• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrothermal analysis of hybrid nanofluid flow on a vertical plate by considering slip condition

    2022-03-04 09:57:08ZngooeeKhHosseinzdehGnji

    M.R. Zngooee, Kh. Hosseinzdeh, D.D. Gnji

    a Department of Mechanical Engineering, Payamenoor University (PNU), Tehran, Iran

    b Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran

    Keywords:Hybrid nanofluid Stagnation flow Velocity slip Temperature slip

    ABSTRACT Hybrid nanofluids have attracted burgeoning attention owing to their outstanding capacity to improve heat transfer. The influence of velocity and temperature slip parameter and nanoparticls’(NPs’) volume fraction on a vertical plate in the existence of suction has been explored in this work. The investigation’s controlling partial differentiation equations were transformed into a conventional differential equation mechanism using resemblance modifications. Equations were then solved employing the fifth-order Runge-Kutta method. The skin coefficient of friction, temperature, and temperature gradient all rise when the volume percentage of NPs increases from 0 to 2%. Furthermore, a rise in the temperature slip variable was linked to a drop in the Nusselt number (heat transfer).The Nusselt number increased 0.15% and 5.63% respectively when the velocity slip parameter enhanced from 0 to 5 and the NPs volume percentage were increased from 0 to 1.5%. Furthermore, an increase in the temperature slip from 0 to 3 inflated the x-direction skin friction coefficient 8.2%, while inflation in the velocity slip from 0 to 5 was associated with a decline in the x-direction skin friction coefficient 95%.

    Today, the improvement of heat transfer is a sought-after subject for industries and researchers. In this regard, a wealth of techniques has been explored to inflate heat transfer such as increasing the heat transfer surface and surface of blades, vibrating heated surfaces, and so on. The next technique to inflate heat transfer is to use nanofluids. Nanofluids consist of nanoparticles (1-100 nm) and a base fluid. Choi and Eastman [1] presented the notion of nanofluid for the first time in 1995. In 2006, Tiwari and Das[2] studied the nanofluids’behavior in a two-sided square chamber and solved the transfer equations by the finite volume (FVM)method. Nadeem et al. [3] studied the three-dimensions flow of water-based nanofluid on an exponentially extending surface and investigated the different variables’impacts such as exponential temperature parameter, stretching parameter, and volume particle of nanoparticles (NPs).

    Lund Baloch et al. [4] considered a Buongiorno model for nanofluids to obtain all nanofluid flow solutions on stretched surfaces. They further explored the effect of various variables on temperature, rate, concentration profile, the skin friction coefficient,Sherwood number (Sh), and Nusselt number. Hashemi et al. [5]investigated magnetic nanofluid natural convection in a permeable media compartment. They found that the entropy production and the Nusselt number are increased directly with a rise in the Rayleigh number and Darcy number in the laminar regions, while both of them have a reverse relationship with the Hartmann number. In addition, the middle Nusselt number was raised with a growing Darcy number in the turbulent region. Molana et al. [6]studied a novel geometric shape porous cavity containing Fe3O4-H2O nanofluid flow with realistic convection within a magnetic domain. They deduced that the heat transfer speed directly relates to the Hartman number and, thus, the magnetic field can strongly control heat transfer inside the cavity. In 2020, Dogonchi et al. [7] investigated the effect of geometric factors of NPs on the natural convection in an annulus among a wavy circular cylinder and a rhombus section subjected to a constant magnetic specialization. The results showed that the heat transfer speed and the middle Nusselt number increased with a given increase in Darcy and Rayleigh numbers. In addition, growth in the Rayleigh number further increased the nanofluid velocity while the aspect ratio of the wavy circular cylinder showed quite different behavior. Several numerical and experimental studies on the properties of nanofluids have been reported [8–14].

    Nomenclature Roman letters a Flow strength Cfx,Cfy Skin friction coefficient in the x- and y- directions CP Specific heat at constant pressure (J/(kg·K))fw Suction parameter Grx Local Grashof number K Temperature jump coefficient k Thermal conductivity of the fluid (W/(m·K))L Characteristic length Nux Local Nusselt number(ρCP) Heat capacity of the fluid (J/(m3·K))Pr Prandtl number Re Local Reynolds number S Coefficient of the slip t Time (s)T Hybrid nanofluid temperature (K)T∞ Ambient temperature (K)Tw Surface temperature (K)T0 Base temperature (K)u,v,w Velocities component in the x-, y - and z - directions (m/s)x,y,z Space coordinates (m)Greek symbols η Similarity variable θ Dimensionless temperature λ Velocity slip parameter γ Temperature slip parameter Λ Mixed convection parameter μ Dynamic viscosity of the fluid (kg/(m·s))υ Kinematic viscosity of the fluid (m2/s)ρ Density of the fluid (kg/m3)β Thermal expansion φ Nanoparticle volume fractions Subscripts f Base fluid hn f Hybrid nanofluid s1 Solid component for Al2O3 (alumina)s2 Solid component for Cu (copper)∞ Condition outside of the boundary layer Superscript′ differentiation with respect to η

