魯瑩, 李勃, 王蓉, 萬琪, 曾俊偉
趨化因子及其受體參與癌痛的研究進(jìn)展*
魯瑩, 李勃, 王蓉, 萬琪, 曾俊偉△
(遵義醫(yī)科大學(xué)生理學(xué)教研室,貴州 遵義 563000)
趨化因子;趨化因子受體;癌痛
癌痛是指由于腫瘤壓迫神經(jīng)或者腫瘤直接侵犯組織導(dǎo)致的疼痛,這嚴(yán)重降低了癌癥患者的生活質(zhì)量。大多數(shù)癌痛是慢性的,病程3個(gè)月以上,疼痛程度通常與腫瘤生長或診療情況密切聯(lián)系。癌痛可以分成傷害感受性疼痛及神經(jīng)病理性疼痛,前者又區(qū)分為軀體痛及內(nèi)臟痛;后者表現(xiàn)為持續(xù)出現(xiàn)痛覺過敏癥狀,這與外周或中樞神經(jīng)發(fā)生病變有關(guān)。目前,關(guān)于癌痛的診治尚缺乏有成效的具體方案。近年報(bào)告觀察到,乳腺癌患者的外周血中CC趨化因子配體2(C-C motif chemokine ligand 2,CCL2)、CCL20、CXC趨化因子配體13(C-X-C motif chemokine ligand 13,CXCL13)等明顯升高;在骨癌痛小鼠,外周血中單核細(xì)胞CCL2水平增高,給予CC趨化因子受體2(C-C motif chemokine receptor 2,CCR2)抑制劑賓達(dá)利(Bindari)口服治療具有良好的鎮(zhèn)痛效應(yīng),同時(shí)外周血單核細(xì)胞CCL2含量下降[1]。而且,在腫瘤組織以及感覺傳導(dǎo)通路的不同部位均觀察到一些趨化因子和相應(yīng)受體表達(dá)異常的現(xiàn)象。本文綜述趨化因子及其受體參與癌痛的信號機(jī)制的研究進(jìn)展。
趨化因子是一種可以誘導(dǎo)鄰近反應(yīng)細(xì)胞產(chǎn)生定向趨化的信號蛋白,其發(fā)揮作用的方式為結(jié)合靶細(xì)胞上相應(yīng)的G蛋白偶聯(lián)受體。趨化因子配體分成CXC、CC、C及CX3C四個(gè)亞族;CXC型包括CXCL1~CXCL16,特點(diǎn)是前兩個(gè)半胱氨酸中間被另外一個(gè)氨基酸分隔;CC型包含CCL1~CCL28,其特點(diǎn)為前兩個(gè)半胱氨酸互相連接;C型由一條二硫鍵和兩個(gè)半胱氨酸殘基共同構(gòu)建;CX3C型只有1個(gè)成員即CX3C趨化因子配體1(CX3C motif chemokine ligand 1,CX3CL1),也稱為fractalkine(FKN),前兩個(gè)半胱氨酸之間隔著3個(gè)其他氨基酸。有文獻(xiàn)提示,趨化因子不僅參與膠質(zhì)母細(xì)胞瘤、動(dòng)脈粥樣硬化、腦卒中、腦缺血、阿爾茨海默?。?-3]等多種神經(jīng)系統(tǒng)疾病的產(chǎn)生,也介導(dǎo)癌痛的發(fā)生及維持。
2.1背根神經(jīng)節(jié)(dorsal root ganglion,DRG)神經(jīng)元與腫瘤細(xì)胞之間的相互作用DRG神經(jīng)元能夠接收外界信息并將其傳至脊髓。多項(xiàng)研究表明,腫瘤細(xì)胞與DRG神經(jīng)元之間的相互作用導(dǎo)致局部大量趨化因子和相應(yīng)受體表達(dá)增多,這不僅加速了腫瘤的病變進(jìn)程,也是癌痛發(fā)生的一個(gè)重要環(huán)節(jié)[4-6]。Keskinov等[4]報(bào)道,在惡性黑素瘤小鼠,黑素瘤細(xì)胞可以刺激DRG神經(jīng)元活性增強(qiáng),導(dǎo)致CCL2、CCL3、CCL5、CXCL1、CXCL2及CXCL12生成并釋放,進(jìn)而吸引髓源抑制細(xì)胞(myeloid-derived suppressor cell,MDSC)靠近腫瘤細(xì)胞,加速其生長,這些趨化因子的產(chǎn)生與癌痛的產(chǎn)生密不可分。
