青草| 草草在线视频免费看| 最近2019中文字幕mv第一页| 成人亚洲欧美一区二区av| 黄色怎么调成土黄色| av专区在线播放| 久久99热这里只有精品18| 久久久久性生活片| 大话2 男鬼变身卡| 午夜免费鲁丝| 亚洲精华国产精华液的使用体验| 免费不卡的大黄色大毛片视频在线观看| 欧美 日韩 精品 国产| 汤姆久久久久久久影院中文字幕| 亚洲精品国产av成人精品| 黄色配什么色好看| 搡老乐熟女国产| 亚洲国产毛片av蜜桃av| 免费播放大片免费观看视频在线观看| 高清不卡的av网站| 亚洲欧洲国产日韩| 91精品国产国语对白视频| 亚洲欧美精品自产自拍| 高清不卡的av网站| 国产伦在线观看视频一区| 大码成人一级视频| 嘟嘟电影网在线观看| 欧美三级亚洲精品| av卡一久久| 精品少妇黑人巨大在线播放| 精品久久久久久久久av| 亚洲精品一区蜜桃| 精品人妻视频免费看| 狂野欧美白嫩少妇大欣赏| 一级毛片黄色毛片免费观看视频| 高清不卡的av网站| 99re6热这里在线精品视频| 欧美国产精品一级二级三级 | 久久国产亚洲av麻豆专区| 91精品一卡2卡3卡4卡| 国产男女内射视频| 亚洲人成网站高清观看| 免费播放大片免费观看视频在线观看| 婷婷色av中文字幕| 日本黄大片高清| 亚洲国产最新在线播放| 看十八女毛片水多多多| 久久6这里有精品| 中国美白少妇内射xxxbb| 777米奇影视久久| 在线观看人妻少妇| 亚洲国产av新网站| 久久久久久久久久久丰满| 国产精品偷伦视频观看了| 国产亚洲一区二区精品| 中文天堂在线官网| 久热这里只有精品99| 亚洲国产av新网站| 亚洲图色成人| 成人国产麻豆网| 99热这里只有精品一区| 午夜福利在线在线| 少妇 在线观看| 国产爱豆传媒在线观看| 毛片女人毛片| 99精国产麻豆久久婷婷| 一区二区三区四区激情视频| 亚洲精华国产精华液的使用体验| 色哟哟·www| 国产淫语在线视频| 亚洲综合色惰| 精品99又大又爽又粗少妇毛片| av播播在线观看一区| 建设人人有责人人尽责人人享有的 | 18+在线观看网站| 一本—道久久a久久精品蜜桃钙片| 久久精品国产鲁丝片午夜精品| 久久精品国产自在天天线| 亚洲精品中文字幕在线视频 | 人人妻人人爽人人添夜夜欢视频 | 日韩强制内射视频| 80岁老熟妇乱子伦牲交| 麻豆国产97在线/欧美| 日韩电影二区| 国产一区亚洲一区在线观看| 99热这里只有是精品50| 七月丁香在线播放| 又黄又爽又刺激的免费视频.| 国产成人免费观看mmmm| 精品亚洲成国产av| 97超视频在线观看视频| 国产精品麻豆人妻色哟哟久久| 高清日韩中文字幕在线| 久久久a久久爽久久v久久| 一本—道久久a久久精品蜜桃钙片| 老女人水多毛片| 爱豆传媒免费全集在线观看| 亚洲人成网站高清观看| 国产伦精品一区二区三区视频9| 亚洲av在线观看美女高潮| 国产成人91sexporn| 亚洲国产精品国产精品| 七月丁香在线播放| 亚洲第一av免费看| 一级a做视频免费观看| 国产在线男女| 亚洲国产欧美人成| 97超碰精品成人国产| 亚洲av电影在线观看一区二区三区| 久久久欧美国产精品| 中国国产av一级| 99re6热这里在线精品视频| 黄色怎么调成土黄色| 日本黄色日本黄色录像| 美女福利国产在线 | 黄片无遮挡物在线观看| 久久精品久久久久久久性| 深夜a级毛片| 中文字幕制服av| 亚洲怡红院男人天堂| 老女人水多毛片| 国产亚洲91精品色在线| 午夜视频国产福利| 黄色怎么调成土黄色| 亚洲最大成人中文| 国产免费视频播放在线视频| 色综合色国产| 夜夜骑夜夜射夜夜干| 男女免费视频国产| a 毛片基地| av播播在线观看一区| 麻豆精品久久久久久蜜桃| 日本av免费视频播放| 久久久久久久国产电影| 久久久久久伊人网av| 中文字幕久久专区| 高清av免费在线| 日韩在线高清观看一区二区三区| 丰满迷人的少妇在线观看| 欧美激情国产日韩精品一区| 久久97久久精品| 亚洲色图av天堂| 夜夜骑夜夜射夜夜干| 男的添女的下面高潮视频| 久久精品久久久久久久性| 在线观看一区二区三区| 观看免费一级毛片| 丰满乱子伦码专区| 不卡视频在线观看欧美|