• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A structure-preserving algorithm for time-scale non-shifted Hamiltonian systems

    2022-03-04 09:57:08XueTianYiZhang

    Xue Tian, Yi Zhang

    a School of Science, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China

    b School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, 232001, Anhui, China

    c College of Civil Engineering, Suzhou University of Science and Technology, Suzhou, 215011, Jiangsu, China

    Keywords:Time-scale non-shifted system Hamiltonian system Structure-preserving algorithm Noether conserved quantity

    ABSTRACT The variational calculus of time-scale non-shifted systems includes both the traditional continuous and traditional significant discrete variational calculus. Not only can the combination of Δ and ?derivatives be beneficial to obtaining higher convergence order in numerical analysis, but also it prompts the timescale numerical computational scheme to have good properties, for instance, structure-preserving. In this letter, a structure-preserving algorithm for time-scale non-shifted Hamiltonian systems is proposed. By using the time-scale discrete variational method and calculus theory, and taking a discrete time scale in the variational principle of non-shifted Hamiltonian systems, the corresponding discrete Hamiltonian principle can be obtained. Furthermore, the time-scale discrete Hamilton difference equations, Noether theorem, and the symplectic scheme of discrete Hamiltonian systems are obtained. Finally, taking the Kepler problem and damped oscillator for time-scale non-shifted Hamiltonian systems as examples, they show that the time-scale discrete variational method is a structure-preserving algorithm. The new algorithm not only provides a numerical method for solving time-scale non-shifted dynamic equations but can be calculated with variable step sizes to improve the computational speed.

    In classical mechanics, such as Newtonian mechanics and Lagrangian mechanics, Hamiltonian formalism has a salient symmetric form, and regularity of motion is most apparent in Hamiltonian formalism [1]. All actual physical processes whose dissipative effect is negligible can express in Hamiltonian formalism [2]. No matter the process is classical, quantum or relativistic, or no matter its degree of freedom is finite or infinite, the physical process can always express in proper Hamiltonian formalism [3]. Mathematicians and physicists have paid much attention to Hamiltonian systems on account of symmetry and simplicity. The basic theory of continuous Hamiltonian systems has been investigated for a long time. At present, with the development of information technology and the wide application of digital computers, many mathematical models supported by discrete Hamiltonian systems have appeared,and the study of discrete systems theory has attracted more and more people’s attention [4–11]. However, although there are some differences between a discrete system and its corresponding continuous system, there are striking similarities and duality [1].

    As a mathematical tool for establishing a unified framework for continuous and discrete systems, the time-scale theory was proposed by Hilger in his doctoral thesis in 1988 [12]. Subsequently,Bohner and Peterson [13], Agarwal et al. [14], Bohner and Peterson[15] realized that time-scale calculus is bridging the gap between the continuous and discrete aspects. The unified approach means that sophisticated new models can take into account dozens of variables. Besides, it is worth noting that the time-scale calculus of dynamic equations can also representq-difference equations when the time scale is T=qN0(q >1)or T=qZ∪{0}, which have crucial applications in quantum theory [14]. Thus, the time-scale dynamical equations can provide models for continuous systems, discrete systems and quantum systems simultaneously. The complexity of time-scale theory enriches the research content of dynamic systems, and time-scale calculus provides a new method for solving complex dynamic behavior.

    In the past decades, time-scale variational problems and their symmetry problems have been explored and perfected, such as optimal control problems [16,17], Hamilton Jacobi method [18],generalized canonical transformation [19], time-delay dynamics[20,21], fractional variational problems [22–24], Herglotz variational problem [25,26], Lie symmetry [27–29], and Noether theorem [30–33]. The above time-scale variational problems and symmetries are almost based on shifted systems. However, a shifted variational problem does not cover the very important area of discrete calculus. In the case of discrete non-shifted systems, the time-scale variational method becomes the classical discrete variational method, and the time-scale numerical calculation scheme of non-shifted variational method has the characteristic of preserving structure [34]. Moreover, due to the combination ofΔand? derivatives in the time-scale non-shifted system, a higher order of convergence can be obtained in numerical analysis [34].In recent years, Song and Cheng [35] obtained Noether theorem for time-scale non-shifted dynamical systems preliminarily.Then, Chen and Zhang [36] studies Noether symmetry theorem for non-shifted generalized Birkhoffian mechanics on time scales.And Zhang researched Mei symmetries and conserved laws for three kinds of time-scale non-shifted mechanical systems, i.e., Lagrangian systems [37], Hamiltonian systems [38], and Birkhoffian systems [39]. Zhang [40] also studies Noether symmetry theory of time-scale non-shifted Lagrangian systems, non-shifted general holonomic systems and non-shifted nonholonomic systems. However, it is very difficult or even impossible to find general solutions for general time-scale equations. Therefore, there are some results from the time-scale equations to analyze some properties of their solutions, for instance, existence, boundedness, vibration, etc. [41–43]. But up to now, there is no research on the algorithm of solving the time-scale non-shifted dynamic equations.

