• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shapes of the fastest fish and optimal underwater and floating hulls

    2022-03-04 09:56:54IgorNesteruk

    Igor Nesteruk

    Institute of Hydromechanics, National Academy of Sciences of Ukraine;

    National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine

    Keywords:Drag reduction Wave drag Ship hulls optimization Unseparated shapes Water locomotion

    ABSTRACT A streamlined shape of the best swimmers removes the boundary-layer separation and ensures a laminar flow pattern. The fastest fish have a very sharp convex nose (rostrum), the purpose of which remains unclear. The bodies of revolution similar to their shapes are analyzed in steady underwater and floating motion. The sources and sinks were located on the axis of symmetry and above the water surface to estimate the pressure on the body and the vertical velocities on the water surface. It was shown that the flow patterns on a special shaped body with concave nose has no stagnation points and ensure small values of the water surface elevation. These fact allow diminishing the maximum pressure on the surface and wave drag. Special shapes with the sharp concave nose and negative pressure gradients on their surface could be parts of the low drag underwater and floating hulls.

    Shape of aquatic animals continues to draw attention of researches in the field of drag reduction. For example, the streamlined shapes of the fastest swimmers remove the boundary-layer separation [1–3], delay the transition to the turbulent flow and as a result reduce drag of underwater motion. Another feature of the fastest fish shape – the presence of a very sharp concave nose (rostrum) - needs additional investigations. In this paper, we will try to analyze the corresponding flow taking into account the presence of the water surface and to discuss the application of similar hulls to reduce the wave drag.

    In the unbounded air or water flow, the attached flow pattern can be achieved on bodies of revolution with the shape similar to the trunks of aquatic animals [3,4]. Some estimates showed that the critical Reynolds numbers of the laminar-to-turbulent transition can be quite high for these unseparated bodies of revolution[5–7]. Thus, the shape itself can provide low drag of underwater motion [8]. This fact yields a very simple solution to the wellknown Gray paradox (concerning the high speed of dolphin swimming, [9–13]).

    The maximal speed of the fastest fish, e.g., sailfishIstiophorus platypterus Show and Nodder, swordfishXiphias gladius L., black marlinMakaira indica Cuv et Val., etc. can approach 30 m/s, [1,14–16]. Then, the pressure on their noses can exceed the ambient one by 4.5 atm. (provided the flow velocity tends to zero). Probably,the presence of the rostrum allows these animals to remove stagnation points and to reduce pressures on their noses. The absence of the pressure peaks may reduce the wave drag of steady motion near the water surface.

    To calculate the shape of a slender (elongated in the direction of steady movement), sources and sinks located on the axis of symmetry can be used. The corresponding potentials of the unbounded inviscid incompressible flow can be obtained with the use of slender body theory [17], exact solution of Euler equations [4] or numerical simulations [18–20]. In particular, axisymmetric bodies with sharp concave noses were calculated in Ref. [20] to show that the stagnation point and corresponding pressure maximum can be removed.

    To investigate the movement near and on the water surface and corresponding wave drag, different approaches have been used.We will simulate the presence of the water surface by location of the sinks (sources with opposite intensities) at the same distance above the undisturbed water surface (see, e.g., Ref. [21]) and will use the sum of corresponding flow potentials.

    High pressures on the vessel bow and stern cause the waves on the water surface [22–24]. The corresponding wave drag can be reduced by using the special very thing wave-piercing hulls [25–27] and bulbous bows [28]. The axisymmetric shapes with sharp concave noses calculated in [20] revealed the absence of the pressure peaks and opened up prospects for their use in order to reduce the wave drag. In this paper we will estimate the corresponding pressure distributions on their surface and the magnitudes of the vertical velocity on the undisturbed water surface at different depths of steady motion.

    Fig. 1. Body of revolution under the water surface (blue line). Simulation with the use of sources and thinks

    We assume the Reynolds numbers

    to be large enough (for example, ReL>50000). HereU∞is the speed of ambient flow;LandVare the body length and volume;νis the kinematic viscosity. Then the thickness of the boundarylayer can be neglected and fluid outside a body can be treated as ideal. Neglecting the compressibility of water, the potential flow of a source with intensityQilocated at the pointξi,0,0 and a sink with intensity -Qilocated at the point(ξi,2h,0)can be written as follows [29]:

    Parametersa, b, c, d, a1, andx*are constant.

