侯曉俐, 饒雨涵, 姚盈程, 蘇玉, 李丹陽(yáng), 陳壓西
肝星狀細(xì)胞特異性敲除對(duì)小鼠肝纖維化的影響*
侯曉俐, 饒雨涵, 姚盈程, 蘇玉, 李丹陽(yáng)△, 陳壓西△
(重慶醫(yī)科大學(xué)脂糖代謝性疾病重慶市重點(diǎn)實(shí)驗(yàn)室,脂質(zhì)研究中心,重慶 400016)
探討固醇調(diào)節(jié)元件結(jié)合蛋白裂解活化蛋白(SCAP)在肝星狀細(xì)胞中缺失能否延緩小鼠肝纖維化進(jìn)程。將loxP/loxP小鼠與Lrat-Cre工具鼠繁殖得到Lrat-Cre+/+fl/fl、Lrat-Cre+/-fl/fl和Lrat-Cre-/-fl/fl鼠,并用PCR法對(duì)小鼠基因型進(jìn)行鑒定。選取4~6周齡Lrat-Cre-/-fl/fl小鼠(雄性,=8)作為對(duì)照(Con)組,Lrat-Cre+/+fl/fl和Lrat-Cre+/-fl/fl小鼠(雄性,=8)作為實(shí)驗(yàn)(-/-)組,均給予高脂飲食16周。稱(chēng)量小鼠肝重和體重,計(jì)算肝指數(shù);檢測(cè)血清總膽固醇(TC)、甘油三酯(TG)、丙氨酸轉(zhuǎn)氨酶(ALT)和天冬氨酸轉(zhuǎn)氨酶(AST)水平;蘇木精-伊紅(HE)染色觀察肝臟形態(tài),油紅O染色觀察肝臟脂質(zhì)積聚,天狼星紅染色評(píng)估肝臟纖維化程度;RT-qPCR和Western blot檢測(cè)小鼠肝組織中TGF-β/Smad信號(hào)通路相關(guān)mRNA及蛋白表達(dá)。小鼠基因型鑒定結(jié)果與預(yù)期一致。提取兩組小鼠原代肝星狀細(xì)胞,RT-qPCR結(jié)果顯示-/-小鼠肝星狀細(xì)胞中SCAPmRNA表達(dá)顯著降低(<0.01),免疫熒光染色顯示-/-小鼠肝星狀細(xì)胞中SCAP不表達(dá),表明-/-小鼠模型建立成功。與Con組相比,高脂飲食喂養(yǎng)的-/-組小鼠體重(<0.01)和肝重(<0.05)顯著降低,但肝指數(shù)無(wú)顯著差異;血清中TC水平顯著降低(<0.05),TG、AST和ALT水平無(wú)顯著差異;HE及油紅O染色結(jié)果顯示小鼠肝臟脂肪變性和脂質(zhì)積聚無(wú)顯著差異;天狼星紅染色顯示肝臟纖維化程度減輕(0.05);Smad2(<0.05)和Smad3(0.01)的mRNA表達(dá)顯著降低;Smad2/3和p-Smad2/3蛋白水平顯著降低(<0.05)。肝星狀細(xì)胞中缺失可延緩小鼠肝纖維化發(fā)展的進(jìn)程,并與TGF-β/Smad信號(hào)通路有關(guān)。
固醇調(diào)節(jié)元件結(jié)合蛋白裂解活化蛋白;肝星狀細(xì)胞;肝纖維化;TGF-β/Smad信號(hào)通路
肝纖維化是肝臟的各種慢性損傷反復(fù)刺激肝臟后引起細(xì)胞外基質(zhì)(extracellular matrix,ECM)過(guò)度沉積及纖維瘢痕形成的一種病理過(guò)程。持續(xù)發(fā)展的肝纖維化可導(dǎo)致肝硬化甚至肝癌。肝纖維化的主要原因包括病毒感染、酗酒和非酒精性脂肪性肝炎(nonalcoholic steatohepatitis,NASH),目前NASH來(lái)源的肝纖維化越來(lái)越常見(jiàn)[1]。