    Several numerical investigations have aimed to increase heat transfer using hybrid NPs instead of single NPs. A hybrid nanofluid exists as a basic fluid blended with two or more solid NPs. Oztop and Abu-Nada [15] studied fluid flow and heat transfer using various nanofluids in a heating chamber. The results revealed that for different Rayleigh numbers, the standard Nusselt number grows directly with the nanoparticles’volume particle in the fluid. In addition, heat transfer was much higher when using the nanofluid in lower fractions than in higher fractions. Takabi and Salehi [16]studied the slow laminar convection in a sinusoidal chamber with a heat origin in the lower wall containing water-aluminum oxide nanofluids and a copper-aluminum oxide-water hybrid nanofluid.Their study investigated the impacts of Rayleigh number and concentration of nanofluid or hybrid nanofluid on temperature field and heat transfer. It was found that for each Rayleigh numbers,hybrid nanofluids possess better heat transfer and thus elevated cooling efficiency and lower surface temperatures. In addition, the rate of heat transfer inflation was significant at higher Rayleigh numbers and elevated volume fractions. Devasenan and Kalaiselvam [17] assessed the behavior of the hybrid nanofluid heat transfer in tubular heat exchangers, the effect of forced convection characteristics, thermal conductivity, and heat transfer coefficient, and estimated the volume fraction in which the heat transfer coeffi-cient is maximum. In their 2019 numerical study, Hosseinzadeh et al. [18] studied a solidification method of hybrid nanoparticles by altering the material in the thermal energy storage system with the snow crystal structure. The results revealed that at a volume fraction of 4% for hybrid NPs, the solidification rate increases by 24%. Talili et al. [19] studied a rectangular single-phase circulation loop containing water/Al2O3/Cu as a nanofluid. They investigated the effect of cooling length, heating length, pipe diameter, ring height, the concentration of NPs, etc., and found that the heating power, height, and diameter of the mass flow ring will increase with a rise in the concentration of NPs. Davi and Anjali Devi [20] studied a novel type of hybrid nanofluid to increase heat transfer through the boundary layer. Compared to pure water and nanofluid, the hybrid nanofluid has a more elevated Nusselt number. Additionally, the heat transfer rate was much more when adding the hybrid water/Al2O3/Cu nanofluid than pure water and nanofluid. In a numerical study, Waini et al. [21] examined the hybrid nanofluid flow and heat transfer on the exponentially shrinking surface and reported that heat transfer and the skin friction coefficient increase with the increment in copper volume particle and magnetic factor. In addition, increased radiation was found to diminish the surface temperature, culminating in a reduced heat transfer rate. Kashi et al. [22] studied the flow of water/Al2O3/Cu hybrid nanofluid on a stretching/shrinking sheet under the velocity slip impact and convection and deduced that variation in the Biot number has no impact on the boundary layer. A rise in the velocity slip and Biot number inflated heat transfer speed, whereas the reverse outcome was received with a rise in the volume fraction of Cu NPs. In a similar study, Abu Bakar et al. [23] examined the hybrid nanofluids flow on a stretching/shrinking permeable sheet considering the slip effects and radiation parameters.To do so, they employed a Cu-water and the water/Al2O3/Cu hybrid nanofluid and found higher heat transfer upon utilizing hybrid water/Al2O3/Cu nanofluids. In their numerical research, Kashi et al. [24] investigated the convection flow of the water/Al2O3/Cu nanofluid across a vertical sheet and reported that using hybrid nanofluids defer the separation point. In addition, both heat transfer and surface friction coefficient were much higher in the hybrid nanofluid than in pure water and a water and copper combination.Similarly, Kashi et al. [25] studied the Marangoni convection flow and the heat transfer of a hybrid water/Al2O3/Cu nanofluid on a stretching/shrinking surface. It was discovered that increasing the volume percentage of Cu for decreasing flow and the Marangoni factor for stretching flow boosts heat transmission considerably.The Marangoni factor and the volume percentage of Cu, on the other hand, might delay the boundary layer detachment procedure.In 2020, Kashi et al. [26] studied the heat transfer of the hybrid water/Al2O3/Cu nanofluid on the moving sheet with melting heat transfer. It was revealed that the hybrid nanofluid facilitates the separation of the border layer under melting heat transfer conditions, with the heat transfer speed that was more elevated for the hybrid water/Al2O3/Cu nanofluid compared to pure water and water/Cu. In addition, a rise in the melting parameter was found to diminish the heat transfer speed and accelerate the border layer detachment. Considerable researches have focused on the thermophysical properties of hybrid nanofluids [27–37].