    The distributions Eq. (9) has been used in the first series of calculations. The results are shown in Figs. 2–4. Figure 2 represents an example of an axisymmetric slender body with a convex nose(see black solid lines). Its radiusR(x)have been calculated with the use of unbounded flow approach (h→∞[8]). The pressure distribution on the body surface has been calculated aty=-R(x), z=0with the use of Eqs. (3)–(5) and (8). Such body has a stagnation point (not shown in Fig. 2), where the pressure coefficient tends to 1 (according to Eq. (8)). The pressure increase in its vicinity is visible in Fig. 2. The presence of the water surface decreases the absolute values of the pressure (see dashed lines). Negative pressure gradients are present both on the bow and stern of the body both in underwater mode (the black dashed lines) and near the water surface (other dashed lines).

    Fig. 2. Slender body of revolution with a convex nose. Body shape (solid lines) and pressure coefficients on the body surface (at y=-R(x), z=0) at different depths of steady motion h (dashed lines).

    Fig. 3. Vertical velocities on the water surface upstream of the body with a convex nose at different depths of steady motion.

    The vertical velocities on the undisturbed water surfacey=hatz=0 have been calculated for different values of the depthhwith the use of Eq. (7) and are shown in Figs. 3 and 4 upstream and downstream of the body, respectively. It can be seen that values of|vy(x,h,0)|are much higher near the bow (in comparison with the stern). The bow stagnation point and corresponding pressure peaks shown in Fig. 2 can explain this fact.

    In the second series of calculations, sources distributions Eq. (10) have been used. The results are shown in Figs. 5 and 6.Figure 5 represents a slender body of revolution with a sharp concave nose (see black solid lines) similar to the trunk of sailfish. Its radiusR(x)have been calculated with the use of unbounded flow approach (h→∞, [20]). The pressure distribution on the body surface has been calculated aty=-R(x), z=0with the use of Eqs. (3)–(5) and (8). Such body has no stagnation point and the pressure coefficients gradually increase versus distance from the nose. As in the case of the convex nose body, the presence of the water surface decreases the absolute values of the pressure (see dashed lines). Negative pressure gradients are present both upstream and downstream of the middle (the cross section with the maximal radiusRmax) both in underwater mode (the black dashed line) and near the water surface (other dashed lines).

    The vertical velocities on the undisturbed water surfacey=hatz=0 have been calculated for different values of the depthhwith the use of Eq. (7) and are shown in Fig. 6 (upstream of the body).The downstream vertical velocities are very close to the case of the convex nose body shown in Fig. 4. Figure 6 illustrates that for small depths of motion (h<0.1), the values ofvy(x,h,0)are much lower in comparison with the convex nose case shown in Fig. 3. This fact can be explained by the absence of the bow stagnation point and the low values of pressure near the nose shown in Fig. 5. Thus, we can conclude that special shaped bodies of revolution with sharp concave noses are expected to have smaller wave drag in a floating mode of motion.

    The absence of the boundary-layer separation yields the minimum possible drag of underwater motion by decreasing its pressure and frictional components (in particular, due to the delay of the laminar-to-turbulent transition [8]). The pressure increases on the noses of bodies with the rostrum (shown in Fig. 4 and Ref.[20]), (in comparison with convex noses shown in Fig. 2 and some other shapes calculated and tested in Refs. [3,4,17–20]). Possible separation in these zones of pressure increase requires further research, but rigid copies of the trunks of sailfish and swordfish revealed an attached flow pattern in experiments performed in Ref.[1].

    Fig. 4. Vertical velocities on the water surface downstream of the body with a convex nose at different depths of steady motion.

    Fig. 5. Slender body of revolution with a concave nose similar to the trunk of sailfish. Body shape (solid lines) and pressure coefficients on the body surface (at y=-R(x),z=0) at different depths of steady motion h (dashed lines).

