林西西, 王麗可, 萬錦貽, 張維溪, 趙偉
抑制G蛋白偶聯(lián)受體40通過RhoA/ROCK1信號通路緩解小鼠過敏性哮喘*
林西西1, 王麗可2, 萬錦貽2, 張維溪2, 趙偉3△
[1溫州醫(yī)科大學附屬第二醫(yī)院,育英兒童醫(yī)院藥劑科,浙江 溫州 325027;2溫州醫(yī)科大學附屬第二醫(yī)院,育英兒童醫(yī)院兒童變態(tài)反應(過敏)與免疫科,浙江 溫州 325027;3溫州醫(yī)科大學,浙江 溫州 325027]
探究抑制G蛋白偶聯(lián)受體40(GPR40)減輕過敏性哮喘小鼠癥狀的作用及機制。將28只雄性C57BL/6小鼠隨機分為正常對照組、哮喘模型組(用卵清蛋白建立過敏性哮喘模型)、低劑量GPR40抑制劑DC260126干預組(3 mg/kg DC260126組)和高劑量DC260126干預組(10 mg/kg DC260126組),每組7只。通過小鼠肺功能儀檢測各組小鼠氣道高反應性;對各組小鼠支氣管肺泡灌洗液(BALF)炎癥細胞分類并予以計數(shù);肺組織切片進行HE染色評估炎癥細胞浸潤程度和炎癥評分;Western blot檢測肺組織中GPR40、GTP-RhoA和Rho相關激酶1(ROCK1)蛋白表達水平。與哮喘模型組相比,10 mg/kg DC260126組小鼠氣道阻力顯著降低(<0.05),BALF中的炎癥細胞顯著減少(0.05),肺組織嗜酸性粒細胞和淋巴細胞浸潤顯著減少(0.01),肺組織中GTP-RhoA和ROCK1蛋白水平顯著降低(0.01)。抑制GPR40可能通過Rho/ROCK1信號通路減輕小鼠過敏性哮喘氣道炎癥和氣道高反應性。
哮喘;G偶聯(lián)受體蛋白40;Rho/ROCK1信號通路;氣道高反應性
哮喘是一種嚴重的慢性異質性氣道炎癥性疾病,其核心特征包括氣道高反應性(airway hyperresponsiveness,AHR)、可逆性氣道阻塞和氣道重塑[1]。目前,使用皮質類固醇抑制氣道炎癥,或聯(lián)合支氣管舒張劑和抗膽堿能藥物緩解氣道狹窄是哮喘治療的主流[2]。雖然哮喘對標準治療的反應一般較好,但是仍有相當一部分患者出現(xiàn)嚴重和(或)持續(xù)的癥狀[3]。世界許多地區(qū)的哮喘患病率仍在增加,全世界大約有3億哮喘患者[4]。因此,迫切需要尋找能夠有效延緩哮喘進展和避免哮喘發(fā)作的藥物。
G蛋白偶聯(lián)受體(G-protein-coupled receptors,GPCRs)是構成人類最大藥物靶點家族的7次跨膜受體[5]。大量臨床試驗提供了GPCR靶向治療途徑治療哮喘的安全性和有效性[6]。G蛋白偶聯(lián)受體40(G-protein-coupled receptor 40,GPR40)又名游離脂肪酸受體1(free fatty acid receptor-1,F(xiàn)FAR-1),是以短鏈和長鏈脂肪酸為配體的一種孤兒GPCR[7]。Mizuta等[8]鑒定了GPR40在氣道平滑肌中的表達。GPR40激活會引起胞內Ca2+濃度升高[9],然而Ca2+濃度升高會引起氣道平滑肌收縮。氣道平滑肌過強的收縮是氣道高反應性的主要表現(xiàn)之一[10]。有研究顯示,GPR40激活可引起氣道平滑肌收縮,引起人氣道平滑肌細胞增殖[11]。氣道平滑肌細胞的過度增殖是支氣管哮喘的重要病理生理學基礎之一?;谶@些事實,GPR40很可能在哮喘的發(fā)病機制中起關鍵作用,因此可能是一個潛在和有效的哮喘治療靶點。