    Stagnation point flow is a subject of interest for many researchers. It represents the flow of a fluid around the stagnation regions near a solid exterior in which the fluid has no motion, and its velocity reaches zero. It is argued that heat transfer, mass deposition, pressure, and other parameters are at their highest rates near the stagnation point. Wang [38] studied the two-dimensional stagnation flow striking a heated vertical plane and found that for the infinite plane, the free convection flow relies on the Prandtl total and has no effect on heat transfer. In 2006, Wang [39] studied the two-dimensional or symmetrical stagnation flow on a moving container. The flow was found to be strongly dependent on the slip factor, and the drag decreases with the inverse of the slip factor. In addition, a rise in the slip factor and the Prandtl inflated the heat transfer and diminished the heat slip. Bachok et al. [40]investigated a nanofluid with a continuous three-dimensional stagnation point flow. They also looked at the NP volume percentage impact and the velocities ratio gradient on flow and heat transfer features. Demir and Baris [41] studied the three-dimensional stagnation-point flow of a dense impermeable fluid into a moving vertical container, as well as the injection-suction mechanism’s effect over velocity, wall shear stress, temperature, as well as heat transfer. Jamludin et al. [42] investigated the stagnation flow and heat transfer on a porous stretching/shrinking container when it was exposed to the heat source/sink impacts and a magnetic area.Heat transmission was shown to be higher in the bottom fluid (water) compared with the hybrid nanofluid. In another study, Khan et al. [43] dissected the flow convection of a uniform mixture of the water/Al2O3/SeO2 around the stagnation pinpoint containing a curved exterior with a radius ofRand suction ofS. The skin friction coefficient and hybrid nanofluids Nusselt number increased with an inflation of the amount of suction and engagement of the nanofluid. Annuar et al. [44] proposed mathematical answers for homogeneous-heterogeneous responses of the magnetohydrodynamic stagnation pinpoint of a hybrid water-Al2O3 nanofluid on a stretching/shrinking plate with the convection border state. The magnetic parameter deferred the separation of the boundary layer while the volume fraction of NPs accelerated the exterior boundary detachment. In another study, Annuar et al. [45] dissected the slip parameter impact on the stagnation pinpoint of the flow and heat transfer on an exponentially stretching/shrinking container with a water/aluminum/copper nanofluid numerically. They explored the effect of NP volume fraction, slip factor, and stretching/shrinking parameter on flow and heat transfer and found that the hybrid nanofluid allows higher heat transfer speeds compared to nanofluids and viscous fluids. In 2021, Kashi et al. [46] studied mathematical explanations and solidity research for a hybrid nanofluid stagnation pinpoint flow over a porous stretching/shrinking cylinder.They used Al2O3 and copper NPs along with water as a bottom fluid. Water/Al2O3/Cu nanofluid on shrinking cylinders possessed less heat transfer compared to water/Cu NPs and water/Al2O3 hybrid nanofluid. A proper hybridization of Cu and Al2O3 NPs with appropriate volumetric concentrations was found to allow a more increased heat transfer speed compared to the water/Cu nanofluid.Similarly, Kashi et al. [47] studied a nanofluid stagnation point flow with the mass and heat transfer on a moving plate with bidirectional slip velocities numerically. The results showed that the heat transfer is decreased with intensifying the anisotropic label,i.e., the distinction of two-sided slip rates and the thermophoresis factor. In contrast, the mass transfer rate increases with these two parameters. In another study, Nadeem et al. [48] investigated features of a three-dimensional stagnation pinpoint of a hybrid nanofluid on a cylinder. They discovered that the heat transfer speed in a hybrid nanofluid exists much higher compared to in a nanofluid.

    Fig. 1. An illustration of physical model and coordinate system.

    According to the literature review gaps, the hybrid nanofluid stagnation point flow on vertical plate has been investigated numerically. As a novelty the velocity and temperature slip condition have been applied simultaneously to the boundary condition of problem. Accordingly, to our knowledge, our investigation is the most recent endeavor to research the stagnation point flow of the nanofluid numerically.

    This study investigated the convection flow of a hybrid nanofluid on a vertical heated plate (Fig. 1). The three-dimensional flow was applied to regionz≥0. Away from the field, the fluid flows around the symmetrical plane, and thex-axis forms an angle ofαwith the intensity of the gravity field. In addition, the vertical plane is located inz=0.

    The governing equations for the hybrid nanofluid including the conservation of mass Eq. (1)), the three-dimensional Navier Stokes equations with the Boussinesq term (Eqs. (1)–((3)) and the energy equation (Eq. (5)) are as follow [20,49].

    The nanofluid velocity in the directions ofx,yandzis shown respectively withu,vandwwhileTandT∞r(nóng)epresent the nanofluid temperature and the ambient temperature, respectively.In addition,a(>0)andKare the flow strength and temperature jump coefficient, whileSrepresents the slip coefficient, which relies on the flow and plate properties.

    It is assumed thatTw-T∞=T0(x/L)T0exists as the bottom fluid specific temperature that isT0>0 for the parallel flow andT0<0 for the counterflow andT0=0 stands for pushed convection flow.In addition,Lstands as the exterior specific height.

    Table 1 presents the equations of the thermo physical properties of the hybrid nanofluid. In Table 1,φ,μ,ρ,k,Cp,βand(ρCp)stand as the volume particle of solid NPs, dynamic viscosity, density, thermal conductivity, heat capacity, thermal expansion coeffi-cient, and heat capability.

    Table 1 Thermophysical properties of hybrid nanofluids [16,50,51,52].

    Table 2 Thermophysical properties of the nanoparticles and the base fluid [53].

    To solve the equations by the fifth-order Runge-Kutta method,a proper value should be firstly defined for the infinite boundary (7 in the present study). In the relevant boundary conditions,a1,a2,a3anda4are equivalent tof′(∞)→1,h(∞)→0,ψ(∞)→0 andθ(∞)→0 whenη→∞. In addition, the criterion of convergence is considered as 10-6andΔη=0.001 is considered for the step size. The flowchart in Fig. 2 gives a better insight on how to solve nonlinear differential equations in this problem using thefifth-order Runge-Kutta method. Also, the CPU time to calculate each case is 4 min.

    Table 3 Comparison values of f′′(0),ψ′(0) and h′(0) for an inclined stagnation flow on a vertical surface in the absence of mixed convection (φs1 =φs1 =0,fw =0 and Pr=0.7).

    Fig. 2. Problem Flowchart.