    For the underwater steady motion of a slender unseparated body of revolution, its dragXcan be estimated by the following equations [5–8]:

    Here the lengthLthe animal body or a hull must be taken in meters [8]. Estimates of the valueUmax/L7/9 are 13 - 20.8 for sailfish, 11.5 -15.1 for swordfish and 8.4–11.8 for black marlin [8]. They are close to the maximal one (see Eq. (14)) and are mostly higher in comparison with some other good swimmers which have no rostrum (sharks, dolphins, tunas). TheUmax/L7/9 ratios for torpedoes Mark 48 and Spearfish (having no rostrum) are 7.23 and 9.17,respectively [8]. Thus, we can conclude that the presence of rostrum (a sharp concave nose) does not increase the drag of underwater motion.

    Fig. 6. Vertical velocities on the water surface upstream of the body with a concave nose at different depths of steady motion.

    The proposed shapes can be recommended for the underwater hulls of small waterplane area twin hull (SWATH) ships (see, e.g.,Ref. [31]), since the disturbances of the water surface and corresponding wave drag reduce at rather small values ofh(see the black lines in Figs. 3, 4 and 6). The total drag on such hulls can be estimated with the use of Eqs. (11) or (13).

    The separation and drag on special shaped bodies with rostrum moving in floating mode (small values ofh) need experimental investigations. If we assume that Eqs. (11) and (12) are applicable to estimate the laminar friction drag and take into account the very low vertical velocities at small depthh(see the red line in Fig. 6),the proposed special shaped bodied of revolution with the concave nose can be recommended for the hulls of rowing shells. We could expect to have the lowest possible friction and wave drag on such shells. In must be noted that modern rowing racing shells have circular cross sections (in comparison with the classical Wigley hulls,).

    For lager or faster ships, the corresponding Reynolds numbers are much higher than the critical value Eq. (12). If we suppose that the turbulent friction dragDfis proportional to the hull surface area wetted by water, than the ratioDfh/Dfuincreases from 0.5 to 1.0 when thehchanges from zero toh=Rmax(hereDfuis the friction drag at completely submerged body of revolution of maximal radiusRmax). Taking into account that the ratio of corresponding volumesVh/Valso changes from 0.5 to 1.0 (Vhis the volume of the underwater part of the body at the depth of motionh), we can expect the increase of the ratio of the volumetric friction drag coefficients CVh/CVu(for the floating and underwater motion modes,respectively) from 0.794 to 1.0 when thehchanges from zero toh=Rmax. Since the shapes with rostrums ensure small disturbances of the water surface and reduce the wave drag at small values ofh, (see Figs. 4 and 6) they can be recommended for ship hulls as well. The optimal values ofhand the hull aspect ratioL/Rmaxhave to be determined as a result of tower tank experiments.

    Steady motion of special shaped slender bodies of revolution near the water surface was investigated in order to estimate the influence of the nose shape on the pressure distribution and vertical velocities on the water surface. It was shown that shapes with a sharp concave nose (rostrum) similar to trunks of the fastest fish(sailfish, swordfish, black marlin, etc.) have no stagnation point.This fact allows diminishing the maximum pressure on the surface,reducing the vertical velocities on the water surface and corresponding wave drag. Such shapes could be recommended for hulls of traditional and SWATH ships and rowing racing shells after corresponding tower tank experiments.