RhoA是Rho家族的小GTP酶的成員,可以通過GDP-RhoA(非活動狀態(tài))和GTP-RhoA(活動狀態(tài))交替轉換,發(fā)揮其分子開關的作用[12]。RhoA蛋白下游信號分子——Rho相關激酶(Rho-associated kinase,ROCK)與Rho蛋白共同參與調節(jié)平滑肌細胞的黏附、增殖和分化[13]。重要的是,RhoA/ROCK1信號通路與哮喘的病理生理過程密切相關[14]。抑制RhoA/ROCK1信號通路可減輕氣道平滑肌收縮、氣道重塑和氣道高反應性[15-16]。因此,阻斷RhoA/ROCK1信號通路可能是哮喘治療的潛在干預措施。
本研究對卵清蛋白(ovalbumin,OVA)誘導的過敏性哮喘小鼠腹腔注射GPR40小分子抑制劑DC260126,評估其呼吸道癥狀、肺部炎癥及病理變化情況,從而探討GPR40是否通過Rho/ROCK1通路減輕過敏性哮喘小鼠氣道炎癥和AHR。
1.1動物SPF級C57BL/6小鼠,雄性,6~8周齡,體重(20±2) g,購自浙江省實驗動物中心[許可證號SCXK(浙)2019-0002],飼養(yǎng)于溫州醫(yī)科大學實驗動物中心SPF級動物房。所有動物飼養(yǎng)和動物實驗均按照溫州醫(yī)科大學動物實驗倫理委員會批準的指導方針進行。實驗前,小鼠在標準實驗室條件下進行適應性飼養(yǎng)1周。
1.2藥品試劑與儀器DC260126購于MedChemExpress;OVA購于Sigma;RhoA和ROCK1抗體購于Abcam,GPR40抗體購于Affinity;蘇木素-伊紅(hematoxylin-eosin,HE)染色試劑盒購于北京索萊寶科技有限公司;BCA蛋白試劑盒購于碧云天生物技術研究所;化學發(fā)光成像系統(tǒng)和酶標儀均購自Bio-Rad。
2.1動物分組及模型建立將28只SPF級C57BL/6小鼠隨機分為4組(每組7只):正常對照(control)組:給予生理鹽水;哮喘模型(OVA)組:用OVA建立過敏性哮喘模型,霧化激發(fā)前用生理鹽水;低劑量DC260126組(3 mg/kg DC260126組)和高劑量DC260126組(10 mg/kg DC260126組):用OVA建立過敏性哮喘模型,霧化激發(fā)前分別用3 mg/kg和10 mg/kg DC260126進行腹腔注射。過敏性哮喘模型的建立是參照先前的研究[17]。OVA組、3 mg/kg DC260126組和10 mg/kg DC260126組小鼠在第0天和第14天腹腔注射0.1 mL致敏液(含有OVA 10 μg和氫氧化鋁20 mg的生理鹽水混合液),以達到致敏效果,control組注射等體積生理鹽水。從第21~28天以含1% OVA的生理鹽水每天進行霧化激發(fā),每次30 min;control組使用生理鹽水。DC260126治療組在霧化激發(fā)前0.5 h分別腹腔注射不同濃度的DC260126,其濃度的選擇參考Sun等[18]的研究方法,control組和OVA組腹腔注射等體積、同比例的DMSO生理鹽水混合液,見圖1。
Figure 1.Establishment of allergic asthma mouse model. OVA: ovalbumin; Alum: aluminum hydroxide adjuvant.