    This section has conducted a comparison between our results with previous studies. In Table 3, the results obtained for viscous flow without suction and the opposite flow of the convection factor are compared with results reported in Refs. [49] and [54]. As can be seen, the current investigation outcomes are well fitted with those documented in previous studies, which indicates the accuracy and application of the method used for the case under investigation.

    Following validation of the calculations, this section investigates the impact of various factors over the velocity and temperature profiles. Figure 3a shows the effect of NP’s volume fraction on velocity profile(f′). As shown, on the increasing volume fraction of NPs, the velocity profile increases. Figure 3b and 3c show the effect of the volume fraction of NPs overhas well asψ. As shown,with an inflate in the volume fraction of NPs, the absolute values of thehandψ, which represent the velocity components, increase. Figure 3d shows variations in the temperature profileθ,with changes in nanoparticle volume fraction, in which on inflating volume fraction, the temperature profile increases. Therefore, a higher volume fraction of NPs is associated with a greater heating process. Figure 3e illustrates variations in the temperature gradientθ′, with changes in the volume fraction of NPs. As shown, on the increasing volume fraction of solid NPs, the absolute value of the temperature gradient increases, culminating in elevated heat transfer. Figure 4a depicts the effect of altering the velocity slip parameterλ, on variations in the velocity profile, in which an increase in slip parameter results in elevated velocities.

    Fig. 3. a. Effect of volume fraction (φs2) on f′.

    Fig. 4. a. Effect of velocity slip parameter(λ) on f′.

    Fig. 5. a. Effect of temperature slip parameter (γ) on h.

    Table 4 Numerical values of local Nusselt number (Re-1/2Nux) and skin friction coefficients (Re1/2Cfx,Re1/2Cfy) for different values of nanoparticle volume fraction (φ), velocity slip parameter(λ) and temperature slip parameter (γ).

    Figure 4b and 4c illustrate the velocity slip parameter impact onhandψparameters. As the velocity slip parameter growths,the absolute value of thehandψparameters increase. Figure 4d shows relationships between variations in the temperature profileθ, and changes in the velocity slip parameter,λ. As shown, on increasing the velocity slip parameter, the temperature decreases.Thus, increasing the slip parameter results in a faster cooling process. Figure 4e displaysthe velocity slip parameter impactλ, on the temperature profile gradientθ′, in which with a rise in the velocity slip parameter, the absolute value of the temperature gradient decreases. Figure 5a depicts the impact of the temperature slip parameterγ, onh,in which growth in the temperature slip parameter decreases the absolute value ofh. Figure 5b shows the impacts of variations in the temperature slip parameterγ, onψ,in which an increase in the temperature slip parameters will raise the absolute value ofψ. In Fig. 5c, associations between changes in the temperatureθ, and temperature slip parameterγ, are shown,where on increasing the temperature slip parameter, the absolute value decreases. Figure 5d shows associations between changes in the temperature gradientθ′, and the temperature slip parameter,γ. As shown, on increasing temperature slip parameters, the absolute value of the temperature gradient decreases. Effects of temperature slip parameter, velocity slip parameter, and the volume fraction of NPs on the skin friction coefficients and Nusselt number are presented in Table 4, in which the copper volume fraction is 0.01,mixed convection parameter is -1, Prandtl number is 6.2, and Grashof numbers (Gr1,Gr2) are 1. As shown, on increasing the temperature slip parameter from 0 to3 and the volume fraction of NPs 0 to 0.02, the skin friction coefficient increases respectively 8.2%and 1% in the x-direction. On the contrary, with inflating the slip velocity parameterfrom 0 to5, thex-direction skin friction coeffi-cient diminishes 95%.Concerning the skin friction coefficient in the directiony, with increasing the velocity slip and temperature, the absolute value of they-direction skin friction coefficient declines,while an expansion in the volume fraction of NPs is associated with a raise in they-direction skin friction coefficient. According to Table 4, the Nusselt number grows 0.15% and 5.63% respectively with raising the impact of velocity parameter from 0 to 5 and volume fraction of NPs from 0 to 0.02, while, on the contrary, increasing the temperature slip parameter decreases the Nusselt number.

    This study investigated the stagnation point boundary exterior flow of a three-dimensional hybrid nanofluid and heat transfer on vertically heated surfaces numerically in the existence of surface slip. Overall, the results are as follow:

    ·When the volume fraction of NPs boosts, the absolute value ofhandψparameters and temperature profile and gradient increases.

    ·On increasing the slip velocity parameter,handψand velocity are increased, while the temperature profile and temperature gradient decrease.

    ·With an expansion in the temperature slip parameter, the absolute value of the parameterθ′decreases, and that of the parametershandψwill increase.

    ·Inflation of the temperature slip parameter is connected with decreasing the Nusselt number; conversely, a rise in NP velocity and volume fraction increases the Nusselt number. Furthermore, when the volume fraction grows, the absolute value ofydirection skin friction coefficient grows, and as the temperature slip and velocity increases, the absolute value of y-direction skin friction coefficient drops.

    ·Thex-direction skin friction coefficient rises when the temperature slips parameter and volume percent increases. A rise in the velocity slip parameter, on the other hand, is linked to a decrease in the x-direction skin friction coefficient.

    For future study, the magnetic field parameter, radiation parameter, joule heating term, and heat absorption term can be added to the governing equations.