    Declaration of Competing InterestThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    亚洲真实伦在线观看| 搞女人的毛片| 国产97色在线日韩免费| 亚洲最大成人手机在线| 欧美在线一区亚洲| 精品久久久久久久末码| 国模一区二区三区四区视频| 成年人黄色毛片网站| 色精品久久人妻99蜜桃| 国产成人影院久久av| 国产高清有码在线观看视频| 欧美在线一区亚洲| 午夜免费激情av| 国产精品 国内视频| av视频在线观看入口| 免费人成视频x8x8入口观看| 中亚洲国语对白在线视频| 日韩av在线大香蕉| 亚洲精品影视一区二区三区av| 免费搜索国产男女视频| 欧美在线一区亚洲| 在线观看午夜福利视频| 欧美在线一区亚洲| 亚洲aⅴ乱码一区二区在线播放| 欧美一区二区亚洲| 欧美性猛交黑人性爽| 成年女人永久免费观看视频| 亚洲国产欧洲综合997久久,| 美女高潮喷水抽搐中文字幕| 欧美黄色片欧美黄色片| 男女做爰动态图高潮gif福利片| 亚洲欧美日韩无卡精品| 久久人人精品亚洲av| 精品人妻1区二区| 国产精品影院久久| 日韩人妻高清精品专区| 成人国产一区最新在线观看| 日韩人妻高清精品专区| 亚洲 欧美 日韩 在线 免费| 欧美日韩瑟瑟在线播放| 窝窝影院91人妻| 国产高清videossex| 亚洲欧美激情综合另类| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美在线二视频| 亚洲第一欧美日韩一区二区三区| 亚洲国产色片| 精品一区二区三区视频在线 | 久久亚洲真实| 69人妻影院| 两个人视频免费观看高清| 国产精品久久视频播放| 一本一本综合久久| 成人性生交大片免费视频hd| 在线免费观看不下载黄p国产 | av天堂在线播放| 91av网一区二区| 国产激情偷乱视频一区二区| 91在线观看av| 国产黄片美女视频| 国产精品久久久久久亚洲av鲁大| 欧美bdsm另类| АⅤ资源中文在线天堂| 观看美女的网站| 给我免费播放毛片高清在线观看| 久久久久性生活片| 内地一区二区视频在线| 看黄色毛片网站| 少妇高潮的动态图| 男女做爰动态图高潮gif福利片| 久久天躁狠狠躁夜夜2o2o| 在线播放国产精品三级| 国产精品亚洲一级av第二区| 18禁国产床啪视频网站| 成人性生交大片免费视频hd| 少妇的逼水好多| 神马国产精品三级电影在线观看| av视频在线观看入口| 一卡2卡三卡四卡精品乱码亚洲| 岛国在线观看网站| 丰满的人妻完整版| 午夜精品久久久久久毛片777| 国产综合懂色| 网址你懂的国产日韩在线| 久久这里只有精品中国| 真人一进一出gif抽搐免费| 99精品在免费线老司机午夜| 国产午夜精品久久久久久一区二区三区 | 色吧在线观看| 国产精品美女特级片免费视频播放器| 亚洲国产日韩欧美精品在线观看 | 99久久成人亚洲精品观看| 一级黄色大片毛片| 国产国拍精品亚洲av在线观看 | 九九在线视频观看精品| 深夜精品福利| 18禁黄网站禁片午夜丰满| 中文字幕高清在线视频| 久久精品国产自在天天线| 男女视频在线观看网站免费| 人妻丰满熟妇av一区二区三区| 一区二区三区高清视频在线| 在线观看美女被高潮喷水网站 | 脱女人内裤的视频| 国产三级在线视频| 欧美xxxx黑人xx丫x性爽| 色尼玛亚洲综合影院| 中文亚洲av片在线观看爽| 亚洲国产欧洲综合997久久,| 国产精品亚洲av一区麻豆| 欧美日韩瑟瑟在线播放| 宅男免费午夜| e午夜精品久久久久久久| 99国产精品一区二区三区| 