在胰腺導(dǎo)管腺癌患者,由于腫瘤細(xì)胞侵入胰腺內(nèi)的感覺神經(jīng)末梢,常出現(xiàn)上腹部劇烈疼痛。在這些癌痛患者的腫瘤組織標(biāo)本檢測出CXCL10、CCL21、CXC趨化因子受體3(C-X-C motif chemokine receptor 3,CXCR3)和CCR7表達(dá)上升;而且,DRG神經(jīng)元與小鼠胰腺導(dǎo)管腺癌細(xì)胞株(K8484或DT8082)共培養(yǎng)之后,癌細(xì)胞向DRG神經(jīng)元移行趨化,隨后證實(shí)該現(xiàn)象源于DRG神經(jīng)元分泌的CXCL10和CCL21分別作用于癌細(xì)胞上分布的CXCR3和CCR7導(dǎo)致的。在DRG神經(jīng)元,ONTargetPlus siRNA基因敲除、、、、、、、或能夠阻礙癌細(xì)胞向DRG神經(jīng)元的遷移,而且具有良好的鎮(zhèn)痛效應(yīng);動(dòng)物實(shí)驗(yàn)中,小鼠胰腺導(dǎo)管腺癌組織注射CCL21 或CXCL10的中和抗體(或其受體的中和抗體)不僅明顯減輕小鼠癌痛癥狀,而且胰腺內(nèi)神經(jīng)纖維數(shù)目增多、直徑增大等現(xiàn)象也得到緩解,但這并不影響腫瘤組織中的T細(xì)胞或中性粒細(xì)胞浸潤[5]。此外,小鼠跟骨周圍注射纖維肉瘤細(xì)胞10天后表現(xiàn)出明顯的機(jī)械痛敏癥狀,初級傳入C-纖維末梢放電增加,其對應(yīng)的神經(jīng)元興奮性增強(qiáng),辣椒素受體TRPV1 (transient receptor potential vanilloid type 1)表達(dá)上調(diào),電壓依賴性Ca2+通道激活,Ca2+通道α2δ1亞基表達(dá)增加,胞內(nèi)Ca2+濃度增加,隨后證實(shí)該現(xiàn)象的產(chǎn)生主要是由于纖維肉瘤細(xì)胞釋放的CCL2激活DRG小直徑神經(jīng)元上的相應(yīng)受體CCR2導(dǎo)致的;由于加巴噴?。╣abapentin)類似物可以與α2δ1亞基結(jié)合并抑制其活性,因此皮下注射加巴噴丁可以有效緩解小鼠癌痛[6]。
2.2趨化因子及其受體增強(qiáng)DRG神經(jīng)元興奮性近年來,形態(tài)學(xué)實(shí)驗(yàn)證實(shí),DRG表達(dá)的趨化因子及其受體主要有CXCL1/CXCL2/CXCR2、CXCL9/CXCL10/CXCR3、CXCL12/CXCL14/CXCR4、CXCL13/CXCR5、CCL2/CCL12/CCR2等[7]。其中,CXCL1/CXCR2、CXCL10/CXCR3和CXCL12/CXCR4表達(dá)于小直徑DRG神經(jīng)元;CCL2/CCR2和CCL3/CCR1在中、小直徑DRG神經(jīng)元均表達(dá);CXCL9和CXCR3主要表達(dá)于CGRP陽性和IB4陽性的DRG神經(jīng)元;CCR1與μ阿片受體共表達(dá),而CCR2與腎上腺髓質(zhì)素共表達(dá)[8-9]。
在這些表達(dá)于DRG的趨化因子/受體中,有關(guān)CCL2、CXCL9、CXCL10及CXCL12及其相應(yīng)受體在癌痛發(fā)生發(fā)展中的作用受到關(guān)注。在脛骨內(nèi)注射Walker256乳腺癌細(xì)胞的骨癌痛大鼠,其DRG神經(jīng)元CCL2、CXCL9、CXCL12和CXCR3表達(dá)明顯上升;抑制CCL2、CXCL9、CXCL12或CXCR3的表達(dá)均具有明顯的鎮(zhèn)痛效應(yīng),但這些趨化因子及受體參與癌痛的機(jī)制并不完全一致。其中,CCL2作用于大鼠DRG神經(jīng)元的相應(yīng)受體CCR2,借助G-βγ信號激活磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,PKB)通路,上調(diào)小直徑DRG神經(jīng)元TRPV1和Nav1.8鈉通道表達(dá),其電流振幅升高,提示這些神經(jīng)元活性加強(qiáng)[10];CXCL9和CXCL10作用于CXCR3,促進(jìn)絲裂原活化蛋白激酶激酶(mitogen-activated protein kinase kinase,MEK)活化,進(jìn)一步增強(qiáng)癌痛大鼠的痛覺敏化[11-12];CXCL12一方面可以促進(jìn)小直徑DRG神經(jīng)元Nav1.8或Nav1.9表達(dá),Na+內(nèi)向電流增強(qiáng),提示小DRG神經(jīng)元興奮性增強(qiáng)[13-14],另一部分CXCL12經(jīng)由初級傳入終末運(yùn)送至脊髓背角參與脊髓水平的痛覺過敏[15]。此外,在癌痛動(dòng)物的DRG,CCL2的表達(dá)上調(diào)受到腎上腺髓質(zhì)素受體的正向調(diào)控[16];CXCL9的表達(dá)上調(diào)受到lncRNA-NONRATT021203.2的正向調(diào)控[12]。