    Declaration of Competing Interest

    The authors whose names are listed immediately below certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’bureaus; membership, employment, consultancies, stock ownership, or other equity interest;and expert testimony or patent licensing arrangements), or nonfinancial interest (such as personal or professional relationships,affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript. The manuscript is original and it does not submit in another journal.

    久久久久久久精品吃奶| 91麻豆精品激情在线观看国产 | 97人妻天天添夜夜摸| 亚洲全国av大片| 另类亚洲欧美激情| 母亲3免费完整高清在线观看| 18禁裸乳无遮挡动漫免费视频| 久久 成人 亚洲| 国产无遮挡羞羞视频在线观看| 久热这里只有精品99| 日本a在线网址| 欧美日韩一级在线毛片| 黑人欧美特级aaaaaa片| 一边摸一边做爽爽视频免费| 国产精品久久久人人做人人爽| 日本a在线网址| 免费在线观看黄色视频的| 搡老乐熟女国产| 成年版毛片免费区| 久久精品国产亚洲av香蕉五月 | 国产单亲对白刺激| 精品国内亚洲2022精品成人 | 乱人伦中国视频| 捣出白浆h1v1| 成年人黄色毛片网站| 搡老乐熟女国产| 久久国产精品影院| a级片在线免费高清观看视频| 久久久久久久精品吃奶| 正在播放国产对白刺激| 在线观看66精品国产| 国产又色又爽无遮挡免费看| 母亲3免费完整高清在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产精品偷伦视频观看了| 国产亚洲午夜精品一区二区久久| 亚洲五月色婷婷综合| 一区福利在线观看| 男女边摸边吃奶| 国产成人啪精品午夜网站| www日本在线高清视频| 在线观看人妻少妇| 久久精品国产亚洲av高清一级| e午夜精品久久久久久久| 男男h啪啪无遮挡| 国产高清视频在线播放一区| 成人亚洲精品一区在线观看| 一进一出抽搐动态| 搡老熟女国产l中国老女人| 久久人人97超碰香蕉20202| 精品人妻熟女毛片av久久网站| 日韩大码丰满熟妇| 久久影院123| 侵犯人妻中文字幕一二三四区| avwww免费| 满18在线观看网站| 欧美国产精品一级二级三级| 成人特级黄色片久久久久久久 | 婷婷丁香在线五月| 黄色视频在线播放观看不卡| 久久久欧美国产精品| 亚洲av第一区精品v没综合| av片东京热男人的天堂| 欧美国产精品va在线观看不卡| 欧美精品高潮呻吟av久久| 香蕉丝袜av| 国产成人免费观看mmmm| 国产精品熟女久久久久浪| 一个人免费看片子| 女性生殖器流出的白浆| 亚洲av日韩在线播放| 狠狠婷婷综合久久久久久88av| 交换朋友夫妻互换小说| 亚洲精品国产一区二区精华液| 天天躁日日躁夜夜躁夜夜| 精品人妻1区二区| 国产精品一区二区在线观看99| 一区二区av电影网| 老司机深夜福利视频在线观看| 亚洲国产毛片av蜜桃av| 精品福利永久在线观看| 欧美精品av麻豆av| 纯流量卡能插随身wifi吗| 成人免费观看视频高清| 国产精品亚洲av一区麻豆| 国产在视频线精品| 国产精品久久久人人做人人爽| 免费看十八禁软件| 亚洲精品av麻豆狂野| 91字幕亚洲| 90打野战视频偷拍视频| 国产成人免费观看mmmm| 亚洲午夜精品一区,二区,三区| 日韩精品免费视频一区二区三区| 汤姆久久久久久久影院中文字幕| 日日夜夜操网爽| 丝瓜视频免费看黄片| 性高湖久久久久久久久免费观看| 久久久久视频综合| 建设人人有责人人尽责人人享有的| 亚洲男人天堂网一区| 亚洲熟女精品中文字幕| 精品国产国语对白av| 欧美av亚洲av综合av国产av| 亚洲五月婷婷丁香| 热re99久久国产66热| 91成人精品电影| 亚洲一码二码三码区别大吗| 国产aⅴ精品一区二区三区波| 亚洲成人免费电影在线观看| 国产在线免费精品| 午夜激情久久久久久久| 亚洲精品在线美女| 极品教师在线免费播放| 大码成人一级视频| 久久久精品区二区三区| 久久国产精品大桥未久av| 一本色道久久久久久精品综合| 岛国在线观看网站| 高清视频免费观看一区二区| 久久这里只有精品19| 