九九久久精品国产亚洲av麻豆| 国产精品久久视频播放| 久久久久久久久中文| 国产真实伦视频高清在线观看 | 深爱激情五月婷婷| 人妻久久中文字幕网| 日本成人三级电影网站| 国产一区二区在线av高清观看| 日本撒尿小便嘘嘘汇集6| 天天一区二区日本电影三级| 国产私拍福利视频在线观看| 欧美乱妇无乱码| 日本一本二区三区精品| 国产三级在线视频| 最近最新免费中文字幕在线| 看片在线看免费视频| 在线视频色国产色| 日韩高清综合在线| 免费一级毛片在线播放高清视频| avwww免费| 久久久久九九精品影院| 免费av观看视频| 日韩 欧美 亚洲 中文字幕| 免费看十八禁软件| 成人欧美大片| 亚洲精品成人久久久久久| 亚洲国产精品成人综合色| 午夜久久久久精精品| 12—13女人毛片做爰片一| 国产精品自产拍在线观看55亚洲| 国产精品永久免费网站| 欧美+亚洲+日韩+国产| 亚洲av第一区精品v没综合| 欧美国产日韩亚洲一区| 日本免费一区二区三区高清不卡| 亚洲五月天丁香| 啦啦啦观看免费观看视频高清| 99国产极品粉嫩在线观看| 国产黄色小视频在线观看| 亚洲国产中文字幕在线视频| 欧美一区二区精品小视频在线| 天天添夜夜摸| 两个人看的免费小视频| 午夜福利在线在线| 男插女下体视频免费在线播放| 美女被艹到高潮喷水动态| 村上凉子中文字幕在线| 男人和女人高潮做爰伦理| 人人妻人人看人人澡| 国产真人三级小视频在线观看| 国产精品 国内视频| 精品国内亚洲2022精品成人| 久久精品夜夜夜夜夜久久蜜豆| 给我免费播放毛片高清在线观看| 在线十欧美十亚洲十日本专区| 国产精品,欧美在线| 成人av在线播放网站| 99久久九九国产精品国产免费| 精品国产三级普通话版| 少妇人妻精品综合一区二区 | 99久久久亚洲精品蜜臀av| 欧美性感艳星| 中文字幕人妻熟人妻熟丝袜美 | 熟女少妇亚洲综合色aaa.| 亚洲中文字幕日韩| 精品免费久久久久久久清纯| 欧美一级a爱片免费观看看| 婷婷精品国产亚洲av在线| 久久亚洲真实| 香蕉久久夜色| 波多野结衣高清作品| 夜夜夜夜夜久久久久| 国产av一区在线观看免费| ponron亚洲| 国产精品爽爽va在线观看网站| 色av中文字幕| 伊人久久大香线蕉亚洲五| 免费搜索国产男女视频| 国产伦精品一区二区三区四那| 搡老岳熟女国产| 桃红色精品国产亚洲av| 国产亚洲精品av在线| 一进一出好大好爽视频| 国产单亲对白刺激| 日韩免费av在线播放| 欧美在线一区亚洲| 中文资源天堂在线| 免费高清视频大片| 亚洲第一欧美日韩一区二区三区| 一个人看视频在线观看www免费 | 久久久国产成人精品二区| 日韩精品中文字幕看吧| 中文字幕人妻丝袜一区二区| 国产成人aa在线观看| 国产伦在线观看视频一区| 人妻夜夜爽99麻豆av| 老汉色av国产亚洲站长工具| 最近最新免费中文字幕在线| 亚洲人成网站在线播| 欧美日韩精品网址| 亚洲片人在线观看| 天天躁日日操中文字幕| 亚洲男人的天堂狠狠| 白带黄色成豆腐渣| 久久婷婷人人爽人人干人人爱| 嫩草影院入口| 亚洲国产精品久久男人天堂| 少妇熟女aⅴ在线视频| 亚洲精品日韩av片在线观看 | 久久伊人香网站| 三级男女做爰猛烈吃奶摸视频| 久久中文看片网| 亚洲欧美日韩高清专用| 看片在线看免费视频| 亚洲自拍偷在线| 欧美成人性av电影在线观看| 日韩欧美在线二视频| 熟女电影av网| 久久久久久九九精品二区国产| 亚洲av电影不卡..