3.1趨化因子及其受體在脊髓水平促進(jìn)癌痛的產(chǎn)生與維持脊髓背角是痛覺調(diào)制的關(guān)鍵部位,可以接受DRG傳入的傷害性感覺信息并進(jìn)行初步整合。形態(tài)學(xué)實(shí)驗(yàn)表明,在脊髓背角分布的趨化因子及其受體有CCL2/CCR2、CCL5/CCR5、CX3CL1/CX3CR1、CXCL1/CXCR2、CXCL12/CXCR4、CXCL13/CXCR5等[17]。進(jìn)一步實(shí)驗(yàn)提示,CCL2、CCR2、CXCR3和 CXCR4在神經(jīng)元、星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞均有表達(dá)[15,18];CXCR2主要在背角神經(jīng)元表達(dá),CXCL1和CXCL12主要在背角星形膠質(zhì)細(xì)胞表達(dá)[19]。這些趨化因子在脊髓背角的差異性表達(dá)提示其參與癌痛發(fā)生發(fā)展的機(jī)制并不完全相同。
在脊髓背角,在脛骨注射RM1前列腺癌細(xì)胞的骨癌痛小鼠,骨腫瘤勻漿中CCL2含量增加,而且脊髓背角星形膠質(zhì)細(xì)胞活化。在脛骨注入Walker256腫瘤細(xì)胞的骨癌痛大鼠,脊髓背角核因子κB(nuclear factor-κB,NF-κB)以及c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)激活促進(jìn)了CCL2表達(dá)上調(diào),鞘內(nèi)注射CCL2中和抗體或CCR2抑制劑(RS504393或RS102895)可以減輕癌痛癥狀[20-21]。研究提示,CCL2作用于CCR2,激活PI3K/PKB通路,同時(shí)抑制單免疫球蛋白白細(xì)胞介素1相關(guān)受體(single immunoglobulin interleukin-1-related receptor,SIGIRR)表達(dá),促進(jìn)痛覺過敏[22-23]。另有研究報(bào)道,脊髓背角分布的CCL2作用于突觸前末梢的CCR2受體,激活TRPV1受體,導(dǎo)致傷害性初級傳入末梢谷氨酸釋放;作用于背角神經(jīng)元,誘導(dǎo)細(xì)胞外信號調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK)和p-ERK活化,脊髓背角神經(jīng)元興奮性突觸后電流(excitatory postsynaptic current,EPSC)頻率升高,提示神經(jīng)元興奮性增加,引起熱痛覺過敏和機(jī)械性痛覺過敏[24]。此外,小鼠脛骨內(nèi)注射NCTC 2472纖維肉瘤細(xì)胞以誘發(fā)痛覺過敏,其脊髓背角和腫瘤組織內(nèi)CCL5上調(diào),可能通過激活CCR1或CCR5誘導(dǎo)熱痛覺過敏[25]。
CXCR4和CXCR5在脊髓水平參與癌痛的機(jī)制也受到廣泛關(guān)注。脛骨內(nèi)注射Walker256腫瘤細(xì)胞的骨癌痛大鼠,脊髓背角可見CXCL12/CXCR4和CXCL13/CXCR5表達(dá)上調(diào),鞘內(nèi)注射CXCL12和CXCL13的中和抗體、CXCR4或CXCR5拮抗劑明顯抑制其痛敏癥狀[26]。其中,背角星形膠質(zhì)細(xì)胞可以通過特異性縫隙連接蛋白43(connexin 43,Cx43)通道釋放CXCL12,骨髓基質(zhì)細(xì)胞也是CXCL12的釋放來源之一,這些釋放的CXCL12既可以作用于神經(jīng)元CXCR4,促進(jìn)Smad3活化,促使-甲基-D-天冬氨酸受體1(-methyl-D-aspartate receptor 1,NMDAR1)上調(diào),也可以激活膠質(zhì)細(xì)胞,釋放炎癥因子,刺激脊髓水平痛覺敏化[16,27-29]。此外,CXCL13作用于CXCR5,導(dǎo)致背角ERK以及PKB磷酸化,隨后小膠質(zhì)細(xì)胞激活,炎癥因子聚集[30]。