免费在线观看视频国产中文字幕亚洲| 热99久久久久精品小说推荐| 日本av免费视频播放| 黄色毛片三级朝国网站| 日韩 欧美 亚洲 中文字幕| av网站免费在线观看视频| 国产片内射在线| 美女视频免费永久观看网站| 亚洲七黄色美女视频| 在线播放国产精品三级| 日本黄色视频三级网站网址 | 中文字幕人妻熟女乱码| 精品卡一卡二卡四卡免费| 丁香六月天网| 国产精品偷伦视频观看了| 久久国产亚洲av麻豆专区| 97在线人人人人妻| 亚洲人成电影观看| 丁香六月欧美| 男女无遮挡免费网站观看| 天堂8中文在线网| 久久婷婷成人综合色麻豆| 国产亚洲欧美在线一区二区| 亚洲伊人久久精品综合| 亚洲一区中文字幕在线| 亚洲中文av在线| 一本—道久久a久久精品蜜桃钙片| 一本综合久久免费| 他把我摸到了高潮在线观看 | 水蜜桃什么品种好| 欧美黑人欧美精品刺激| 老司机午夜福利在线观看视频 | 国产有黄有色有爽视频| 9色porny在线观看| tube8黄色片| 久久精品成人免费网站| 亚洲情色 制服丝袜| 999久久久精品免费观看国产| 国产精品九九99| 国产区一区二久久| 亚洲精品中文字幕在线视频| 国产亚洲精品久久久久5区| 老司机午夜十八禁免费视频| 在线观看免费高清a一片| 久久久国产欧美日韩av| tocl精华| www日本在线高清视频| kizo精华| 国产成人欧美在线观看 | 久久精品国产亚洲av香蕉五月 | 黄色毛片三级朝国网站| 日韩精品免费视频一区二区三区| 久久精品亚洲av国产电影网| 热99国产精品久久久久久7| 蜜桃在线观看..| 1024视频免费在线观看| 免费一级毛片在线播放高清视频 | 久久久久国产一级毛片高清牌| 一级a爱视频在线免费观看| 国产欧美日韩精品亚洲av| 日本撒尿小便嘘嘘汇集6| 午夜激情av网站| 美女高潮喷水抽搐中文字幕| 精品午夜福利视频在线观看一区 | 老鸭窝网址在线观看| 亚洲情色 制服丝袜| 日本五十路高清| 色精品久久人妻99蜜桃| 精品卡一卡二卡四卡免费| 欧美黑人精品巨大| 亚洲国产av新网站| 亚洲欧美激情在线| 少妇裸体淫交视频免费看高清 | 久久午夜亚洲精品久久| 久久精品亚洲精品国产色婷小说| 十八禁网站网址无遮挡| 国产激情久久老熟女| 黄色 视频免费看| 黄频高清免费视频| 一级毛片精品| 精品人妻在线不人妻| bbb黄色大片| 精品福利观看| 日韩视频一区二区在线观看| 久久久精品94久久精品| 9热在线视频观看99| 一区福利在线观看| 久久中文字幕一级| 99久久精品国产亚洲精品| 国产精品电影一区二区三区 | 国产视频一区二区在线看| h视频一区二区三区| 国产成人精品久久二区二区91| 一本—道久久a久久精品蜜桃钙片| 在线观看舔阴道视频| 成人国产一区最新在线观看| 亚洲中文av在线| 三级毛片av免费| netflix在线观看网站| 丝瓜视频免费看黄片| 露出奶头的视频| 久久这里只有精品19| 一区二区三区国产精品乱码| av天堂在线播放| 在线看a的网站| 亚洲欧美日韩高清在线视频 | 伦理电影免费视频| 99国产极品粉嫩在线观看| 色精品久久人妻99蜜桃| 不卡av一区二区三区| 久久天堂一区二区三区四区| 少妇的丰满在线观看| 激情视频va一区二区三区| 国产av精品麻豆| 久久影院123| 久久久国产欧美日韩av| 亚洲熟女精品中文字幕| 国产精品98久久久久久宅男小说| 国产伦人伦偷精品视频| 精品国产乱子伦一区二区三区| 午夜福利视频在线观看免费| 男人操女人黄网站| 国产精品1区2区在线观看. | 久久性视频一级片| 久久精品亚洲熟妇少妇任你| 人人妻人人澡人人爽人人夜夜| 国产高清videossex| 丝瓜视频免费看黄片| 色精品久久人妻99蜜桃| 丰满少妇做爰视频| 欧美日本中文国产一区发布| 免费久久久久久久精品成人欧美视频| 亚洲少妇的诱惑av| 丝袜人妻中文字幕| 91精品国产国语对白视频| 国产精品久久久人人做人人爽| 最新在线观看一区二区三区| 老汉色∧v一级毛片| 日韩视频一区二区在线观看| 脱女人内裤的视频| 久久天堂一区二区三区四区| 少妇的丰满在线观看| 亚洲精品国产区一区二| 久久天躁狠狠躁夜夜2o2o| 日日摸夜夜添夜夜添小说| 精品人妻在线不人妻| 国产麻豆69| 欧美成人午夜精品| 国产男女超爽视频在线观看| 丁香六月欧美| 亚洲久久久国产精品| 亚洲第一欧美日韩一区二区三区 | 一边摸一边抽搐一进一小说 | 搡老岳熟女国产| 久久香蕉激情| 麻豆乱淫一区二区| 最近最新免费中文字幕在线| 一边摸一边抽搐一进一出视频| 日本黄色日本黄色录像| 国产亚洲欧美精品永久| svipshipincom国产片| 精品亚洲成国产av| 别揉我奶头~嗯~啊~动态视频| 9热在线视频观看99| 人人妻人人澡人人爽人人夜夜| 欧美精品av麻豆av| 在线观看免费视频网站a站| 