在线观看| 久久精品91蜜桃| 中文字幕熟女人妻在线| 精品日产1卡2卡| 99久久九九国产精品国产免费| 国产一区在线观看成人免费| 桃红色精品国产亚洲av| 国产亚洲精品综合一区在线观看| 91av网一区二区| 国产亚洲精品久久久com| 精品久久久久久久人妻蜜臀av| av中文乱码字幕在线| 搡老妇女老女人老熟妇| 欧美中文综合在线视频| 亚洲国产精品合色在线| 热99在线观看视频| 免费人成视频x8x8入口观看| 老司机午夜福利在线观看视频| 在线播放无遮挡| 国产午夜福利久久久久久| 99精品欧美一区二区三区四区| 亚洲成av人片免费观看| 国内精品久久久久精免费| 国产爱豆传媒在线观看| 国产一区二区三区在线臀色熟女| 亚洲精品456在线播放app | 69人妻影院| 国产精品永久免费网站| 日本黄色视频三级网站网址| 久久精品影院6| 黄色片一级片一级黄色片| 国产熟女xx| 一a级毛片在线观看| 国产精品嫩草影院av在线观看 | 99久久成人亚洲精品观看| 亚洲成人精品中文字幕电影| 51国产日韩欧美| 午夜两性在线视频| 欧美zozozo另类| 9191精品国产免费久久| 久久精品综合一区二区三区| 两个人看的免费小视频| av欧美777| 日本撒尿小便嘘嘘汇集6| 身体一侧抽搐| 一区二区三区免费毛片| 国产精品99久久99久久久不卡| 超碰av人人做人人爽久久 | 久久中文看片网| 很黄的视频免费| 欧美精品啪啪一区二区三区| 午夜影院日韩av| 性色av乱码一区二区三区2| 欧美日韩亚洲国产一区二区在线观看| 一区二区三区激情视频| 一夜夜www| 熟女少妇亚洲综合色aaa.| 国产三级中文精品| 中亚洲国语对白在线视频| 成人欧美大片| 国产不卡一卡二| 中国美女看黄片| 看黄色毛片网站| 搡女人真爽免费视频火全软件 | 91在线精品国自产拍蜜月 | 黄片小视频在线播放| 最近最新免费中文字幕在线| av专区在线播放| 国产精品久久久人人做人人爽| 操出白浆在线播放| 黄色日韩在线| 亚洲精品国产精品久久久不卡| 一级黄片播放器| 特级一级黄色大片| 亚洲国产欧洲综合997久久,| 免费在线观看成人毛片| 亚洲av成人精品一区久久| 在线观看66精品国产| 久久久久久久午夜电影| 国内久久婷婷六月综合欲色啪| 精品国产超薄肉色丝袜足j| 久久久久久久精品吃奶| 国产激情欧美一区二区| 日韩成人在线观看一区二区三区| 青草久久国产| netflix在线观看网站| 草草在线视频免费看| 久久九九热精品免费| 国产伦在线观看视频一区| netflix在线观看网站| 神马国产精品三级电影在线观看| 亚洲av熟女| 天堂av国产一区二区熟女人妻| www.色视频.com| 久久性视频一级片| 日韩欧美国产在线观看| 久久欧美精品欧美久久欧美| 男女视频在线观看网站免费| 一级毛片高清免费大全| 草草在线视频免费看| 无人区码免费观看不卡| 真实男女啪啪啪动态图| 欧美三级亚洲精品| 久久6这里有精品| 欧美高清成人免费视频www| 99精品欧美一区二区三区四区| 亚洲男人的天堂狠狠| 久久欧美精品欧美久久欧美| 日韩av在线大香蕉| 国产午夜精品论理片| 国产伦精品一区二区三区视频9 | 中文字幕av在线有码专区| 亚洲精品日韩av片在线观看 | 脱女人内裤的视频| 丁香欧美五月| 亚洲人成电影免费在线| 亚洲欧美日韩东京热| 长腿黑丝高跟| 亚洲av电影不卡..