肝星狀細(xì)胞的激活是肝纖維化發(fā)生的驅(qū)動(dòng)因素。正常肝臟中的肝星狀細(xì)胞位于Disse間隙,處于靜止?fàn)顟B(tài)[2]。當(dāng)各種急、慢性損傷刺激肝臟內(nèi)免疫細(xì)胞釋放炎癥因子時(shí),肝星狀細(xì)胞活化為肌成纖維細(xì)胞[3],分泌大量ECM,ECM在肝內(nèi)過(guò)量積聚,肝臟的正常結(jié)構(gòu)被破壞,肝臟發(fā)生纖維化。轉(zhuǎn)化生長(zhǎng)因子β(transforming growth factor-β,TGF-β)是一種主要的促纖維化細(xì)胞因子,可以刺激成纖維細(xì)胞大量增殖,促進(jìn)膠原和彈性蛋白的形成,導(dǎo)致纖維化的發(fā)生[4-5]?;罨腡GF-β可以激活TGF-β/Smad信號(hào)通路,引起Smad2/3磷酸化,觸發(fā)下游因子的轉(zhuǎn)錄,驅(qū)動(dòng)肝星狀細(xì)胞激活并誘導(dǎo)纖維化反應(yīng)[6]。
固醇調(diào)節(jié)元件結(jié)合蛋白(sterol regulatory element-binding protein,SREBP)裂解活化蛋白(SREBP cleavage-activating protein,SCAP)主要調(diào)節(jié)體內(nèi)甘油三酯和膽固醇水平[7]。SCAP是一種內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum,ER)固醇敏感蛋白,伴隨SREBP-1和SREBP-2從ER到高爾基體,通過(guò)影響低密度脂蛋白(low-density lipoprotein,LDL)受體和3-羥基-3-甲基戊二酸單酰輔酶A還原酶調(diào)節(jié)細(xì)胞內(nèi)膽固醇水平[8-9]。本課題組前期的研究表明,平滑肌細(xì)胞中過(guò)表達(dá)SCAP可以增加炎癥小體的激活,使脂質(zhì)積聚,加速動(dòng)脈粥樣硬化的發(fā)生發(fā)展[10]。肝星狀細(xì)胞活化成的肌成纖維細(xì)胞,與平滑肌細(xì)胞有相似的表型。但是肝星狀細(xì)胞的脂質(zhì)代謝在肝纖維化中的作用尚不清楚。卵磷脂-視黃醇?;D(zhuǎn)移酶(lecithin-retinol acyltransferase,Lrat)驅(qū)動(dòng)的Cre(Lrat-Cre)轉(zhuǎn)基因小鼠常被用于肝星狀細(xì)胞相關(guān)功能的研究[11]。本課題通過(guò)構(gòu)建肝星狀細(xì)胞特異性敲除轉(zhuǎn)基因小鼠NASH模型,評(píng)估各組小鼠肝臟SCAP表達(dá)水平、肝臟脂質(zhì)集聚情況、肝纖維化程度及TGF-β表達(dá)水平,探索肝星狀細(xì)胞中SCAP在肝纖維化發(fā)生中的作用,為進(jìn)一步研究抗肝纖維化提供新的思路。
高脂飼料(Research Diets,D12109C);高糖DMEM培養(yǎng)液(HyClone);油紅O染色試劑盒、蘇木精-伊紅(hematoxylin-eosin,HE)染色試劑盒和天狼星紅染色試劑盒(北京索萊寶科技有限公司);Hanks平衡液、Triton X-100、DEPC水、RIPA裂解液和紅細(xì)胞裂解液(碧云天生物技術(shù)公司);Ⅳ型膠原酶(Sigma);兔抗GAPDH、TGF-β和α-平滑肌肌動(dòng)蛋白(α-smooth muscle actin,α-SMA)抗體(Proteintech);SCAP抗體(Abcam);Smad2/Smad3抗體和p-Smad2/Smad3抗體(Cell Signaling Technology);SCAP熒光I抗(Santa Cruz);熒光Ⅱ抗(北京中杉金橋生物技術(shù)有限公司);DAPI染色液(Genview);丙氨酸轉(zhuǎn)氨酶(alanine aminotransferase,ALT)、天冬氨酸轉(zhuǎn)氨酶(aspartate aminotransferase,AST)、總膽固醇(total cholesterol,TC)和甘油三酯(triglyceride,TG)試劑盒(南京建成公司);牛血清白蛋白(bovine serum albumin,BSA)和Tween 20(生工生物工程有限公司);逆轉(zhuǎn)錄試劑盒和SYBR Green(TaKaRa);引物(北京擎科生物科技有限公司);BCA試劑盒和100 bp DNA marker(北京鼎國(guó)昌盛生物技術(shù)有限責(zé)任公司)。激光共聚焦顯微鏡(Leica);熒光定量PCR儀、電泳儀和電轉(zhuǎn)儀(Bio-Rad)。