在癌痛大鼠的嗎啡耐受形成過程中,脊髓背角CCL2、CXCL11和CXCL13可能發(fā)揮了重要作用[31-32]。與癌痛未治療組相比,嗎啡耐受的癌痛大鼠脊髓背角CCL2、CXCL11和CXCL13的表達(dá)上升更為明顯;而且,鞘內(nèi)給予CCL2、CXCL11或CXCL13的中和抗體均有效減輕癌痛大鼠的嗎啡耐受現(xiàn)象。在體外細(xì)胞試驗(yàn)還證實(shí),嗎啡重復(fù)刺激可以誘導(dǎo)背角神經(jīng)元和星形膠質(zhì)細(xì)胞釋放CXCL11[33]。
3.2趨化因子及其受體在大腦介導(dǎo)癌痛的產(chǎn)生與維持當(dāng)外界傷害性刺激持續(xù)作用下,海馬、前額葉皮層、扣帶回以及中腦導(dǎo)水管灰質(zhì)等部位的神經(jīng)元功能發(fā)生變化,對于病理痛的產(chǎn)生與發(fā)展有重要意義。新近研究表示,分布在中腦導(dǎo)水管灰質(zhì)的趨化因子CXCL1和其受體CXCR2介導(dǎo)了癌痛的發(fā)生及維持。在中腦導(dǎo)水管周圍灰質(zhì)腹外側(cè)(ventrolateral periaqueductal gray,vlPAG),骨癌痛大鼠可見NF-κB活化,可以促進(jìn)該部位星形膠質(zhì)細(xì)胞CXCL1的轉(zhuǎn)錄生成和神經(jīng)元CXCR2表達(dá)上調(diào),vlPAG局部注射CXCR2抑制劑可以明顯緩解大鼠癌痛癥狀[34]。Wu等[35]認(rèn)為大腦星形膠質(zhì)細(xì)胞分泌的CXCL1可以激活腦血管內(nèi)皮,促進(jìn)白細(xì)胞募集,從而參與神經(jīng)炎癥。
近年實(shí)驗(yàn)觀察到,在Ⅲ級人腦星形細(xì)胞瘤中,腫瘤細(xì)胞分泌的CXCL12結(jié)合CXCR4后,血管內(nèi)皮細(xì)胞開始遷移,促進(jìn)腫瘤組織血管的生成,加快星形細(xì)胞瘤生長;在大腦皮層高表達(dá)的CX3CR1可以誘導(dǎo)小膠質(zhì)細(xì)胞活化和一系列炎癥因子釋放,在脊髓損傷的神經(jīng)痛大鼠,在丘腦和PAG等部位,CCL2、CCL3及其受體CCR2、CCR1的表達(dá)明顯升高[36],然而,有關(guān)這些趨化因子是否在腦區(qū)參與癌痛的發(fā)生與維持,當(dāng)前尚未明確,仍需后續(xù)深入試驗(yàn)。
近年研究表明,表達(dá)在感覺傳導(dǎo)通路上的多種趨化因子及其相應(yīng)受體參與了癌痛的發(fā)生與維持,而且與腫瘤的病變進(jìn)程密切相關(guān)?;仡櫼酝芯窟M(jìn)行分析,趨化因子及其受體促進(jìn)癌痛發(fā)生與維持的機(jī)制可以概括為以下幾點(diǎn)(圖1)。
Figure 1.The mechanism of chemokines and their receptors in the occurrence and maintenance of cancer pain. CCL2: C-C motif chemokine ligand 2; CCL21: C-C motif chemokine ligand 21; CXCL1:C-X-C motif chemokine ligand 1; CXCL10: C-X-C motif chemokine ligand 10; CXCL12: C-X-C motif chemokine ligand 12; CCR1: C-C motif chemokine receptor 1; CCR2: C-C motif chemokine receptor 2; CCR7: C-C motif chemokine receptor 7; CXCR2: C-X-C motif chemokine receptor 2; CXCR3: C-X-C motif chemokine receptor 3; CXCR4: C-X-C motif chemokine receptor 4; CXCR5: C-X-C motif chemokine receptor 5; CX3CL1: CX3C motif chemokine ligand 1; CX3CR1: CX3C motif chemokine receptor 1; ERK: extracellular signal-regulated kinase; NMDAR1: N-methyl-D-aspartate receptor 1; PAG: periaqueductal gray; PKB: protein kinase B; TRPV1: transient receptor potential vanilloid type 1.