    It is well known that the Hamilton principle induces Hamilton canonical equations with symplectic structure in the continuous case. Furthermore, the time-scale Hamilton equations induced by the time-scale Hamilton principle also have the symplectic property. If the time-scale Hamilton principle is discretized, the time-scale discrete Hamilton equations can be derived from the time-scale discrete Hamilton principle. As the product of the discrete variational principle, the time-scale discrete Hamilton equations inherit the symplectic geometric properties of the time-scale non-shifted system when used as a numerical difference scheme.In addition, the momentum of the discrete system is conserved,which satisfies the Noether theorem of the time-scale non-shifted Hamiltonian system. In this letter, we will study the structurepreserving algorithm for time-scale non-shifted Hamiltonian systems.

    For the convenience of the reader, some time-scale concepts are listed below. Please refer to Ref. [13] for specific time-scale definitions and properties.

    Table 1 Examples on time scales.

    Proof. Since the infinitesimal transformations (24) are the Noether symmetric transformations of the system, from Definition 1, we knowΔ*SD=0. According to Criterion 2, we obtain

    then the infinitesimal transformations (23) are the Noether quasisymmetric transformations of the time-scale non-shifted Hamiltonian system.

    Fig. 1. The q1 displacements of the Kepler system on T=0.1N.

    Formula (54) is the conservation of energy. Let the time scale be T=hN, i.e.,μ(t)=h. Assume the initial conditionsq1,0=0.003 m, q2,0=0.9 m, q3,0=0.01 m, p1,1=0.1 m, p2,1=0.1 m, p3,1=0.8 m, and the constantK2=0.5625 kg·m3/s2. Ifa=0,h=0.1 andN=1000, according to Eq. (50), compared with the traditional 4th order Runge-Kutta method and 4th-5th order Runge-Kutta method, theq1displacements of the system are given in Fig. 1. The step size of the 4th order Runge-Kutta method is consistent with that of the time-scale discrete variational method,which ish=0.1. Since 4th-5th order Runge-Kutta method can achieve variable step size calculation automatically, this procedure is calculated by MATLAB with its own ode45 function. From Fig. 1, the time-scale discrete variational method and the 4th order Runge-Kutta method can describe the motion trajectory of the system stably. In addition, the solution curve of the system of time-scale discrete variational method, 4th order Runge-Kutta method and 4th-5th order Runge-Kutta method are given, respectively, as shown in Fig. 2. As can be seen from Fig. 2, the results obtained by the time-scale discrete variational method and the 4th order Runge-Kutta method are more stable than those obtained by the 4th-5th order Runge-Kutta method. Furthermore, these three methods calculate the conserved quantity (54), and the results are shown in Fig. 3. In Fig. 3, the Noether conserved quantity (54) obtained by the time-scale discrete variational method is a constant,while the Noether conserved quantities obtained by the 4th order Runge-Kutta method and the 4th-5th order Runge-Kutta method have larger fluctuations. To further compare the time-scale discrete variational method with the 4th order Runge-Kutta method,we set the time scale as T=0.5N, i.e., the step size ish=0.5,and the initial conditions remain unchanged. Then, the results of the displacements, motion trajectories and Noether conserved quantities of the Kepler system obtained by the time-scale discrete variational method and the 4th order Runge-Kutta method are compared.

    As can be seen from Figs. 4–6, whent=332 s,μ=0.5, the 4th order Runge-Kutta method begins to diverge, while the time-scale discrete variational method tends to be stable due to the preserving structure. Moreover, when we take a time scale with variable step size, such as the time scale T=λN, the time-scale discrete variational method is also structure-preserving, and the time-scale calculus can handle the volume subsystem. By settingλ=1.0001,N ∈[0,50000], we can obtain the displacement, motion trajectory and Noether conserved quantity of the Kepler system, as shown in Fig. 7.