在线观看| 日本成人三级电影网站| 婷婷六月久久综合丁香| 午夜精品在线福利| 18+在线观看网站| 亚洲成人中文字幕在线播放| 最近最新中文字幕大全免费视频| 99久久精品一区二区三区| 一进一出好大好爽视频| 麻豆成人午夜福利视频| 欧美+日韩+精品| 欧美黄色片欧美黄色片| 欧美日韩亚洲国产一区二区在线观看| 少妇高潮的动态图| 亚洲无线在线观看| 九色国产91popny在线| 亚洲国产精品sss在线观看| 男插女下体视频免费在线播放| 国产精品亚洲美女久久久| 国产精品日韩av在线免费观看| 亚洲avbb在线观看| 国产高潮美女av| 18禁在线播放成人免费| 成人欧美大片| 国产私拍福利视频在线观看| 亚洲欧美精品综合久久99| 97碰自拍视频| 国产精品嫩草影院av在线观看 | 五月玫瑰六月丁香| 很黄的视频免费| 精品一区二区三区视频在线观看免费| 丝袜美腿在线中文| 国产亚洲精品av在线| 国产三级在线视频| 十八禁人妻一区二区| 成人永久免费在线观看视频| 长腿黑丝高跟| 中出人妻视频一区二区| 一本综合久久免费| 男女床上黄色一级片免费看| 成年女人毛片免费观看观看9| 老熟妇仑乱视频hdxx| 亚洲五月婷婷丁香| 黄色日韩在线| 欧美黑人巨大hd| 国产熟女xx| 亚洲性夜色夜夜综合| 久久久久久久久中文| 麻豆国产97在线/欧美| 亚洲av成人精品一区久久| 宅男免费午夜| 国产高清videossex| 久久久成人免费电影| 国内久久婷婷六月综合欲色啪| 精品国产三级普通话版| 亚洲人成网站在线播| 在线观看一区二区三区| 99久久综合精品五月天人人| 国产av在哪里看| 很黄的视频免费| 久久久久亚洲av毛片大全| 热99re8久久精品国产| 不卡一级毛片| 亚洲成av人片免费观看| 国产午夜福利久久久久久| 久久性视频一级片| 亚洲电影在线观看av| 久久性视频一级片| 国产亚洲精品久久久久久毛片| 亚洲黑人精品在线| 特级一级黄色大片| 国产一区二区三区在线臀色熟女| 午夜久久久久精精品| av欧美777| 色综合欧美亚洲国产小说| 免费看a级黄色片| 精品无人区乱码1区二区| 国产高潮美女av| 久久九九热精品免费| 国产精品亚洲一级av第二区| 夜夜爽天天搞| 国内精品一区二区在线观看| 丰满乱子伦码专区| 看免费av毛片| 亚洲av免费在线观看| 成人鲁丝片一二三区免费| 国产99白浆流出| 黄色视频,在线免费观看| 国内精品久久久久精免费| 97超视频在线观看视频| x7x7x7水蜜桃| 久久香蕉精品热| 国产精品久久视频播放| 香蕉久久夜色| 19禁男女啪啪无遮挡网站| 久久人妻av系列| 亚洲片人在线观看| 人妻久久中文字幕网| 精品福利观看| 搡老岳熟女国产| 久久香蕉国产精品| 高清在线国产一区| 色综合亚洲欧美另类图片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一a级毛片在线观看| 天堂av国产一区二区熟女人妻| 欧美黑人欧美精品刺激| 国产av一区在线观看免费| 啦啦啦免费观看视频1| 九色国产91popny在线| av国产免费在线观看| 国产精品亚洲av一区麻豆| 久久精品人妻少妇| 成人性生交大片免费视频hd| 午夜福利在线观看免费完整高清在 | 亚洲欧美日韩东京热| 深爱激情五月婷婷| 中文字幕高清在线视频| 长腿黑丝高跟| 亚洲欧美日韩高清在线视频| 99热只有精品国产| 天堂影院成人在线观看| 草草在线视频免费看| 亚洲久久久久久中文字幕| 欧美bdsm另类| 一卡2卡三卡四卡精品乱码亚洲| 精华霜和精华液先用哪个| 成人鲁丝片一二三区免费| www日本在线高清视频| 亚洲精品粉嫩美女一区| 国产欧美日韩精品一区二区| 老汉色av国产亚洲站长工具| 人妻丰满熟妇av一区二区三区| 国产91精品成人一区二区三区| av黄色大香蕉| 免费电影在线观看免费观看| 国产又黄又爽又无遮挡在线| 欧美黄色片欧美黄色片| 国产精品一区二区免费欧美| 久久久成人免费电影| 观看免费一级毛片| 欧美黄色片欧美黄色片| 国产成人a区在线观看| 亚洲激情在线av| www.