4.1促進(jìn)感覺神經(jīng)元興奮性和敏感性增強(qiáng)辣椒素受體TRPV1通道抑制劑可以明顯緩解癌痛,其機(jī)制之一就是因?yàn)閺?qiáng)力抑制了CCL2/CCR2和CCL3/CCR1通路激活后的下游效應(yīng)。小鼠跟骨周圍注射纖維肉瘤細(xì)胞,纖維肉瘤細(xì)胞可以釋放CCL2作用于DRG神經(jīng)元上的CCR2受體,促進(jìn)TRPV1表達(dá)上調(diào)和通道開放,導(dǎo)致神經(jīng)元去極化,興奮性和敏感性增強(qiáng),Ca2+通道激活,其α2δ1亞基表達(dá)增加,Ca2+在細(xì)胞內(nèi)的濃度上調(diào),加重癌痛癥狀[6]。在DRG,趨化因子CCL3作用于神經(jīng)元分布的CCR1受體,誘導(dǎo)Gi蛋白的解離,激活磷脂酶C(phospholipase C,PLC)將磷脂酰肌醇4,5-二磷酸[phosphatidylinositol 4,5-bisphosphate,PtdIns(4,5)P2]水解轉(zhuǎn)化為三磷酸肌醇(inositol 1,4,5-trisphosphate,IP3)和二酰基甘油(diacylglycerol,DAG);IP3通過其內(nèi)質(zhì)網(wǎng)上的相應(yīng)受體誘導(dǎo)Ca2+釋放,連同DAG一起促進(jìn)蛋白激酶C(protein kinase C,PKC)活化,加強(qiáng)TRPV1的敏感性,參與疼痛的維持[37]。在脊髓背角,趨化因子受體CX3CR1可以抑制μ受體以及激活TRPV1介導(dǎo)骨癌痛大鼠的嗎啡耐受[38]。
4.2促進(jìn)感覺傳導(dǎo)通路的膠質(zhì)細(xì)胞激活與外周神經(jīng)損傷誘導(dǎo)的疼痛類似,脊髓背角膠質(zhì)細(xì)胞的激活介導(dǎo)了癌痛的產(chǎn)生。背角星形膠質(zhì)細(xì)胞TLR4/NF-κB的激活促進(jìn)CCL2、CXCL1及CXCL12表達(dá)上調(diào)并通過縫隙連接Cx43半通道釋放,隨后一方面激活小膠質(zhì)細(xì)胞上分布的受體,誘導(dǎo)小膠質(zhì)細(xì)胞激活和炎癥因子釋放;另一方面,作用于背角感覺神經(jīng)元上分布的相應(yīng)受體,導(dǎo)致神經(jīng)元興奮性和敏感性增加,共同促進(jìn)癌痛的發(fā)生與維持。此外,分布于PAG的趨化因子CXCL1可以促進(jìn)該區(qū)域的星形膠質(zhì)細(xì)胞激活,很可能也通過類似機(jī)制參與癌痛的發(fā)生。
4.3多種趨化因子/受體之間相互作用促進(jìn)癌痛的發(fā)生與維持在癌痛的發(fā)生與維持過程中,各個(gè)趨化因子發(fā)揮作用往往是相互影響,協(xié)同促進(jìn)痛覺敏感化。脊髓CXCL10/CXCR3促進(jìn)癌痛的機(jī)制之一是促進(jìn)小膠質(zhì)細(xì)胞激活和PI3K/PKB、MEK/ERK1/2通路活化[39]。其中,ERK活化可以促進(jìn)CCL2和CXCL1釋放[40],而CXCL1作用于背角神經(jīng)元CXCR2進(jìn)一步加強(qiáng)痛敏[41]。CCL2和CXCL1的表達(dá)則受到JNK1/2和NF-κB磷酸化的調(diào)控[42]。
4.4單一趨化因子在多位點(diǎn)促進(jìn)癌痛的發(fā)生與維持在諸多的趨化因子及其受體中,CCL2/CCR2以及CXCL12/CXCR4分布在DRG和脊髓背角;CXCL1/CXCR2分布在DRG、脊髓背角和中腦導(dǎo)水管灰質(zhì)。這種單一趨化因子在感覺傳導(dǎo)通路的多個(gè)位點(diǎn)表達(dá),且通過受體機(jī)制參與癌痛進(jìn)展。此外,CX3CL1/CX3CR1表達(dá)于脊髓背角,參與了癌痛進(jìn)展;在大腦皮層分布的CX3CL1/CX3CR1與膠質(zhì)細(xì)胞激活和炎癥因子釋放有關(guān),可能也與癌痛發(fā)生有關(guān)。這種單一趨化因子/受體在多位點(diǎn)參與癌痛形成的現(xiàn)象提示,這些趨化因子/受體有可能成為癌痛治療藥物研發(fā)的有潛在價(jià)值的分子靶點(diǎn)。
當(dāng)前癌痛的診治大體由疼痛的嚴(yán)重水平及類型決定。以往動(dòng)物試驗(yàn)的結(jié)果表明,趨化因子連同其受體共同介導(dǎo)癌痛的產(chǎn)生;口服或者鞘內(nèi)給予某些趨化因子受體拮抗劑或趨化因子的中和抗體能夠有效減弱試驗(yàn)動(dòng)物的癌痛癥狀[34]。此外,Heitzer等[43]臨床研究觀察到,在癌痛患者進(jìn)行鎮(zhèn)痛治療前后,其外周血MCP-1、MIP-1α和MIP-1β含量下降狀況與痛覺緩解狀況密切相關(guān)。Makimura等[44]也觀察到,癌痛患者給予嗎啡鎮(zhèn)痛之后,外周血中MIP-1α水平有所下降。這些前期研究充分提示靶向趨化因子治療癌痛具有潛在的可能性,而且,外周血中趨化因子的含量變化有可能用于評價(jià)藥物鎮(zhèn)痛療效?;趧?dòng)物試驗(yàn)中觀察到MCP-1參與腫瘤發(fā)生以及癌痛產(chǎn)生和維持,因此,Carlumab作為一種人工合成的IgG1-κ單克隆抗體,可與CCL2高親和力結(jié)合,目前已進(jìn)入臨床試驗(yàn),在多西他賽治療的前期轉(zhuǎn)移性前列腺癌患者,給予Carlumab治療之后,有39%的患者其癌痛癥狀有所減輕[45]。從前期動(dòng)物實(shí)驗(yàn)和臨床研究的結(jié)果來看,在探索緩解癌痛的新藥進(jìn)程中,致力于單一趨化因子靶點(diǎn)的藥物有可能并不是首要選擇。比如,在背根神經(jīng)節(jié)或脊髓背角分別表達(dá)有多種趨化因子和其受體,兩者共同參與了癌痛的發(fā)生發(fā)展。聯(lián)合使用多種或非選擇性的趨化因子中和抗體或受體拮抗劑或許有望獲得更好的鎮(zhèn)痛效應(yīng)。這也意味著,如果開發(fā)新的藥物可以同時(shí)阻斷多種趨化因子受體效應(yīng)的多靶點(diǎn),有可能會比單獨(dú)靶向某一趨化因子的藥物獲得更好的療效。因此,深入探討趨化因子及其受體參與癌痛的機(jī)制有助于未來研發(fā)新藥應(yīng)用于臨床,緩解癌癥患者的疼痛癥狀。