精品一区二区三区四区五区乱码| 悠悠久久av| 精品福利永久在线观看| 老司机亚洲免费影院| 亚洲久久久国产精品| 国产精品欧美亚洲77777| 精品亚洲成a人片在线观看| 久久久国产成人免费| 水蜜桃什么品种好| 满18在线观看网站| 99久久99久久久精品蜜桃| www.999成人在线观看| 国产激情久久老熟女| 极品少妇高潮喷水抽搐| 亚洲国产av影院在线观看| 国产一区二区三区视频了| 久久亚洲真实| 色老头精品视频在线观看| 欧美黑人欧美精品刺激| 国产成人啪精品午夜网站| 日韩欧美国产一区二区入口| 人人妻人人澡人人看| 一边摸一边做爽爽视频免费| 亚洲一区二区三区欧美精品| 国产精品99久久99久久久不卡| 国产精品av久久久久免费| 国产精品电影一区二区三区 | 超色免费av| 欧美日韩精品网址| 国产成人精品无人区| 国产免费视频播放在线视频| 男女床上黄色一级片免费看| 人人澡人人妻人| 久久亚洲精品不卡| 十分钟在线观看高清视频www| 狠狠精品人妻久久久久久综合| 麻豆av在线久日| 中文字幕精品免费在线观看视频| 精品国产一区二区三区久久久樱花| 高潮久久久久久久久久久不卡| 久久毛片免费看一区二区三区| 99热网站在线观看| 精品亚洲乱码少妇综合久久| 精品国产一区二区久久| 亚洲全国av大片| 男女下面插进去视频免费观看| 国产一区二区 视频在线| 精品国产一区二区三区四区第35| 亚洲人成电影免费在线| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品成人av观看孕妇| 在线看a的网站| 亚洲专区字幕在线| 亚洲人成77777在线视频| 我的亚洲天堂| 免费在线观看完整版高清| 久久久精品94久久精品| 精品人妻在线不人妻| 日韩中文字幕视频在线看片| 免费少妇av软件| 亚洲免费av在线视频| 嫩草影视91久久| 久久久国产成人免费| 999久久久精品免费观看国产| 久久免费观看电影| 欧美精品亚洲一区二区| 纵有疾风起免费观看全集完整版| 女性被躁到高潮视频| 天天添夜夜摸| 国产在视频线精品| 香蕉丝袜av| 亚洲av片天天在线观看| 人人妻人人澡人人爽人人夜夜| 国产1区2区3区精品| 91精品三级在线观看| 最新美女视频免费是黄的| 无遮挡黄片免费观看| 黄片大片在线免费观看| 国产av国产精品国产| 18禁观看日本| 91av网站免费观看| 日本av手机在线免费观看| 欧美午夜高清在线| 高清在线国产一区| 91麻豆精品激情在线观看国产 | 久久精品国产99精品国产亚洲性色 | 考比视频在线观看| 在线播放国产精品三级| 国产av一区二区精品久久| 亚洲avbb在线观看| avwww免费| 国产精品免费大片| 精品人妻在线不人妻| 午夜成年电影在线免费观看| 久久亚洲精品不卡| 成人影院久久| 黄片小视频在线播放| 法律面前人人平等表现在哪些方面| 丁香六月天网| 日韩中文字幕视频在线看片| 国产xxxxx性猛交| 精品欧美一区二区三区在线| 亚洲国产看品久久| 久久久久国产一级毛片高清牌| 国产又爽黄色视频| 欧美中文综合在线视频| 国产精品国产av在线观看| 欧美精品av麻豆av| www.999成人在线观看| 两个人看的免费小视频| 欧美日本中文国产一区发布| 亚洲成人手机| 免费女性裸体啪啪无遮挡网站| 无限看片的www在线观看| 一夜夜www| 久久精品亚洲熟妇少妇任你| 一级,二级,三级黄色视频| 侵犯人妻中文字幕一二三四区| 色精品久久人妻99蜜桃| 在线观看www视频免费| 香蕉国产在线看| 999精品在线视频| 精品熟女少妇八av免费久了| 18禁观看日本| 99久久精品国产亚洲精品| 色在线成人网| 老司机福利观看| 男女无遮挡免费网站观看| 国产男女内射视频| 亚洲第一青青草原| 精品一区二区三区av网在线观看 | 成人18禁在线播放| 国产免费av片在线观看野外av| www.熟女人妻精品国产| 亚洲视频免费观看视频| 一级毛片女人18水好多| 亚洲av日韩精品久久久久久密| 在线观看舔阴道视频| 久久中文字幕一级| 亚洲一区中文字幕在线| 欧美日韩成人在线一区二区| 亚洲国产欧美日韩在线播放| 热99re8久久精品国产| 亚洲美女黄片视频| 亚洲色图 男人天堂 中文字幕| 亚洲精品中文字幕在线视频| 黄色片一级片一级黄色片| 日韩制服丝袜自拍偷拍| 在线av久久热| 国产真人三级小视频在线观看| 极品人妻少妇av视频| 涩涩av久久男人的天堂| 久久久久国产一级毛片高清牌| 精品一区二区三卡| 在线观看免费午夜福利视频| 在线观看人妻少妇| 熟女少妇亚洲综合色aaa.