    Not only can the time-scale discrete variational method solve time-scale non-shifted dynamic equations, but also it can solve continuous equations when the graininess function is small enough. Next, we give the damped oscillator as an example to illustrate that it provides an effective method for solving equations.

    Fig. 2. The motion trajectories of Kepler system on T=0.1N.

    Fig. 3. The Noether conserved quantities of the Kepler system on T=0.1N.

    Fig. 4. The q1 displacements of the Kepler system on T=0.5N.

    Fig. 6. The Noether conserved quantities of the Kepler system on T=0.5N.

    From Criterion 2, its Noether identity is Let its time scale be T=hZ. Ifh→0 i.e., T=R, then the problems of continuous systems can be studied by the time-scale discrete variational method. At this time, we can compare the exact solution of the system with the result obtained by the proposed method to prove the effectiveness. Let the step size beh=0.001, and the initial conditions beq0=1,p1=1. Then The exact solution of the coordinateqand the solutions obtained by the time-scale discrete variational method and 4th order Runge-Kutta method are given in Fig. 8. According to Fig. 8, the solution ofqobtained by the time-scale discrete variational method is almost identical to the one by the 4th order Runge-Kutta method.Both results are highly consistent with the exact solution. Furthermore, we draw the phase diagrams by the time-scale discrete variational method and the 4th order Runge-Kutta method in Fig. 9, and give the Noether conserved quantity (64) in Fig. 10.Figures 9 and 10 show that the results by the time-scale discrete variational method are stable. There is a tiny deviation between the conserved quantity and the exact one for the continuous equation since this method still solves the discrete equation even ifh=0.001. The result is consistent with the real value if and only ifhtends to zero.

    Fig. 5. The motion trajectories of Kepler system on T=0.5N.

    Fig. 7. T=λN time-scale discrete variational method.

    Fig. 8. The q displacements of the damped oscillator with h=0.001.

    Fig. 9. The phase diagrams of the damped oscillator with h=0.001.

    Fig. 10. The Noether conserved quantities of the damped oscillator with h=0.001.

    The time-scale discrete Hamilton equations (18) are obtained by discretization of time-scale Hamilton principle and variation of time-scale discrete Hamilton principle (10), (12). Thus, the symplectic numerical algorithm scheme (19) is determined. The definition and criterion of the discrete Noether symmetric transformations are given for the time-scale non-shifted Hamiltonian system, and the time-scale discrete Noether theorem is obtained,namely Theorem 1. In addition, the definition and criterion of discrete Noether quasi-symmetric transformations are given, and Theorem 2 is obtained, which shows that more conserved quantities may be obtained by taking different infinitesimal generators and appropriate gauge functions. The Kepler problem and damped oscillator for time-scale non-shifted Hamiltonian systems are taken as examples to illustrate that the time-scale discrete variational method is a structure-preserving algorithm.

    Due to the advantage of time-scale theory, the new algorithm proposed in this letter has a host of strengths.

    1) The new algorithm provides a numerical method for solving time-scale non-shifted dynamic equations and continuous equations.

    2) Unlike the traditional discrete variational method with fixed step sizes, the proposed method can also be calculated with variable step sizes and even segmented time step sizes under certain conditions to improve the computational speed.

    3) Since the forward jump operatorσ(or backward jump operatorρ) and forward graininess functionμ(or backward graininess functionν) represent the forward jump (or backward jump) of time, the equations obtained by the time-scale discrete variational method are uniform in format and elegant in form. Thus,at a discrete timetk, the time of all variables corresponds totk,which is not easy to cause time confusion.

    However, the structure-preserving algorithms for time-scale non-shifted systems are still at the preliminary stage. The timescale discrete variational method can extend to quasi-Hamiltonian systems and Birkhoffian systems. It will be our future research work to apply the time-scale method to other constrained mechanical systems to study their structure-preserving algorithms.Besides, it remains to investigate whether the combination of timescale theory and other numerical algorithms can improve computational accuracy, efficiency or stability.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos. 11972241, 11572212); the Natural Science Foundation of Jiangsu Province (No. BK20191454); and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX20_0251).