[1] Liu S,Gao H,Gao C,et al. Bindarit attenuates pain and cancer-related inflammation by influencing myeloid cells in a model of bone cancer[J]. Arch Immunol Ther Exp (Warsz),2018,66(3):221-229.
[2]范沖竹,李安,黃翠芹,等. BMSCs腦內(nèi)移植改善AD小鼠學(xué)習(xí)記憶功能的分子機(jī)制研究[J]. 中國病理生理雜志,2017,33(11):1921-1931.
Fan CZ,Li A,Huang CQ,et al. Molecular mechanism of BMSC intracerebral transplantation in improving learning and memory abilities of AD mice[J]. Chin J Pathophysiol,2017,33(11):1921-1931.
[3]涂小麗,陳琦,張洪洲,等. CXCR7在動(dòng)脈粥樣硬化模型-/-小鼠的表達(dá)及阿托伐他汀的干預(yù)作用[J]. 中國病理生理雜志,2015,31 (12):2209-2215.
Tu XL,Chen Q,Zhang HZ,et al. Expression of CXC chemokine receptor 7 in atherosclerotic-deficient mice and therapeutic impact by atorvastatin[J]. Chin J Pathophysiol,2015,31(12):2209-2215.
[4] Keskinov AA,Tapias V,Watkins SC,et al. Impact of the sensory neurons on melanoma growth[J]. PLoS One,2016,11(5):e0156095.
[5] Hirth M,Gandla J,H?per C,et al. CXCL10 and CCL21 promote migration of pancreatic cancer cells toward sensory neurons and neural remodeling in tumors in mice,associated with pain in patients[J]. Gastroenterology,2020,159(2):665-681.e13.
[6] Khasabova IA,Stucky CL,Harding-Rose C,et al. Chemical interactions between fibrosarcoma cancer cells and sensory neurons contribute to cancer pain[J]. J Neurosci,2007,27(38):10289-10298.
[7] Wu XB,Cao DL,Zhang X,et al. CXCL13/CXCR5 enhances sodium channel Nav1.8 current density via p38 MAP kinase in primary sensory neurons following inflammatory pain[J]. Sci Rep,2016,6:34836.
[8] Wang J,Zhang XS,Tao R,et al. Upregulation of CX3CL1 mediated by NF-κB activation in dorsal root ganglion contributes to peripheral sensitization and chronic pain induced by oxaliplatin administration[J]. Mol Pain,2017,13:1744806917726256.
[9] LaMotte RH. Allergic contact dermatitis: a model of inflammatory itch and pain in human and mouse[J]. Adv Exp Med Biol,2016,904:23-32.
[10] Kao DJ,Li AH,Chen JC,et al. CC chemokine ligand 2 upregulates the current density and expression of TRPV1 channels and Nav1.8 sodium channels in dorsal root ganglion neurons[J]. J Neuroinflammation,2012,9:189-201.
[11] Sun RM,Wei J,Wang SS,et al. Upregulation of lncRNA-NONRATT021203.2 in the dorsal root ganglion contributes to cancer-induced pain via CXCL9 inrats[J]. Biochem Biophys Res Commun,2020,524(4):983-989.
[12] Guan XH,F(xiàn)u QC,Shi D,et al. Activation of spinal chemokine receptor CXCR3 mediates bone cancer pain through an Akt-ERK crosstalk pathway in rats[J]. Exp Neurol,2015,263:39-49.