熟女人妻精品国产| 国产伦精品一区二区三区视频9 | 婷婷亚洲欧美| а√天堂www在线а√下载| 国产成+人综合+亚洲专区| 舔av片在线| 亚洲国产欧美网| 天堂动漫精品| 国产色爽女视频免费观看| 91麻豆精品激情在线观看国产| 亚洲男人的天堂狠狠| 国产精品香港三级国产av潘金莲| 亚洲精品456在线播放app | 免费一级毛片在线播放高清视频| 国产真人三级小视频在线观看| 国产97色在线日韩免费| 亚洲真实伦在线观看| 国产中年淑女户外野战色| 大型黄色视频在线免费观看| 熟女人妻精品中文字幕| 亚洲成人久久性| 色精品久久人妻99蜜桃| 日韩中文字幕欧美一区二区| 久久久国产成人免费| 久久久久久人人人人人| 午夜精品久久久久久毛片777| 久久久久久九九精品二区国产| 在线观看免费午夜福利视频| 日韩人妻高清精品专区| 老司机午夜十八禁免费视频| 每晚都被弄得嗷嗷叫到高潮| 男人和女人高潮做爰伦理| 每晚都被弄得嗷嗷叫到高潮| 国产淫片久久久久久久久 | 中文资源天堂在线| 美女高潮喷水抽搐中文字幕| 两个人看的免费小视频| 男女床上黄色一级片免费看| 国产精品一区二区免费欧美| 日本精品一区二区三区蜜桃| 怎么达到女性高潮| or卡值多少钱| 中文亚洲av片在线观看爽| av片东京热男人的天堂| 久久久久久久久久黄片| 国产免费男女视频| 午夜精品在线福利| 国产一区在线观看成人免费| 啦啦啦韩国在线观看视频| 成人午夜高清在线视频| 国产精品综合久久久久久久免费| 欧美中文综合在线视频| 淫秽高清视频在线观看| 九九在线视频观看精品| 女人被狂操c到高潮| 美女高潮喷水抽搐中文字幕| 日本熟妇午夜| 在线观看免费午夜福利视频| 国产精品av视频在线免费观看| 国产精品野战在线观看| 一区二区三区免费毛片| 国产三级在线视频| 亚洲在线观看片| 久久6这里有精品| 日韩人妻高清精品专区| 国产av一区在线观看免费| 欧美性猛交╳xxx乱大交人| 一区二区三区激情视频| 少妇的丰满在线观看| 亚洲精品美女久久久久99蜜臀| 久久久久国产精品人妻aⅴ院| 可以在线观看的亚洲视频| 久久99热这里只有精品18| 在线观看舔阴道视频| 日本一二三区视频观看| 成人三级黄色视频| 国产精品电影一区二区三区| 最近最新免费中文字幕在线| 人人妻人人澡欧美一区二区| 久久久精品大字幕| 99国产精品一区二区蜜桃av| 91字幕亚洲| 国产综合懂色| 少妇裸体淫交视频免费看高清| 日本黄大片高清| 亚洲av电影不卡..在线观看| a级毛片a级免费在线| 成人特级黄色片久久久久久久| 性欧美人与动物交配| 国产精品免费一区二区三区在线| 老司机深夜福利视频在线观看| 成人av在线播放网站| 国产精品久久久人人做人人爽| 国产精品亚洲美女久久久| av女优亚洲男人天堂| 久久99热这里只有精品18| 成人永久免费在线观看视频| 午夜精品久久久久久毛片777| 久久久成人免费电影| 久久精品亚洲精品国产色婷小说| av女优亚洲男人天堂| 他把我摸到了高潮在线观看| 国产精品99久久久久久久久| 午夜精品久久久久久毛片777| 久久久成人免费电影| 内射极品少妇av片p| 可以在线观看的亚洲视频| 国产精品一及| 岛国在线观看网站| 免费在线观看成人毛片| 波多野结衣高清作品| 国产精品1区2区在线观看.| 国产亚洲欧美98| 国产黄a三级三级三级人| 又紧又爽又黄一区二区| 中出人妻视频一区二区| 国产精品日韩av在线免费观看| 日韩中文字幕欧美一区二区| 一卡2卡三卡四卡精品乱码亚洲| 舔av片在线|