2.2氣道高反應性(airway hyperresponsiveness,AHR)測定末次激發(fā)后24 h內,用1 %戊巴比妥鈉(50 mg/kg)腹腔注射麻醉小鼠。使用濃度分別為 3.125、6.25、12.5、25和50 g/L呈濃度梯度的乙酰甲膽堿(methacholine,MCh)對小鼠進行霧化10 s,并且測定依次氣道阻力(air way resistance,aw)和肺動態(tài)順應性(dynamic compliance,dyn),再分別計算各濃度上的aw和dyn與基線的百分比。
2.3支氣管肺泡灌洗液(bronchoalveolar lavage fluid,BALF)的制備和細胞計數(shù)結扎左肺,用含1%牛血清白蛋白和5 000 U/L肝素的PBS 0.5 mL灌洗右肺3次,獲得BALF。在光鏡下計算BALF中總細胞數(shù)。1 000×離心10 min,收集細胞涂片進行瑞氏-吉姆薩染色,光鏡下分類計數(shù)炎癥細胞,結果表示為×107L-1。
2.4肺組織病理學檢查小鼠的肺組織固定在4%多聚甲醛中,石蠟包埋,切片厚度為3~4 μm。按照HE染色試劑盒說明書步驟進行HE染色。光鏡下半定量判定肺部炎癥嚴重程度:無炎癥細胞(0分);少許炎癥細胞(1分);較多分布不均的炎癥細胞(2分);大量炎癥細胞,分布較均勻,少見聚集成團(3分);大量炎癥細胞聚集成團(4分)。
2.5免疫組織化學染色法石蠟切片常規(guī)脫蠟后水化,置于修復盒內并用檸檬酸抗原修復緩沖液進行抗原修復,PBS洗滌5 min×3次,滴加阻斷內源性過氧化物酶室溫孵育10 min,PBS洗滌5 min×3次,滴加10%山羊血清封閉,30 min后吸去再加抗GPR40抗體,4 ℃孵育過夜,37 ℃復溫30 min,PBS洗滌5 min×3次,加HRP標記聚合物室溫孵育30 min,PBS洗滌5 min×3次,DAB顯色鏡下觀察顯色反應,純水終止顯色,蘇木素復染,常規(guī)脫水,透明,干燥,封片。
2.6Western blot分析各組小鼠肺組織樣本勻漿裂解于含1% PMSF的RIPA緩沖液,BCA蛋白試劑盒檢測蛋白濃度,樣品蛋白(40 μg)在10% Tris/glycine SDS-PAGE分離后轉移至PVDF膜上。隨后在室溫下5%脫脂牛奶封閉1 h,與抗體共同于4 ℃孵育過夜。TBST沖洗后,用辣根過氧化物酶標記的山羊抗兔Ⅱ抗(1∶5 000)與PVDF膜在室溫孵育2 h,再采用ECL檢測試劑和化學發(fā)光成像系統(tǒng)檢測蛋白條帶。
2.7RhoA pulldown活化檢測GTP-RhoA蛋白采用RhoA pulldown活化試劑盒。肺組織碎片化,裂解緩沖液中裂解,離心。每份樣品上清液分別用40μg rhotekin-RBD或PAK-PBD瓊脂糖珠結合,4 ℃緩慢攪拌孵育1 h。瓊脂糖珠經離心、沉降、洗滌3次后重懸,使用抗RhoA抗體進行Western blot檢測沉淀的GTP-RhoA表達。
所有統(tǒng)計計算均采用SPSS 18.0軟件。結果以均數(shù)±標準差(mean±SD)表示。采用單因素方差分析進行組間比較,然后采用Student-Newman-Keuls檢驗進行多重比較。以<0.05為差異有統(tǒng)計學意義。
免疫組織化學結果顯示,與control組小鼠相比,OVA誘導的過敏性哮喘小鼠肺組織中GPR40表達顯著增加(<0.01),見圖2。
Figure 2.Expression of GPR40 protein in the lung tissue of mice with allergic asthma (immunohistochemical staining,scale bar=20 μm). Mean±SD. n=7. **P<0.01 vs control group.