2.1肝星狀細(xì)胞特異性基因敲除小鼠的繁殖所有小鼠為C57BL/6遺傳背景。Lrat-Cre工具鼠購(gòu)自上海南方模式生物科技有限公司。loxP/loxP小鼠購(gòu)自Jackson實(shí)驗(yàn)室。loxP/loxP小鼠與Lrat-Cre+/+小鼠交配,得到Lrat-Cre+/-fl/+小鼠。Lrat-Cre+/-fl/+小鼠之間自交,得到Lrat-Cre+/+fl/fl和Lrat-Cre+/-fl/fl小鼠,即為肝星狀細(xì)胞特異性敲除(-/-)小鼠。選取Lrat-Cre-/-fl/fl小鼠(雄性,=8)作為對(duì)照(control,Con)組,肝星狀細(xì)胞特異性-/-小鼠(雄性,=8)為實(shí)驗(yàn)(-/-)組,均喂高脂飲食16周。
2.2小鼠基因型鑒定通過(guò)PCR法鑒定小鼠基因型。取小鼠尾部組織,加入50 μL組織裂解液(25 mmol/L NaOH和0.2 mmol/L EDTA),剪碎組織,金屬水浴鍋100 ℃水浴1 h,冷卻后加入50 μL裂解終止液(40 mmol/L Tris-HCl),混勻,常溫12 000×離心3 min,提取上清液用于PCR鑒定,瓊脂糖凝膠電泳分離PCR產(chǎn)物[12]。PCR引物序列見(jiàn)表1。
表1 基因型鑒定引物信息
2.3原代肝星狀細(xì)胞提取選取普通飲食喂養(yǎng)小鼠,禁食不禁水12 h,腹腔注射肝素鈉,10 min后用戊巴比妥麻醉。將麻醉后小鼠固定于解剖臺(tái)上,消毒剪后開(kāi)皮膚至頸部,向兩側(cè)鈍性分離,固定并暴露整個(gè)腹部。用鑷子輕挑外腹膜,剪開(kāi)向上剪至胸骨下,暴露肝臟。撥開(kāi)腸道,暴露下腔靜脈,平行插入留置針,用蠕動(dòng)泵將Hanks液以4 mL/min的速度灌入下腔靜脈,液體進(jìn)入后馬上剪開(kāi)門(mén)靜脈,使灌注液從下腔靜脈流入,門(mén)靜脈流出,直至整個(gè)肝臟變成淡白色。關(guān)掉蠕動(dòng)泵,將吸液管換在Ⅳ型膠原酶溶液中,繼續(xù)灌注,直至肝臟纖維支架完全消化,壓之不回彈。分離肝臟,去除膽囊,將肝臟轉(zhuǎn)移到裝有Ⅳ型膠原酶溶液培養(yǎng)皿中。去除肝臟包膜,將肝臟破碎成單個(gè)細(xì)胞,細(xì)胞團(tuán)塊懸浮液,在體外用預(yù)加熱的Ⅳ型膠原酶溶液在37 ℃恒溫水浴箱進(jìn)一步消化20 min。將懸浮液用70 μm細(xì)胞濾網(wǎng)過(guò)濾,然后4 ℃、580×離心10 min,棄上清液留下沉淀,用Hanks液清洗沉淀,離心棄上清液。紅細(xì)胞裂解液裂解5 min,高糖DMEM培養(yǎng)液重懸,用25% Percoll和100% Percoll梯度離心分離,4 ℃、1 380×離心15 min。吸取中間層的肝星狀細(xì)胞細(xì)胞,4 ℃、580×離心10 min,沉淀為肝星狀細(xì)胞,重懸后放入孵箱培養(yǎng)[13]。
表2 RT-qPCR引物序列
SCAP: sterol regulatory element-binding protein cleavage-activating protein; TGF-β: transforming growth factor-β; Col-I: collagen type I; Col-IV: collagen type IV.