    丰满乱子伦码专区| 国产高清国产精品国产三级 | 在线a可以看的网站| 中文字幕人妻熟人妻熟丝袜美| 观看美女的网站| 亚洲乱码一区二区免费版| av网站免费在线观看视频 | 国产精品1区2区在线观看.| 亚洲久久久久久中文字幕| 欧美成人a在线观看| 久久99热这里只频精品6学生| 亚洲国产欧美人成| 噜噜噜噜噜久久久久久91| 国产午夜精品久久久久久一区二区三区| 国产精品三级大全| 永久网站在线| 日韩,欧美,国产一区二区三区| 久久久久久久久中文| 午夜激情欧美在线| 2018国产大陆天天弄谢| 男女啪啪激烈高潮av片| 午夜福利高清视频| 国产三级在线视频| 亚洲欧美精品专区久久| 免费看a级黄色片| 日韩在线高清观看一区二区三区| 直男gayav资源| 国产人妻一区二区三区在| 免费观看性生交大片5| 中国国产av一级| 亚洲欧美日韩卡通动漫| 六月丁香七月| 大香蕉97超碰在线| 一夜夜www| 国产亚洲午夜精品一区二区久久 | 亚洲欧美日韩无卡精品| 在线观看av片永久免费下载| 日韩一本色道免费dvd| 欧美精品一区二区大全| 免费观看av网站的网址| 午夜福利高清视频| 日韩,欧美,国产一区二区三区| 青春草国产在线视频| 好男人在线观看高清免费视频| 性插视频无遮挡在线免费观看| 插阴视频在线观看视频| 久久久久久伊人网av| 自拍偷自拍亚洲精品老妇| 欧美三级亚洲精品| 国内精品一区二区在线观看| 国产又色又爽无遮挡免| 亚洲人成网站高清观看| 狂野欧美白嫩少妇大欣赏| 成人av在线播放网站| 国精品久久久久久国模美| 我的女老师完整版在线观看| 汤姆久久久久久久影院中文字幕 | 美女被艹到高潮喷水动态| 日韩伦理黄色片| 国产又色又爽无遮挡免| 91精品一卡2卡3卡4卡| 日韩欧美国产在线观看| 最近的中文字幕免费完整| 欧美成人a在线观看| 能在线免费看毛片的网站| 男插女下体视频免费在线播放| 国产在视频线精品| 久久97久久精品| 国产精品一区二区三区四区久久| 日本午夜av视频| 国产av在哪里看| 亚洲精品aⅴ在线观看| 波野结衣二区三区在线| 国产午夜精品论理片| 久久这里有精品视频免费| 日日啪夜夜爽| 大又大粗又爽又黄少妇毛片口| 直男gayav资源| 天堂俺去俺来也www色官网 | 国产精品熟女久久久久浪| 日日摸夜夜添夜夜爱| 噜噜噜噜噜久久久久久91| 国产一区亚洲一区在线观看| 久久久久精品久久久久真实原创| 亚洲精品乱码久久久久久按摩| 夫妻性生交免费视频一级片| 亚洲av成人精品一区久久| 天堂影院成人在线观看| 国产伦精品一区二区三区四那| 久久亚洲国产成人精品v| 精品国产一区二区三区久久久樱花 | 国产免费视频播放在线视频 | 内射极品少妇av片p| 九九在线视频观看精品| 亚洲成人中文字幕在线播放| 26uuu在线亚洲综合色| 国产黄频视频在线观看| 国产三级在线视频| 亚洲性久久影院| 男女边吃奶边做爰视频| 欧美一区二区亚洲| 卡戴珊不雅视频在线播放| 中国国产av一级| 免费大片18禁| 欧美日韩国产mv在线观看视频 | 成年女人在线观看亚洲视频 | 亚洲精品国产av蜜桃| 又黄又爽又刺激的免费视频.