小鼠肺功能儀結果顯示了3.125~50 mg/L MCh霧化后小鼠aw的變化。隨著吸入MCh濃度的升高,各組小鼠aw增大。與control組小鼠相比,OVA組小鼠從25~50 g/L MCh開始,aw顯著升高(<0.05),dyn顯著降低(<0.01);而10 mg/kg DC260126組aw升高幅度顯著降低(<0.01),dyn顯著升高(<0.01),肺順應性顯著改善,見圖3。
Figure 3.Results of airway resistance (Raw) and dynamic compliance (Cdyn) in the mice of each group. The changes of Raw(A) and Cdyn(B) were determined using a whole-body plethysmography. Mean±SD. n=7. *P<0.05,**P<0.01 vs control group; #P<0.05,##P<0.01 vs OVA group.
HE染色結果顯示,OVA組小鼠在小鼠肺部氣道和小血管周圍炎癥細胞浸潤顯著(0.01),黏膜及黏膜下層水腫,氣管壁顯著增厚,肺毛細血管水腫;而control組小鼠肺部氣道的黏膜無明顯水腫,周圍未見炎性細胞的浸潤;10 mg/kg DC260126組小鼠的肺部氣管周圍炎癥細胞浸潤較OVA組顯著減少(0.01),支氣管上皮基本完整,毛細血管水腫減輕,見圖4。
Figure 4.HE staining results of lung tissues of mice in each group (scale bar=50 μm) and the severity of inflammation graded based on the 5-point scoring system. Mean±SD. n=7. **P<0.01 vs control group; ##P<0.01 vs OVA group.
BALF細胞計數(shù)結果顯示,與control組相比,OVA組細胞總數(shù)、嗜酸性粒細胞數(shù)量、淋巴細胞數(shù)量和巨噬細胞數(shù)量均顯著增多(<0.01),而10 mg/kg DC260126組這些指標均顯著下降(0.01),趨于正常,見圖5。
Figure 5.Classification and counting of cells in bronchoalveolar lavage fluid (BALF) from the mice in each group. The number of total inflammatory cells in BALF (A) were calculated,and a minimum of 200 cells were employed to classify eosinophils (B),lymphocytes (C) and macrophages (D) after the last OVA challenge. Mean±SD. n=7. **P<0.01 vs control group; ##P<0.01 vs OVA group.
Western blot分析顯示,與control組相比,OVA組小鼠肺組織GPR40表達顯著上升(<0.01),10 mg/kg DC260126組小鼠肺組織內由OVA誘導表達的GPR40蛋白顯著下降(<0.01),見圖6A。此外,OVA組小鼠肺組織內RhoA活化(<0.01),然而10 mg/kg DC260126顯著下調GTP-RhoA的表達(<0.01),見圖6B。同時,10 mg/kg DC260126也抑制過敏性哮喘小鼠肺組織內由OVA誘導產生的ROCK1表達(<0.05),見圖6C。
Figure 6.The protein levels of GPR40 (A),GTP-RhoA (B) and ROCK1 (C) in the lung tissues of mice in each group were measured by Western blot. Mean±SD. n=4 to 6. *P<0.05,**P<0.01 vs control group; #P<0.05,##P<0.01 vs OVA group.