2.4標(biāo)本處理和指標(biāo)檢測(cè)高脂飲食喂食16周后,禁食不禁水12 h,麻醉后稱(chēng)量體重,眼球取血。分離肝臟標(biāo)本,稱(chēng)取肝重。用試劑盒說(shuō)明方法檢測(cè)血清脂質(zhì)指標(biāo)TC和TG,以及肝功能指標(biāo)ALT和AST。肝指數(shù)(%)=肝重(g)/體重(g)×100%。
2.5組織總蛋白提取和Western blot分析稱(chēng)取高脂飲食喂養(yǎng)16周的小鼠肝臟組織(20 mg)置于EP管中,加入500 μL組織裂解液(含蛋白酶和磷酸酶抑制劑)勻漿2~3次,上清液轉(zhuǎn)移到新1.5 mL離心管,4 ℃旋轉(zhuǎn)裂解30 min,然后4 ℃、12 000×離心15 min,取上清液轉(zhuǎn)入新1.5 mL離心管并用BCA試劑盒進(jìn)行蛋白定量。每組蛋白取100~200 μg,加入蛋白上樣緩沖液,100 ℃孵育10 min。進(jìn)行SDS-PAGE(濃縮膠恒壓80 V,30 min;分離膠恒壓110 V,1~1.5 h),轉(zhuǎn)膜(恒流250 mA),3% BSA室溫封閉1 h,Ⅰ抗4 ℃過(guò)夜;TBST洗膜3次,每次10 min;加入Ⅱ抗,室溫1 h,TBST洗膜3次,每次10 min,ECL顯影,用ImageJ軟件進(jìn)行灰度分析。
2.6肝臟組織HE及油紅O染色取肝臟組織石蠟切片,HE染色觀察肝臟組織結(jié)構(gòu)。取肝臟的冰凍切片,油紅O染色觀察脂質(zhì)積聚,脂滴呈紅色。
2.7組織RNA提取及RT-qPCR取20 mg小鼠肝組織放入1.5 mL勻漿管中,加入500 μL Trizol,按照常規(guī)方法提取RNA,用反轉(zhuǎn)錄試劑盒合成cDNA,定量PCR檢測(cè)基因mRNA表達(dá),以GAPDH為內(nèi)參照,采用2-ΔΔCt法計(jì)算目的基因mRNA的相對(duì)表達(dá)量。
2.8細(xì)胞免疫熒光染色用PBS清洗細(xì)胞3次,4%的多聚甲醛固定30 min,PBST清洗3次,用Triton X-100打孔15 min,PBST洗3次,3% BSA封閉1 h,加入Ⅰ抗4 ℃過(guò)夜。PBST洗3次,加入熒光Ⅱ抗,避光37 ℃孵育1 h后,用PBST清洗3次。然后用DAPI染細(xì)胞核6 min,抗熒光淬滅劑封片后避光拍照。
使用GraphPad Prism 8.0統(tǒng)計(jì)分析結(jié)果。實(shí)驗(yàn)結(jié)果用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。多組間均數(shù)比較用單因素方差分析,兩兩比較采用SNK-檢驗(yàn)。以<0.05為差異有統(tǒng)計(jì)學(xué)意義。
將loxP/loxP小鼠與Lrat-Cre工具鼠交配繁殖,得到Lrat-Cre+/-fl/+小鼠,再使Lrat-Cre+/-fl/+小鼠之間自交(圖1A)。用PCR法對(duì)小鼠基因型進(jìn)行鑒定(圖1B)。野生型(+/+)基因產(chǎn)物為400 bp,敲除打靶位點(diǎn)(fl/fl)基因產(chǎn)物為450 bp。P1P2無(wú)條帶,P3P4有246 bp條帶記為L(zhǎng)rat-Cre陽(yáng)性純合子(Lrat-Cre+/+);P1P2有700 bp條帶,P3P4有246 bp條帶記為L(zhǎng)rat-Cre陽(yáng)性雜合子(Lrat-Cre+/-);P1P2有700 bp條帶,P3P4無(wú)條帶記為L(zhǎng)rat-Cre陰性(Lrat-Cre-/-)。通過(guò)基因型鑒定結(jié)果選取Lrat-Cre+/+fl/fl和Lrat-Cre+/-fl/fl基因型小鼠作為-/-組小鼠,Lrat-Cre-/-fl/fl基因型小鼠作為Con組小鼠。
Figure 1.Construction process (A) and genotyping (B) of hepatic stellate cell-specific SCAP conditional knockout mouse model. The mouse model was constructed,and the mouse genotype was identified by agarosegel electrophoresis. The Lrat-Cre+/+SCAPfl/fl and Lrat-Cre+/-SCAPfl/fl mice served as experimental (SCAP-/-) group,while the Lrat-Cre-/-SCAPfl/fl mice served as control (Con) group. M: DNA marker.