[13] Qiu F,Li Y,F(xiàn)u Q,et al. Stromal cell-derived factor 1 increases tetrodotoxin-resistant sodium currents Nav1.8 and Nav1.9 inrat dorsal root ganglion neurons via different mechanisms[J]. Neurochem Res,2016,41(7):1587-1603.
[14] Zhu HY,Liu X,Miao X,et al. Up-regulation of CXCR4 expression contributes to persistent abdominal pain in rats with chronic pancreatitis[J]. Mol Pain,2017,13:1744806917697979.
[15] Shen W,Hu XM,Liu YN,et al. CXCL12 in astrocytes contributes to bone cancer pain through CXCR4-mediated neuronal sensitization and glial activation in rat spinal cord[J]. J Neuroinflammation,2014,11:75-88.
[16] Chen YJ,Huo YH,Hong Y. Effects of intrathecal administration of AM22-52 on mechanical allodynia and CCL2 expression in DRG in bone cancer rats[J]. Sheng Li Xue Bao,2017,69(1):70-76.
[17] Zhou YQ,Gao HY,Guan XH,et al. Chemokines and their receptors: potential therapeutic targets for bone cancer pain[J]. Curr Pharm Des,2015,21(34):5029-5033.
[18] Guan XH,F(xiàn)u QC,Shi D,et al. Activation of spinal chemokine receptor CXCR3 mediates bone cancer pain through an Akt-ERK crosstalk pathway in rats[J]. Exp Neurol,2015,263:39-49.
[19] Xu J,Zhu MD,Zhang X,et al. NFκB-mediated CXCL1 production in spinal cord astrocytes contributes to the maintenance of bone cancer pain in mice[J]. J Neuroinflammation,2014,11:38-50.
[20] Wang Y,Ni H,Li H,et al. Nuclear factor kappa B regulated monocyte chemoattractant protein-1/chemokine CC motif receptor-2 expressing in spinal cord contributes to the maintenance of cancer-induced bone pain in rats[J]. Mol Pain,2018,14:1744806918788681.
[21] Guo CH,Bai L,Wu HH,et al. The analgesic effect of rolipram is associated with the inhibition of the activation of the spinal astrocytic JNK/CCL2 pathway in bone cancer pain[J]. Int J Mol Med,2016,38(5):1433-1442.
[22] Zhu CY,He CJ,Yao M,et al. Relationship between C-C chemokine receptor type 2 and P38 mitogen-activated protein kinase signaling pathway in the spinal cord of rats with bone cancer pain[J]. Zhonghua Yi Xue Za Zhi,2018,98(4):289-293.
[23] Hu Y,Kodithuwakku ND,Zhou L,et al.-corydalmine alleviates neuropathic cancer pain induced by tumor compression via the CCL2/CCR2 pathway[J]. Molecules,2017,22(6):937.
[24] Spicarova D,Adamek P,Kalynovska N,et al. TRPV1 receptor inhibition decreases CCL2-induced hyperalgesia[J]. Neuropharmacology,2014,81:75-84.
[25] Pevida M,Lastra A,Meana á,et al. The chemokine CCL5 induces CCR1-mediated hyperalgesia in mice inoculated with NCTC 2472 tumoral cells[J]. Neuroscience,2014,259:113-125.
[26] Xu H,Peng C,Chen XT,et al. Chemokine receptor CXCR4 activates the RhoA/ROCK2 pathway in spinal neurons that induces bone cancer pain[J]. Mol Pain,2020,16:1744806920919568.
[27] Hang LH,Li SN,Luo H,et al. Connexin 43 mediates CXCL12 production from spinal dorsal horn to maintain bone cancer pain in rats[J]. Neurochem Res,2016,41(5):1200-1208.
[28] Peng C,Chen XT,Xu H,et al. Role of the CXCR4/ALK5/Smad3 signaling pathway in cancer-induced bone pain[J]. J Pain Res,2020,13:2567-2576.
[29] Hu XM,Zhang H,Xu H,et al. Chemokine receptor CXCR4 regulates CaMKII/CREB pathway in spinal neurons that underlies cancer-induced bone pain[J]. Sci Rep,2017,7(1):4005.
[30] Bu HL,Xia YZ,Liu PM,et al. The roles of chemokine CXCL13 in the development of bone cancer pain and the regulation of morphine analgesia in rats[J]. Neuroscience,2019,406:62-72.
[31] Liu L,Gao XJ,Ren CG,et al. Monocyte chemoattractant protein-1 contributes to morphine tolerance in rats with cancer-induced bone pain[J]. Exp Ther Med,2017,13 (2):461-466.
[32] Wang SF,Dong CG,Yang X,et al. Upregulation of (C-X-C motif) ligand 13 (CXCL13) attenuates morphine analgesia in rats with cancer-induced bone pain[J]. Med Sci Monit,2016,22:4612-4622.