本研究通過建立OVA誘導的過敏性哮喘小鼠模型,在此基礎上給予不同濃度的GPR40小分子抑制劑——DC260126,觀察并研究抑制GPR40對過敏性哮喘小鼠的炎癥浸潤、AHR等的影響,研究結果顯示抑制GPR40能夠有效降低過敏性哮喘模型中炎癥細胞浸潤及AHR。此外,我們觀察到RhoA/ROCK1信號通路可能共同參與了哮喘的發(fā)病機制。據我們所知,這是首次明確GPR40抑制劑在過敏性哮喘的作用,研究結果提示GPR40可能是哮喘治療的分子靶點。
哮喘是一種全球常見的慢性氣道疾病,其病理生理復雜,具有支氣管收縮、炎癥、AHR等多種致病特點[19]。有研究證明,GPCRs在調節(jié)氣道平滑肌收縮和氣道炎癥方面發(fā)揮了重要作用[20-21]。激活或失活GPCRs是哮喘的主要治療手段,因此,尋找新型GPCR激動劑或拮抗劑成為開發(fā)新型、有效的抗哮喘藥物的重要途徑[22]。一般認為,氣道平滑肌細胞是形成氣道高反應性的主要細胞類型[23],其收縮特性的改變在哮喘氣道高反應性的發(fā)生發(fā)展中起重要作用[24]。近來,研究人員顯示GPR40在氣道平滑肌細胞上表達,在介導氣道平滑肌收縮中發(fā)揮重要作用[11,25]。與上述研究結果一致,我們證明哮喘小鼠肺內GPR40表達水平明顯升高。
AHR是過敏性哮喘的臨床癥狀之一,持續(xù)的AHR會引起肺功能的下降,氣道阻力升高,肺順應性下降,影響過敏性哮喘患者的生活。本實驗顯示,OVA組小鼠對MCh的反應性顯著高于control組,說明OVA誘導的過敏性哮喘小鼠表現(xiàn)出較強的AHR;而GPR40抑制劑高劑量組小鼠的aw值顯著下降,dyn值顯著升高,提示抑制GPR40能夠有效降低OVA誘導過敏性小鼠產生的AHR,減輕哮喘癥狀。
過敏性哮喘病理特征一般表現(xiàn)為反復發(fā)作的Th2免疫反應及其導致的嗜酸粒細胞性氣道炎癥和氣道重塑變窄。本研究通過肺組織HE染色發(fā)現(xiàn),與OVA誘導的過敏性哮喘小鼠相比,10 mg/kg DC260126能顯著緩解肺內支氣管、血管及其周圍的炎癥細胞浸潤。另外。抑制GPR40能夠顯著減輕過敏性哮喘小鼠BALF中炎癥細胞蓄積,尤其是嗜酸性粒細胞。嗜酸性粒細胞是過敏性哮喘氣道黏膜最具特征性的炎性細胞,與哮喘癥狀、氣流阻塞和AHR密切相關[26]。嗜酸性粒細胞在肥大細胞釋放的過敏性嗜酸性粒細胞趨化因子作用下,在氣道及肺組織內聚集。嗜酸性粒細胞的產生和活化受控于Th2細胞,活化的嗜酸性粒細胞會分泌血小板活化因子、白三烯等炎癥介質,引起支氣管平滑肌收縮,微血管通透性增加等引起氣道炎癥和高反應。有大量研究證實GPCRs在嗜酸性粒細胞中的功能和調控作用[27-28],減少嗜酸性粒細胞能抑制或減輕過敏性哮喘的發(fā)生發(fā)展[29],結合本研究BALF中細胞分類計數(shù)及HE染色結果,提示抑制GPR40表達具有減輕過敏性哮喘炎癥細胞浸潤的作用。
為了探討GPR40調控AHR和炎癥的分子機制,我們重點研究了RhoA/ROCK1信號通路。RhoA及其下游的ROCK最近被認為是哮喘的治療靶點[30]。RhoA的激活已被證實在平滑肌收縮中起重要作用,包括大鼠和小鼠氣道[31]。阻斷RhoA/ROCK1信號可預防過敏性氣道炎癥,也可逆轉蟑螂過敏原引起的氣道重塑[32]。重要的是,RhoA已被報道定位在眾多GPCRs的下游,并作為近端效應分子調節(jié)多種基本細胞功能[33],這促使我們探討GPR40在OVA誘導的哮喘中是否調節(jié)RhoA活性。本研究結果表明,過敏性哮喘小鼠肺組織中GTP-RhoA和ROCK1表達顯著升高,而DC260126顯著抑制OVA誘導的小鼠肺組織中GTP-RhoA和ROCK1的表達。這表明GPR40調控過敏性哮喘小鼠RhoA/ROCK1信號通路。
綜上所述,我們證明抑制GPR40能有效緩解OVA誘導過敏性小鼠的病理生理,包括肺部炎癥浸潤和AHR。此外,抑制GPR40明顯下調RhoA和ROCK1的活化,從而提示GPR40與過敏性哮喘小鼠RhoA/ROCK1信號通路的調控有關。本研究為GPR40抑制劑治療哮喘的炎癥、AHR等提供了科學的藥理實驗基礎,但GPR40抑制劑用于臨床治療哮喘仍需要進一步的研究。
[1] Saglani S,Lloyd CM. Novel concepts in airway inflammation and remodelling in asthma[J]. Eur Respir J,2015,46(6):1796-1804.