在小鼠肝組織中,RT-qPCR檢測(cè)Con組小鼠與-/-小鼠SCAP mRNA表達(dá),可見(jiàn)-/-小鼠肝臟中SCAP mRNA表達(dá)水平有降低趨勢(shì),但差異無(wú)統(tǒng)計(jì)學(xué)意義(圖2A)。Western blot法檢測(cè)小鼠肝組織中SCAP蛋白表達(dá),-/-小鼠中SCAP蛋白表達(dá)變化不大(圖2C)。進(jìn)一步我們提取了小鼠原代肝星狀細(xì)胞,檢測(cè)了SCAP的mRNA水平,RT-qPCR結(jié)果顯示-/-小鼠原代肝星狀細(xì)胞中SCAP的mRNA表達(dá)顯著下降(0.05),見(jiàn)圖2B。我們用免疫熒光驗(yàn)證的敲除效果,α-SMA是常用的肝星狀細(xì)胞激活標(biāo)志物,在此我們標(biāo)記為紅色熒光;SCAP標(biāo)記為綠色熒光;細(xì)胞核常用DAPI染色標(biāo)記為藍(lán)色熒光。結(jié)果顯示,兩組細(xì)胞均表達(dá)α-SMA(紅色熒光陽(yáng)性細(xì)胞),提示肝星狀細(xì)胞的提取、純化成功。同時(shí),Con組中肝星狀細(xì)胞可見(jiàn)明顯的SCAP表達(dá)(綠色熒光陽(yáng)性染色),而SCAP小鼠肝星狀細(xì)胞中不表達(dá)SCAP(無(wú)綠色熒光陽(yáng)性染色),見(jiàn)圖2D。這些數(shù)據(jù)表明肝星狀細(xì)胞特異性SCAP小鼠模型建立成功。
Figure 2.Verification of SCAP conditional knockout in mouse hepatic stellate cells (HSC). A and B: the mRNA expression of SCAP in liver tissues (A) and primary HSC (B) was detected by RT-qPCR; C: the protein expression of SCAP in liver tissues was detected by Western blot; D: the expression of SCAP in primary HSC was detected by immunofluorescence staining (scale bar=100 μm; α-SMA: red; SCAP: green; DAPI: blue). Mean±SD. n=5. *P<0.05 vs control (Con) group.
與Con組相比,高脂飲食喂養(yǎng)后,-/-小鼠體重(0.01)和肝重(0.05)均顯著降低,但肝指數(shù)無(wú)顯著變化(表3)。小鼠血清TC水平顯著降低(0.05),而TG、AST和ALT水平無(wú)顯著差異(表4)。
*<0.05,**<0.01control (Con) group.
表4 兩組小鼠血清相關(guān)指標(biāo)
AST: aspartate aminotransferase; ALT: alanine aminotransferase; TC: total cholesterol; TG: triglyceride.*<0.05,**<0.01control (Con) group.
HE染色可見(jiàn),高脂飲食喂養(yǎng)16周后,Con組小鼠肝臟結(jié)構(gòu)紊亂,可見(jiàn)彌漫性肝細(xì)胞大泡或小泡性的脂肪變性,而-/-小鼠肝細(xì)胞內(nèi)的脂肪變性無(wú)顯著減少;肝臟油紅O染色顯示,兩組小鼠脂質(zhì)積聚變化無(wú)顯著差異;天狼星紅染色顯示,-/-小鼠纖維化程度顯著減輕,見(jiàn)圖3A。RT-qPCR結(jié)果顯示,-/-小鼠肝臟中Ⅰ型膠原蛋白(collagen type I,Col-I)和Ⅳ型膠原蛋白(collagen type IV,Col-IV)的mRNA水平顯著降低(0.01),見(jiàn)圖3B。
Figure 3.Pathological changes of the liver (A) and the mRNA expression of liver fibrosis markers (B) in SCAP knockout mice. The morphological changes of liver tissues were observed by HE staining (scale bar=100 μm),the lipid aggregation was detected by oil red O staining (scale bar=200 μm),and the liver fibrosis was detected by Sirius red staining (scale bar=100 μm). The mRNA expression of liver fibrosis markers collagen type I (Col-I) and collagen type IV (Col-IV) was detected by RT-qPCR. Mean±SD. n=5. *P<0.05,*P<0.01 vs control (Con) group.
RT-qPCR結(jié)果顯示,與Con組相比,-/-小鼠肝組織TGF-β mRNA水平輕度降低,但Smad2(0.05)和Smad3(0.01)的mRNA水平顯著下降,見(jiàn)圖4A。Western blot結(jié)果顯示,高脂飲食喂養(yǎng)后,-/-小鼠TGF-β蛋白表達(dá)輕度降低,Smad2/3和p-Smad2/3蛋白水平顯著降低(0.01),見(jiàn)圖4B。
Figure 4.Effects of SCAP knockout on TGF-β/Smad signaling pathway. A: the mRNA expression of TGF-β,Smad2 and Smad3 in mouse liver tissues was detected by RT-qPCR; B: the protein levels of TGF-β,Smad2/3 and p-Smad2/3 in mouse liver tissues were detected by Western blot. Mean±SD. n=5. *P<0.05,**P<0.01 vs control (Con) group.