| a级一级毛片免费在线观看| 国产白丝娇喘喷水9色精品| 免费大片黄手机在线观看| 国产成人精品福利久久| 人体艺术视频欧美日本| 精品国产露脸久久av麻豆 | 亚洲欧美精品专区久久| 亚洲伊人久久精品综合| 日韩大片免费观看网站| 久久久久久国产a免费观看| 七月丁香在线播放| 在线观看av片永久免费下载| 中文天堂在线官网| 少妇人妻一区二区三区视频| 有码 亚洲区| 日日干狠狠操夜夜爽| 国产亚洲av嫩草精品影院| 国产一区有黄有色的免费视频 | 男女下面进入的视频免费午夜| 嫩草影院精品99| 午夜福利在线观看吧| 成人二区视频| 天堂av国产一区二区熟女人妻| 精品国产露脸久久av麻豆 | 日韩av在线大香蕉| 久久99热6这里只有精品| 久久这里有精品视频免费| 三级男女做爰猛烈吃奶摸视频| 91午夜精品亚洲一区二区三区| 国产精品福利在线免费观看| 精品一区二区三卡| 特级一级黄色大片| 日韩,欧美,国产一区二区三区| 看十八女毛片水多多多| 免费av观看视频| 亚洲熟妇中文字幕五十中出| 国产精品国产三级国产av玫瑰| 搡女人真爽免费视频火全软件| 免费av毛片视频| 欧美精品国产亚洲| 我要看日韩黄色一级片| 久久久久九九精品影院| 最近2019中文字幕mv第一页| 晚上一个人看的免费电影| 欧美高清性xxxxhd video| 老师上课跳d突然被开到最大视频| 久久精品国产鲁丝片午夜精品| 狠狠精品人妻久久久久久综合| 欧美 日韩 精品 国产| 亚洲美女搞黄在线观看| 国产在视频线在精品| 国产 一区 欧美 日韩| 国产一区有黄有色的免费视频 | 天堂av国产一区二区熟女人妻| 麻豆av噜噜一区二区三区| 人妻系列 视频| 人妻系列 视频| 丝袜喷水一区| 熟妇人妻久久中文字幕3abv| 国产精品一区二区性色av| 国产午夜精品久久久久久一区二区三区| 免费观看a级毛片全部| 欧美精品国产亚洲| 久久午夜福利片| 麻豆精品久久久久久蜜桃| 免费少妇av软件| 久久久久久久久中文| 亚洲国产日韩欧美精品在线观看| 精品亚洲乱码少妇综合久久| 特大巨黑吊av在线直播| 久久久精品免费免费高清| 老司机影院毛片| 少妇人妻一区二区三区视频| 少妇裸体淫交视频免费看高清| 国产精品嫩草影院av在线观看| 亚洲人与动物交配视频| 三级国产精品片| 亚洲精品国产av蜜桃| 在线观看人妻少妇| 欧美变态另类bdsm刘玥| 国产成人精品福利久久| av播播在线观看一区| 精品久久国产蜜桃| 国产人妻一区二区三区在| av在线老鸭窝| 免费av不卡在线播放| 欧美三级亚洲精品| 日韩欧美 国产精品| 亚洲国产精品专区欧美| 麻豆国产97在线/欧美| 亚洲av一区综合| 麻豆乱淫一区二区| 免费av观看视频| 永久免费av网站大全| 亚洲欧洲国产日韩| 久久精品久久精品一区二区三区| 天天躁日日操中文字幕| 最近中文字幕高清免费大全6| 国国产精品蜜臀av免费| 日日摸夜夜添夜夜爱| 国产片特级美女逼逼视频| 伊人久久国产一区二区| 国产午夜精品论理片| 在线天堂最新版资源| 亚洲欧洲国产日韩| 亚洲aⅴ乱码一区二区在线播放| 大片免费播放器 马上看| 婷婷色综合www| 午夜激情福利司机影院| a级毛色黄片| 简卡轻食公司| 国产精品一区www在线观看| 大香蕉97超碰在线| 欧美成人精品欧美一级黄| 亚洲精品一区蜜桃| 国产欧美日韩精品一区二区| 精品不卡国产一区二区三区| 久久久亚洲精品成人影院| 亚洲av中文av极速乱| 3wmmmm亚洲av在线观看| 在线免费观看的www视频| 国产亚洲午夜精品一区二区久久 | 国产成人91sexporn| 九色成人免费人妻av| 亚洲精品久久午夜乱码| 高清欧美精品videossex| 国产69精品久久久久777片| 国产激情偷乱视频一区二区| 亚洲欧美精品自产自拍| 婷婷六月久久综合丁香| 爱豆传媒免费全集在线观看| 国产男人的电影天堂91| 青青草视频在线视频观看| 18禁在线无遮挡免费观看视频| 国产v大片淫在线免费观看| 