[2] Pavord ID,Beasley R,Agusti A,et al. After asthma: redefining airways diseases[J]. Lancet,2018,391(10118):350-400.
[3] Schoettler N,Strek ME. Recent advances in severe asthma: from phenotypes to personalized medicine[J]. Chest,2020,157(3):516-528.
[4] Zaidan MF,Ameredes BT,Calhoum WJ. Management of acute asthma in adults in 2020[J]. JAMA,2020,323(6):563-564.
[5] Weis WI,Kobilka BK. The molecular basis of G protein-coupled receptor activation[J]. Annu Rev Biochem,2018,87:897-919.
[6] Wendell SG,F(xiàn)an H,Zhang C. G protein-coupled receptors in asthma therapy: pharmacology and drug action[J]. Pharmacol Rev,2020,72(1):1-49.
[7] Sharma N,Bhagat S,Chundawat TS. Recent advances in development of GPR40 modulators (FFA1/FFAR1): an emerging target for type 2 diabetes[J]. Mini Rev Med Chem,2017,17(11):947-958.
[8] Mizuta K,Zhang Y,Mizuta F,et al. Novel identification of the free fatty acid receptor FFAR1 that promotes contraction in airway smooth muscle[J]. Am J Physiol Lung Cell Mol Physiol,2015,309(9):L970-L982.
[9] Shapiro H,Shachar,S,Sekler I,et al. Role of GPR40 in fatty acid action on the beta cell line INS-1E[J]. Biochem Biophys Res Commun,2005,335(1):97-104.
[10] 張景鴻,李超乾. 支氣管哮喘氣道高反應性機制的研究進展[J]. 中國呼吸與危重監(jiān)護雜志,2011,10(3):304-307.
Zhang JH,Li CQ. Research progress on the mechanism of airway hyperresponsiveness in bronchial asthma[J]. Chin J Respir Crit Care Med,2011,10(3):304-307.
[11] Matoba A,Matsuyama N,Shibata S,et al. The free fatty acid receptor 1 promotes airway smooth muscle cell proliferation through MEK/ERK and PI3K/Akt signaling pathways[J]. Am J Physiol Lung Cell Mol Physiol,2018,314(3):L333-L348.
[12] Chiba Y,Matsusue K,Misawa M. RhoA,a possible target for treatment of airway hyperresponsiveness in bronchial asthma[J]. J Pharmacol Sci,2010,114(3):239-247.
[13] Biro M,Munoz MA,Weninger W. Targeting Rho-GTPases in immune cell migration and inflammation[J]. Br J Pharmacol,2014,171(24):5491-5506.
[14] Xu C,Wu X,Lu M,et al. Protein tyrosine phosphatase 11 acts through RhoA/ROCK to regulate eosinophil accumulation in the allergic airway[J]. FASEB J,2019,33(11):11706-11720.
[15] Amison RT,Momi S,Morris A,et al. RhoA signaling through platelet P2Y1receptor controls leukocyte recruitment in allergic mice[J]. J Allergy Clin Immunol,2015,135(2):528-538.
[16] Bhattacharya M,Sundaram A,Kudo M,et al. IQGAP1-dependent scaffold suppresses RhoA and inhibits airway smooth muscle contraction[J]. J Clin Invest,2014,124(11):4895-4898.