肝纖維化是一種常見(jiàn)的持續(xù)肝損傷的病理表現(xiàn),是慢性肝病進(jìn)展到肝硬化或肝癌的必經(jīng)階段,目前尚無(wú)有效的治療藥物。作為肝纖維化發(fā)生的重要病因之一,非酒精性脂肪性肝?。╪onalcoholic fatty liver disease,NAFLD)的患病率越來(lái)越高,尤其是在肥胖人群和糖尿病患者中,患病率可高達(dá)70%~90%[14]?!岸未驌簟睂W(xué)說(shuō)是NAFLD的機(jī)制假說(shuō)之一,其認(rèn)為脂質(zhì)在肝細(xì)胞聚集(第1次打擊)后觸發(fā)一系列細(xì)胞毒素反應(yīng)(第2次打擊),導(dǎo)致肝損傷[15]。越來(lái)越多的研究證明,膽固醇穩(wěn)態(tài)改變和肝臟游離膽固醇的積聚與NASH發(fā)病機(jī)制有關(guān)[16-17],在NAFLD患者中,NASH和纖維化的發(fā)展與肝臟游離膽固醇積聚呈正相關(guān)關(guān)系[18],并且膽固醇合成的主要轉(zhuǎn)錄因子SREBP1、SREBP2及其伴侶蛋白SCAP的表達(dá)是明顯上調(diào)的[19]。抑制SCAP可阻止SREBPs的激活以及脂肪酸和膽固醇合成所需基因的表達(dá),從而抑制脂肪酸的從頭合成[20-21]。
目前,關(guān)于SCAP在NAFLD和NASH發(fā)生發(fā)展中的作用已有研究[21-22],但在肝纖維化發(fā)生發(fā)展的作用研究較少。肝細(xì)胞特異性缺失可以減輕/小鼠的肝脂肪變性[23]。有研究表明,肝星狀細(xì)胞中游離膽固醇的積聚可以加速NASH小鼠的肝纖維化進(jìn)程[24]。SCAP是膽固醇敏感器,肝星狀細(xì)胞的激活是肝纖維化發(fā)生的中心環(huán)節(jié),尚無(wú)詳細(xì)的研究表明肝纖維化與肝星狀細(xì)胞中SCAP的作用。本課題組首次關(guān)注了肝星狀細(xì)胞中的SCAP在肝纖維化過(guò)程中的作用,并建立了肝星狀細(xì)胞特異性缺失小鼠,通過(guò)喂食高脂飲食16周構(gòu)建NASH模型。我們的研究結(jié)果顯示,兩組小鼠均出現(xiàn)NASH表型,與Con組相比,肝星狀細(xì)胞特異性-/-小鼠TC水平顯著降低,組織學(xué)染色顯示纖維化程度顯著降低,表明肝星狀細(xì)胞中缺失可以延緩肝纖維化的進(jìn)展。
TGF-β是肝纖維化的關(guān)鍵激活因子,可上調(diào)ECM相關(guān)蛋白的合成和多種基質(zhì)蛋白的細(xì)胞受體[25],與肝星狀細(xì)胞的激活密切相關(guān),并且在組織纖維化中參與炎癥細(xì)胞浸潤(rùn)、細(xì)胞生長(zhǎng)、細(xì)胞凋亡等過(guò)程[26-27]。TGF-β與細(xì)胞表面的TGF-β受體結(jié)合后,激活下游Smad家族中的Smad2和Smad3,導(dǎo)致Smad2和Smad3磷酸化,Smad2/3復(fù)合物與Smad4結(jié)合并移位至細(xì)胞核以調(diào)節(jié)靶基因的表達(dá)[28-29]。進(jìn)一步的研究顯示肝纖維化發(fā)展的過(guò)程中,TGF-β/Smad信號(hào)通路激活,Smad2/3的表達(dá)逐漸增加,肝星狀細(xì)胞隨之活化[27]。我們的研究也表明,在NASH進(jìn)展到肝纖維化的過(guò)程中,TGF-β/Smad通路被激活,肝星狀細(xì)胞中缺失后,TGF-β/Smad通路被抑制,Smad2和Smad3 mRNA水平顯著下降,Smad2/3和p-Smad2/3蛋白水平顯著降低。有研究表明,在糖尿病腎病中,SREBP-1a可以調(diào)節(jié)Smad3轉(zhuǎn)錄活性從而調(diào)節(jié)纖維化的發(fā)生[30]。我們認(rèn)為,SCAP作為SREBP的伴侶蛋白,缺失后SREBP入核減少,抑制了Smad2/3的轉(zhuǎn)錄,進(jìn)而降低了Smad2/3的表達(dá)和磷酸化,減輕了小鼠肝臟纖維化,但具體的機(jī)制尚未做進(jìn)一步研究。
綜上所述,肝星狀細(xì)胞中的缺失可以通過(guò)抑制TGF-β/Smad通路的激活來(lái)降低肝星狀細(xì)胞的活化,延緩肝纖維化發(fā)生。這初步揭示了肝星狀細(xì)胞中的SCAP在肝纖維化中的作用,為抗纖維化的治療提供了參考資料。
[1] Bataller R,Brenner DA. Liver fibrosis[J]. J Clin Invest,2005,115(2):209-218.