久久久精品免费免费高清| 午夜福利网站1000一区二区三区| 国产一区二区在线观看日韩| 舔av片在线| 国产黄色视频一区二区在线观看| 免费观看精品视频网站| 色网站视频免费| 亚洲av男天堂| 久久精品久久精品一区二区三区| 免费观看av网站的网址| 国产精品综合久久久久久久免费| 亚洲乱码一区二区免费版| 亚洲熟妇中文字幕五十中出| 精品久久久精品久久久| 亚洲国产精品国产精品| av天堂中文字幕网| 精品一区二区免费观看| 久久久色成人| 丝袜喷水一区| av在线亚洲专区| 在线a可以看的网站| 久久99蜜桃精品久久| 高清av免费在线| 禁无遮挡网站| 干丝袜人妻中文字幕| 国产亚洲精品av在线| 深夜a级毛片| 69人妻影院| 一级av片app| 久久久久久久久中文| 纵有疾风起免费观看全集完整版 | 美女cb高潮喷水在线观看| av在线老鸭窝| 成人亚洲欧美一区二区av| 免费高清在线观看视频在线观看| 色哟哟·www| 国产黄色视频一区二区在线观看| 亚洲丝袜综合中文字幕| 中文字幕av成人在线电影| 噜噜噜噜噜久久久久久91| 久久久色成人| 建设人人有责人人尽责人人享有的 | 欧美极品一区二区三区四区| 搞女人的毛片| 菩萨蛮人人尽说江南好唐韦庄| 国产综合精华液| 午夜福利视频精品| 成人鲁丝片一二三区免费| 日韩一区二区视频免费看| 大陆偷拍与自拍| 26uuu在线亚洲综合色| 久久综合国产亚洲精品| 狂野欧美白嫩少妇大欣赏| 十八禁国产超污无遮挡网站| 成人亚洲精品一区在线观看 | 国产黄a三级三级三级人| 美女内射精品一级片tv| 麻豆精品久久久久久蜜桃| 夜夜爽夜夜爽视频| 白带黄色成豆腐渣| 亚洲av中文av极速乱| xxx大片免费视频| 亚洲婷婷狠狠爱综合网| 韩国高清视频一区二区三区| 国产精品麻豆人妻色哟哟久久 | 嫩草影院精品99| 麻豆成人午夜福利视频| 极品少妇高潮喷水抽搐| 国产亚洲精品av在线| 寂寞人妻少妇视频99o| 99久久精品热视频| 日本av手机在线免费观看| 久99久视频精品免费| 中文字幕人妻熟人妻熟丝袜美| 精品不卡国产一区二区三区| 丰满人妻一区二区三区视频av| 啦啦啦中文免费视频观看日本| 国产黄色视频一区二区在线观看| 国产伦精品一区二区三区四那| 亚洲av二区三区四区| 国产 一区精品| 天美传媒精品一区二区| 国产一级毛片在线| 欧美三级亚洲精品| a级毛片免费高清观看在线播放| 韩国av在线不卡| 国产色爽女视频免费观看| 免费大片黄手机在线观看| 日日啪夜夜撸| 激情 狠狠 欧美| 国产精品久久久久久久久免| 成人亚洲精品一区在线观看 | 国产成人a∨麻豆精品| 中文字幕免费在线视频6| 黄色日韩在线| 国产欧美另类精品又又久久亚洲欧美| 简卡轻食公司| 欧美激情国产日韩精品一区| 久久久久久伊人网av| 国产精品熟女久久久久浪| 亚洲av成人精品一区久久| 熟女电影av网| 日韩制服骚丝袜av| 国产av国产精品国产| 成年av动漫网址| 亚洲欧美一区二区三区黑人 | 美女脱内裤让男人舔精品视频| 亚洲精品,欧美精品| 国产精品爽爽va在线观看网站| 好男人在线观看高清免费视频| 在线播放无遮挡| 日本午夜av视频| 午夜福利在线观看吧| 日韩电影二区| 国产亚洲5aaaaa淫片| 欧美zozozo另类| 国产91av在线免费观看| 97超碰精品成人国产| 亚洲精品aⅴ在线观看| 久久久精品欧美日韩精品| 亚洲精品乱码久久久v下载方式| 看免费成人av毛片| 男人舔女人下体高潮全视频| 成年人午夜在线观看视频 | a级一级毛片免费在线观看| 