| 精品人妻在线不人妻| 丰满迷人的少妇在线观看| 99精品欧美一区二区三区四区| 精品欧美一区二区三区在线| 80岁老熟妇乱子伦牲交| 黄片播放在线免费| 在线天堂中文资源库| 十八禁网站免费在线| aaaaa片日本免费| 天天躁狠狠躁夜夜躁狠狠躁| 午夜精品久久久久久毛片777| 欧美+亚洲+日韩+国产| 日本撒尿小便嘘嘘汇集6| 午夜福利视频在线观看免费| 亚洲欧洲日产国产| 欧美黑人欧美精品刺激| 在线观看免费高清a一片| 大陆偷拍与自拍| 欧美国产精品va在线观看不卡| 亚洲av日韩在线播放| 我要看黄色一级片免费的| 在线看a的网站| 亚洲专区国产一区二区| 中文字幕人妻熟女乱码| 午夜免费成人在线视频| 精品久久蜜臀av无| 国产精品免费一区二区三区在线 | 美国免费a级毛片| 国产免费福利视频在线观看| 国产精品1区2区在线观看. | 国产精品秋霞免费鲁丝片| 欧美av亚洲av综合av国产av| 色尼玛亚洲综合影院| 国产精品国产av在线观看| 在线播放国产精品三级| 精品少妇黑人巨大在线播放| 亚洲av成人一区二区三| 国产免费福利视频在线观看| 欧美成人午夜精品| 中文字幕人妻熟女乱码| 国产真人三级小视频在线观看| 男女高潮啪啪啪动态图| 欧美日本中文国产一区发布| 美国免费a级毛片| 中亚洲国语对白在线视频| 欧美亚洲日本最大视频资源| 99久久精品国产亚洲精品| 午夜福利欧美成人| 怎么达到女性高潮| 狠狠婷婷综合久久久久久88av| 变态另类成人亚洲欧美熟女 | 日韩免费av在线播放| 国产单亲对白刺激| kizo精华| 亚洲av成人一区二区三| 天天操日日干夜夜撸| 精品国产亚洲在线| 日本撒尿小便嘘嘘汇集6| 两个人免费观看高清视频| 两个人看的免费小视频| 美女高潮到喷水免费观看| 久久精品亚洲熟妇少妇任你| 免费人妻精品一区二区三区视频| 欧美+亚洲+日韩+国产| 亚洲国产欧美在线一区| 热99久久久久精品小说推荐| 一区二区三区国产精品乱码| 一级片免费观看大全| 蜜桃国产av成人99| aaaaa片日本免费| av欧美777| 人人妻人人添人人爽欧美一区卜| 天天添夜夜摸| 国产精品99久久99久久久不卡| 别揉我奶头~嗯~啊~动态视频| 亚洲第一av免费看| 最新美女视频免费是黄的| 免费高清在线观看日韩| 国产精品99久久99久久久不卡| a在线观看视频网站| 老熟女久久久| 欧美日韩亚洲国产一区二区在线观看 | 亚洲少妇的诱惑av| 国产精品免费大片| 91精品三级在线观看| 女人爽到高潮嗷嗷叫在线视频| 老鸭窝网址在线观看| 亚洲国产成人一精品久久久| av又黄又爽大尺度在线免费看| 日韩精品免费视频一区二区三区| 欧美大码av| av有码第一页| 下体分泌物呈黄色| 18禁黄网站禁片午夜丰满| av在线播放免费不卡| 日本av手机在线免费观看| 亚洲欧美一区二区三区黑人| 亚洲熟女毛片儿| 精品久久久久久电影网| 少妇被粗大的猛进出69影院| 黑人操中国人逼视频| 男女边摸边吃奶| 成人国产一区最新在线观看| www.精华液| 亚洲熟妇熟女久久| 亚洲国产欧美网| 成在线人永久免费视频| 一区二区三区国产精品乱码| 亚洲av美国av| 伦理电影免费视频| a级片在线免费高清观看视频| 两个人看的免费小视频| 美女高潮喷水抽搐中文字幕| 高潮久久久久久久久久久不卡| 日韩三级视频一区二区三区| 日日摸夜夜添夜夜添小说| 人人妻人人澡人人爽人人夜夜| 国产成人精品久久二区二区免费| 人人妻人人澡人人爽人人夜夜| 王馨瑶露胸无遮挡在线观看| 国产一区二区三区在线臀色熟女 | 极品教师在线免费播放| 国产在视频线精品| 久久人妻熟女aⅴ| 超碰成人久久| 国产伦人伦偷精品视频| 免费在线观看视频国产中文字幕亚洲| 久久精品国产亚洲av高清一级| 女性被躁到高潮视频| 亚洲五月婷婷丁香| 国产日韩欧美在线精品| 高潮久久久久久久久久久不卡| 久久人妻熟女aⅴ| 悠悠久久av| 午夜成年电影在线免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 巨乳人妻的诱惑在线观看| av国产精品久久久久影院| 大型av网站在线播放| 久久婷婷成人综合色麻豆| 亚洲国产中文字幕在线视频| 黄色视频不卡| 少妇 在线观看| 日本vs欧美在线观看视频| 免费在线观看完整版高清| 高清欧美精品videossex| 成人黄色视频免费在线看| 日韩视频在线欧美| 亚洲中文日韩欧美视频| 最新的欧美精品一区二区| 丁香六月天网| 天堂8中文在线网| 狠狠狠狠99中文字幕| 超碰97精品在线观看| 欧美一级毛片孕妇| 日韩三级视频一区二区三区| 变态另类成人亚洲欧美熟女 | kizo精华| 国产精品熟女久久久久浪| 美女主播在线视频| 少妇被粗大的猛进出69影院| 成人永久免费在线观看视频 | 少妇精品久久久久久久| 窝窝影院91人妻| 亚洲黑人精品在线| 乱人伦中国视频| 人人妻人人添人人爽欧美一区卜| 亚洲av日韩在线播放| 纯流量卡能插随身wifi吗| 91大片在线观看|