[2] Sun M,Kisseleva T. Reversibility of liver fibrosis[J]. Clin Res Hepatol Gastroenterol,2015,39(Suppl 1):S60-S63.
[3] Atzori L,Poli G,Perra A. Hepatic stellate cell: a star cell in the liver[J]. Int J Biochem Cell Biol,2009,41(8/9):1639-1642.
[4] Parola M,Pinzani M. Liver fibrosis: pathophysiology,pathogenetic targets and clinical issues[J]. Mol Aspects Med,2019,65:37-55.
[5] TsuchidaT,F(xiàn)riedmanSL. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol,2017,14(7):397-411.
[6] Hussein KH,Park KM,Yu L,et al. Decellularized hepatic extracellular matrix hydrogel attenuates hepatic stellate cell activation and liver fibrosis[J]. Mater Sci Eng C Mater Biol Appl,2020,116:111160.
[7] Shimano H,Sato R. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology[J]. Nat Rev Endocrinol,2017,13(12):710-730.
[8] Brown MS,Radhakrishnan A,Goldstein JL.Retrospective on cholesterol homeostasis: the central role of Scap[J]. Annu Rev Biochem,2018,87:783-807.
[9] Luo J,Yang H,Song BL. Mechanisms and regulation of cholesterol homeostasis[J]. Nat Rev Mol Cell Biol,2020,21(4):225-245.
[10] Li D,Liu M,Li Z,et al. Sterol-resistant SCAP overexpression in vascular smooth muscle cells accelerates atherosclerosis by increasing local vascular inflammation through activation of the NLRP3 inflammasome in mice[J]. Aging Dis,2021,12(3):747-763.
[11] Blaner WS,O'Byrne SM,Wongsiriroj N,et al. Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage[J]. Biochim Biophys Acta,2009,1791(6):467-473.
[12] Li Z,Li D,Rao Y,et al.knockout in SM22α-Cre mice induces defective angiogenesis in the placental labyrinth[J]. Biomed Pharmacother,2021,133:111011.
[13] Mederacke I,Dapito DH,AffòS,et al. High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers[J]. Nat Protoc,2015,10(2):305-315.
[14] Kwok R,Choi KC,Wong GL,et al. Screening diabetic patients for non-alcoholic fatty liver disease with controlled attenuation parameter and liver stiffness measurements: a prospective cohort study[J]. Gut,2016,65(8):1359-1368.
[15] Day CP,James OF. Steatohepatitis: a tale of two "hits"?[J]. Gastroenterology,1998,114(4):842-845.
[16] Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites[J]. Hepatology,2010,52(2):774-788.
[17] Yasutake K,Nakamuta M,Shima Y,et al. Nutritional investigation of non-obese patients with non-alcoholic fatty liver disease: the significance of dietary cholesterol[J]. Scand J Gastroenterol,2009,44(4):471-477.
[18] Puri P,Baillie RA,Wiest MM,et al. A lipidomic analysis of nonalcoholic fatty liver disease[J]. Hepatology,2007,46(4):1081-1090.
[19] Moon YA. The SCAP/SREBP pathway: a mediator of hepatic steatosis[J]. Endocrinol Metab,2017,32(1):6-10.
[20] Kim JY,Garcia-Carbonell R,Yamachika S,et al. ER stress drives lipogenesis and steatohepatitis via caspase-2 activation of S1P[J]. Cell,2018,175(1):133-145.
[21] Azzu V,Vacca M,Kamzolas I,et al. Suppression of insulin-induced gene 1 (INSIG1) function promotes hepatic lipid remodelling and restrains NASH progression[J]. Mol Metab,2021,48:101210.
[22] Papazyan R,Sun Z,Kim YH,et al. Physiological suppression of lipotoxic liver damage by complementary actions of HDAC3 and SCAP/SREBP[J]. Cell Metab,2016,24(6):863-874.
[23] Moon YA,Liang G,Xie X,et al. The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals[J]. Cell Metab,2012,15(2):240-246.
[24] Tomita K,Teratani T,Suzuki T,et al. Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice[J]. Hepatology,2014,59(1):154-169.
[25] Hernandez-Gea V,F(xiàn)riedman SL. Pathogenesis of liver fibrosis[J]. Annu Rev Pathol,2011,6:425-456.
[26] 周玉平,呂雪幼,楊萍,等. 環(huán)狀RNA-42398通過(guò)調(diào)控TGF-β1/Smads信號(hào)通路抑制肝星狀細(xì)胞活化[J]. 中國(guó)病理生理雜志,2020,36(4):688-692.