[33] Guo G,Peng Y,Xiong B,et al. Involvement of chemokine CXCL11 in the development of morphine tolerance in rats with cancer-induced bone pain[J]. J Neurochem,2017,141 (4):553-564.
[34] Ni H,Wang Y,An K,et al. Crosstalk between NFκB-dependent astrocytic CXCL1 and neuron CXCR2 plays a role in descending pain facilitation[J]. J Neuroinflammation,2019,16(1):1.
[35] Wu F,Zhao Y,Jiao T,et al. CXCR2 is essential for cerebral endothelial activation and leukocyte recruitment during neuroinflammation[J]. J Neuroinflammation,2015,12:98-112.
[36] 張欣,康增軍,薛娟,等. 淫羊藿苷干預(yù)自然衰老模型大鼠大腦皮質(zhì)趨化因子Fractalkine及其受體CX3CR1的表達(dá)[J]. 中國組織工程研究,2018,22(32):5203-5208.
Zhang X,Kang ZJ,Xue J,et al. Icariin affects the expression of fractalkine and its receptor CX3CR1 in cerebral cortex of natural aging rat models[J]. Chin J Tissue Eng Res,2018,22(32):5203-5208.
[37] Zhang N,Inan S,Cowan A,et al. A proinflammatory chemokine,CCL3,sensitizes the heat- and capsaicin-gated ion channel TRPV1[J]. Proc Natl Acad Sci U S A,2005,102(12):4536-4541.
[38] 張亞軍,楊承祥,王漢兵,等. CX3C趨化因子受體1對骨癌痛大鼠嗎啡耐受時(shí)脊髓背角μ受體和辣椒素受體表達(dá)的影響[J]. 中華麻醉學(xué)雜志,2012,32(5):569-572.
Zhang YJ,Yang CX,Wang HB,et al. Effects of CX3CR1 on expression of μ-receptor and TRPV1 in spinal dorsal horn of morphine-tolerent rats with bone cancer pain[J]. Chin J Anesthesiol,2012,32(5):569-572.
[39] Guan XH,F(xiàn)u QC,Shi D,et al. Activation of spinal chemokine receptor CXCR3 mediates bone cancer pain through an Akt-ERK crosstalk pathway in rats[J]. Exp Neurol,2015,263:39-49.
[40] Jiang BC,Cao DL,Zhang X,et al. CXCL13 drives spinal astrocyte activation and neuropathic pain via CXCR5[J]. J Clin Invest,2016,126(2):745-761.
[41] Ni H,Xu M,Xie K,et al. Liquiritin alleviates pain through inhibiting CXCL1/CXCR2 signaling pathway in bone cancer pain rat[J]. Front Pharmacol,2020,11:436-450.
[42] Wang ZL,Du TT,Zhang RG. JNK in spinal cord facilitates bone cancer pain in rats through modulation of CXCL1[J]. J Huazhong Univ Sci Technol Med Sci,2016,36(1):88-94.
[43] Heitzer E,Sandner-Kiesling A,Schippinger W,et al. IL-7,IL-18,MCP-1,MIP1-β,and OPG as biomarkers for pain treatment response in patients with cancer[J]. Pain Physician,2012,15(6):499-510.
[44] Makimura C,Arao T,Matsuoka H,et al. Prospective study evaluating the plasma concentrations of twenty-six cytokines and response to morphine treatment in cancer patients[J]. Anticancer Res,2011,31(12):4561-4568.
[45] Pienta KJ,Machiels JP,Schrijvers D,et al. Phase 2 study of carlumab (CNTO 888),a human monoclonal antibody against CC-chemokine ligand 2 (CCL2),in metastatic castration-resistant prostate cancer[J]. Invest New Drugs,2013,31(3):760-768.
Research progress of chemokines and their receptors in cancer pain
LU Ying,LI Bo,WANG Rong,WAN Qi,ZENG Jun-wei△
(,,563000,)
Chemokines bind to its G-protein-coupled receptors on target cells inducing adjacent responding cells to produce directional chemotaxis. Interaction of chemokines and their receptors in dorsal root ganglion neurons,spinal dorsal horn and brain participates in the generation and maintenance of cancer pain in response to noxious stimuli. Chemokines have been suggested as candidates of cancer pain treatment. This article reviews the research progress of chemokines and their receptors involved in cancer pain.
Chemokines; Chemokine receptors; Cancer pain
R338.2; R363
A
10.3969/j.issn.1000-4718.2022.02.022
1000-4718(2022)02-0364-06
2021-09-28
2022-01-20
[基金項(xiàng)目]國家自然科學(xué)基金資助項(xiàng)目(No. 31860291);2018年貴州省教育廳創(chuàng)新群體重大研究項(xiàng)目(黔教合KY字[2018]025)
Tel: 0851-28642721; E-mail: junweizeng@sohu.com
(責(zé)任編輯:林白霜,羅森)