国产真实伦视频高清在线观看| 欧美xxxx黑人xx丫x性爽| 午夜免费观看性视频| 久久热精品热| 国产黄片视频在线免费观看| 中文字幕制服av| 日韩国内少妇激情av| 精品国产三级普通话版| 午夜精品在线福利| 小蜜桃在线观看免费完整版高清| 国产三级在线视频| 国产精品女同一区二区软件| 啦啦啦啦在线视频资源| 久久鲁丝午夜福利片| 国产精品av视频在线免费观看| 亚洲国产最新在线播放| 天堂网av新在线| 91午夜精品亚洲一区二区三区| 激情 狠狠 欧美| 欧美 日韩 精品 国产| 亚洲av二区三区四区| 亚洲美女视频黄频| 国产精品久久久久久精品电影小说 | 国产成人一区二区在线| 精品人妻视频免费看| 丝袜美腿在线中文| 国产久久久一区二区三区| 亚洲成色77777| 国产精品一及| 日本欧美国产在线视频| 联通29元200g的流量卡| 亚洲精品乱码久久久久久按摩| 欧美性猛交╳xxx乱大交人| 干丝袜人妻中文字幕| 黄色配什么色好看| 男人舔女人下体高潮全视频| 18禁在线无遮挡免费观看视频| 国产亚洲av片在线观看秒播厂 | 国内揄拍国产精品人妻在线| 久久午夜福利片| 亚洲精品乱码久久久v下载方式| 欧美区成人在线视频| 国产成人91sexporn| 91精品伊人久久大香线蕉| 天堂影院成人在线观看| 国产精品福利在线免费观看| 99久久精品国产国产毛片| 熟妇人妻久久中文字幕3abv| 黑人高潮一二区| 国产精品一区www在线观看| 99久久精品一区二区三区| 国产真实伦视频高清在线观看| 久久午夜福利片| 99热这里只有是精品50| 美女大奶头视频| 2021少妇久久久久久久久久久| 日韩,欧美,国产一区二区三区| 2018国产大陆天天弄谢| 蜜桃亚洲精品一区二区三区| 网址你懂的国产日韩在线| 精品久久久久久久久av| 男人狂女人下面高潮的视频| 1000部很黄的大片| 天天躁日日操中文字幕| 欧美潮喷喷水| 99热网站在线观看| 建设人人有责人人尽责人人享有的 | 真实男女啪啪啪动态图| 三级国产精品欧美在线观看| 色综合站精品国产| 蜜桃亚洲精品一区二区三区| 亚洲精品aⅴ在线观看| 卡戴珊不雅视频在线播放| 熟妇人妻久久中文字幕3abv| a级毛片免费高清观看在线播放| 男女那种视频在线观看| 免费看a级黄色片| 中文乱码字字幕精品一区二区三区 | 中文资源天堂在线| 久久久成人免费电影| 在线免费观看不下载黄p国产| 欧美激情久久久久久爽电影| 免费不卡的大黄色大毛片视频在线观看 | 丝瓜视频免费看黄片| 内射极品少妇av片p| 亚洲自偷自拍三级| 亚洲不卡免费看| 久久99蜜桃精品久久| 中文乱码字字幕精品一区二区三区 | 国产精品国产三级专区第一集| 最近手机中文字幕大全| 亚洲无线观看免费| 国产成人精品婷婷| 精品久久久久久成人av| 边亲边吃奶的免费视频| 成人午夜高清在线视频| kizo精华| 有码 亚洲区| 中文字幕人妻熟人妻熟丝袜美| 国产午夜精品久久久久久一区二区三区| 男人和女人高潮做爰伦理| 日韩国内少妇激情av| 国产精品国产三级国产av玫瑰| 少妇熟女欧美另类| 亚洲成人av在线免费| 国产精品精品国产色婷婷| 国产亚洲av片在线观看秒播厂 | 亚洲欧洲日产国产| 别揉我奶头 嗯啊视频| 日日啪夜夜撸| 国产精品熟女久久久久浪| 三级经典国产精品| 国产综合精华液| 秋霞伦理黄片| 亚洲怡红院男人天堂| 久久99热6这里只有精品| 夫妻性生交免费视频一级片| a级毛片免费高清观看在线播放| 亚洲美女搞黄在线观看| 日韩一本色道免费dvd| 大片免费播放器 