Zhou YP,Lü XY,Yang P,et al. circRNA-42398 inhibits activation of hepatic stellate cells via TGF-β1/ Smads signaling pathway modulation[J]. Chin J Pathophysiol,2020,36(4):688-692.
[27] 譚潔,田霞,韓崢,等. miR-29b介導(dǎo)的TGF-β/Smad信號(hào)通路對(duì)大鼠肝纖維化進(jìn)程的影響[J]. 中國(guó)病理生理雜志,2019,35(1):168-173.
Tan J,Tian X,Han Z,et al. Effect of miR-29b-mediated TGF-β/Smad signaling pathway on progression of hepatic fibrosis in rats[J]. Chin J Pathophysiol,2019,35(1):168-173.
[28] Dooley S,Delvoux B,Streckert M,et al. Transforming growth factor beta signal transduction in hepatic stellate cells via Smad2/3 phosphorylation,a pathway that is abrogated during in vitro progression to myofibroblasts. TGF beta signal transduction during transdifferentiation of hepatic stellate cells[J]. FEBS Lett,2001,502(1/2):4-10.
[29] Zhang YE. Non-Smad signaling pathways of the TGF-β family[J]. Cold Spring HarbPerspect Biol,2017,9(2):a022129.
[30] Chen G,Wang T,Uttarwar L,et al. SREBP-1 is a novel mediator of TGFβ1 signaling in mesangial cells[J]. J Mol Cell Biol,2014,6(6):516-530.
Effects of hepatic stellate cell-specific deletion ofon hepatic fibrosis in mice
HOU Xiao-Li,RAO Yu-han,YAO Ying-cheng,SU Yu,LI Dan-yang△,CHEN Ya-xi△
(,,,400016,)
To investigate whether sterol regulatory element-binding protein cleavage-activating protein (SCAP) deletion in hepatic stellate cells attenuates the progression of liver fibrosis in mice.TheloxP/loxPmice were bred with Lrat-Cre tool mice to obtain Lrat-Cre+/+fl/fl,Lrat-Cre+/-fl/fland Lrat-Cre-/-SCAPfl/flmice,and the genotypes of the mice were identified by PCR. The Lrat-Cre-/-fl/flmice aged 4 to 6 weeks (male,=8) were selected as control (Con) group,while the Lrat-Cre+/+fl/fland Lrat-Cre+/-fl/flmice (male,=8) served as experimental (-/-) group. The mice in both groups were fed with high-fat diet for 16 weeks. The liver weight and body weight of the mice were measured,and the liver index was calculated. The serum was collected,and the levels of total cholesterol (TC),triglycerides (TG),alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were recorded. Hematoxylin-eosin (HE) staining was used to observe the morphological changes of liver tissues,oil red O staining was used to observe the lipid accumulation,and Sirius red staining was used to evaluate the fibrosis of the liver. The TGF-β/Smad mRNA and protein levels in liver tissues were determined by RT-qPCR and Western blot,respectively.The results of genotype identification were the same as expected. The results of RT-qPCR showed that the mRNA expression of SCAP in primary hepatic stellate cells extracted from-/-mice was significantly decreased (<0.01),and the immunofluorescence staining results showed that SCAP was not expressed in the hepatic stellate cells from-/-mice,indicating that the hepatic stellate cell-specific-/-mouse model was successfully established. Compared with Con group,the body weight (<0.01) and liver weight (<0.05) of-/-mice fed with high-fat diet decreased,but there was no significant change in liver index. The level of TC in serum was decreased (<0.05),while TG,AST and ALT had no significant difference. HE staining and oil red O staining showed that no significant difference in fatty degeneration and lipid accumulation was observed. Sirius red staining showed that the liver fibrosis was reduced (<0.05). The mRNA expression levels of Smad2 (<0.05) and Smad3 (<0.01) were significantly decreased,and the protein levels of Smad2/3 and p-Smad2/3 were also significantly decreased in-/-mice (<0.05).Knockout ofgene in hepatic stellate cells attenuates the progression of hepatic fibrosis in mice,which is associated with TGF-β/Smad signaling pathway.
Sterol regulatory element-binding protein cleavage-activating protein; Hepatic stellate cells; Liver fibrosis; TGF-β/Smad signaling pathway
R575.5; R363.2
A
10.3969/j.issn.1000-4718.2022.02.008
1000-4718(2022)02-0250-09
2021-10-15
2021-11-18
[基金項(xiàng)目]國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 82170586; No. 81900406)
陳壓西 Tel: 023-68486780; E-mail: chenyaxi@cqmu.edu.cn; 李丹陽(yáng) Tel: 020-68486780; E-mail: lidycq@cqmu.edu.cn
(責(zé)任編輯:盧萍,羅森)