马上看| 亚洲人成网站在线观看播放| 亚洲怡红院男人天堂| 少妇熟女欧美另类| 夜夜看夜夜爽夜夜摸| 一个人免费在线观看电影| 国产免费又黄又爽又色| 美女主播在线视频| 2021少妇久久久久久久久久久| 国产伦在线观看视频一区| 九九久久精品国产亚洲av麻豆| 狂野欧美白嫩少妇大欣赏| 欧美日韩综合久久久久久| 免费看美女性在线毛片视频| 亚洲在线观看片| 国内揄拍国产精品人妻在线| 日韩 亚洲 欧美在线| 免费av不卡在线播放| 偷拍熟女少妇极品色| 精品久久久噜噜| 日韩不卡一区二区三区视频在线| 99热全是精品| 日韩欧美 国产精品| 丰满少妇做爰视频| 亚洲最大成人中文| 免费看美女性在线毛片视频| 国产伦理片在线播放av一区| 久久久久久国产a免费观看| 一级爰片在线观看| 久久久久久伊人网av| 九九爱精品视频在线观看| 麻豆久久精品国产亚洲av| 亚洲国产精品成人综合色| 国产又色又爽无遮挡免| 一级片'在线观看视频| 观看免费一级毛片| 美女国产视频在线观看| 色尼玛亚洲综合影院| 精品久久久久久久久亚洲| 干丝袜人妻中文字幕| 亚洲真实伦在线观看| 非洲黑人性xxxx精品又粗又长| 在线观看av片永久免费下载| 日本一二三区视频观看| 国产高清不卡午夜福利| 一二三四中文在线观看免费高清| 不卡视频在线观看欧美| 青青草视频在线视频观看| 国产伦一二天堂av在线观看| 激情 狠狠 欧美| 97超碰精品成人国产| 淫秽高清视频在线观看| 久久久久久久久中文| 亚洲内射少妇av| 国产色婷婷99| 亚洲精品乱久久久久久| 精品亚洲乱码少妇综合久久| 亚洲精品成人久久久久久| 麻豆乱淫一区二区| 日韩一本色道免费dvd| 国产淫片久久久久久久久| 三级国产精品欧美在线观看| 国产亚洲av嫩草精品影院| 高清午夜精品一区二区三区| 97热精品久久久久久| 精品不卡国产一区二区三区| 91精品伊人久久大香线蕉| 少妇熟女aⅴ在线视频| 亚洲av一区综合| 久久久久免费精品人妻一区二区| 国产精品日韩av在线免费观看| 成人一区二区视频在线观看| 久久久国产一区二区| 黄色欧美视频在线观看| 国产精品人妻久久久影院| 国产高清三级在线| 黑人高潮一二区| 成人美女网站在线观看视频| 国产一区亚洲一区在线观看| 亚洲人成网站高清观看| 亚洲熟妇中文字幕五十中出| 中文字幕久久专区| 亚洲av成人av| 免费人成在线观看视频色| 国产男人的电影天堂91| 联通29元200g的流量卡| 亚洲内射少妇av| 少妇的逼水好多| 综合色av麻豆| 免费av观看视频| or卡值多少钱| 中国美白少妇内射xxxbb| 久久久精品欧美日韩精品| 国产伦一二天堂av在线观看| 观看美女的网站| 国产成人精品福利久久| av卡一久久| 夜夜看夜夜爽夜夜摸| 亚洲精品日本国产第一区| 1000部很黄的大片| 在线免费十八禁| 1000部很黄的大片| 国产人妻一区二区三区在| 中文天堂在线官网| 久99久视频精品免费| freevideosex欧美| 欧美3d第一页| 久久精品国产自在天天线| 亚洲图色成人| 精品午夜福利在线看| 人人妻人人看人人澡| 深爱激情五月婷婷| 少妇高潮的动态图| 亚洲精品影视一区二区三区av| h日本视频在线播放| 91精品伊人久久大香线蕉| av天堂中文字幕网| 日本一二三区视频观看| 三级国产精品欧美在线观看| 午夜爱爱视频在线播放| 午夜福利在线在线| 午夜福利成人在线免费观看| 日日撸夜夜添| 日韩一区二区视频免费看| 欧美性猛交╳xxx乱大交人| 久久久久免费精品人妻一区二区| 校园人妻丝袜中文字幕|