[17] Zeng Z,Lin X,Zheng R,et al. Celastrol alleviates airway hyperresponsiveness and inhibits Th17 responses in obese asthmatic mice[J]. Front Pharmacol,2018,9:49.
[18] Sun P,Wang T,Zhou Y,et al. DC260126: a small-molecule antagonist of GPR40 that protects against pancreatic β-cells dysfunction in/mice[J]. PLoS One,2013,8(6):e66744.
[19] Sharma P,Yi R,Nayak AP,et al. Bitter taste receptor agonists mitigate features of allergic asthma in mice[J]. Sci Rep,2017,7:46166.
[20] Billington CK,Penn RB. Signaling and regulation of G protein-coupled receptors in airway smooth muscle[J]. Respir Res,2003,4:2.
[21] Deshpande DA,Penn RB. Targeting G protein-coupled receptor signaling in asthma[J]. Cell Signal,2006,18(12):2105-2120.
[22] Madigan LA,Wong GS,Gordon EM,et al. RGS4 overexpression in lung attenuates airway hyperresponsiveness in mice[J]. Am J Respir Cell Mol Biol,2018,58(1):89-98.
[23] Janssen LJ. Airway smooth muscle as a target in asthma and the beneficial effects of bronchial thermoplasty[J]. J Allergy (Cairo),2012,2012:593784.
[24] Black JL,Panettieri RA Jr,Banerjee A,et al. Airway smooth muscle in asthma: just a target for bronchodilation?[J]. Clin Chest Med,2012,33(3):543-558.
[25] Mizuta K,Matoba,A,Shibata S,et al. Obesity-induced asthma: Role of free fatty acid receptors[J]. Jpn Dent Sci Rev,2019,55(1):103-107.
[26] Brussino L,Heffler E,Bucca C,et al. Eosinophils target therapy for severe asthma: critical points[J]. Biomed Res Int,2018,2018:7582057.
[27] Ilmarinen P,James A,Moilanen E,et al. Enhanced expression of neuropeptide S (NPS) receptor in eosinophils from severe asthmatics and subjects with total IgE above 100IU/ml[J]. Peptides,2014,51:100-109.
[28] Tamaki M,Konno Y,Kobayashi Y,et al. Expression and functional roles of G-protein-coupled estrogen receptor (GPER) in human eosinophils[J]. Immunol Lett,2014,160(1):72-78.
[29] 張翊玲,曹穎,鄭夢凝,等. 刪除嗜酸性粒細胞對支氣管哮喘模型小鼠sPLA2-X的影響[J].中國病理生理雜志,2020,36(10):1818-1824.
Zhang YL,Cao Y,Zheng MN,et al. Effects of eosinophils deletion on sPLA2-X in bronchial asthma model mice[J]. Chin J Pathophysiol,2020,36(10):1818-1824.
[30] Yu OM,Brown JH. G protein-coupled receptor and RhoA-stimulated transcriptional responses: links to inflammation,differentiation,and cell proliferation[J]. Mol Pharmacol,2015,88(1):171-180.
[31] Chiba Y,Uchida T,Sakai H,et al. Acetylcholine-induced translocation of RhoA in freshly isolated single smooth muscle cells of rat bronchi[J]. J Pharmacol Sci,2004,95(4):479-482.
[32] Ke X,Do DC,Li C,et al. Ras homolog family member A/Rho-associated protein kinase 1 signaling modulates lineage commitment of mesenchymal stem cells in asthmatic patients through lymphoid enhancer-binding factor 1[J]. J Allergy Clin Immunol,2019,143(4):1560-1574.e6.
[33] Zhang Y,Saradna A,Ratan R,et al. RhoA/Rho-kinases in asthma: from pathogenesis to therapeutic targets[J]. Clin Transl Immunol,2020,9(5):e01134.
Inhibition of GPR40 alleviates allergic asthma in mice through RhoA/ROCK1 signaling pathway
Lin Xi-xi1,Wang Li-ke2,Wan Jin-yi2,Zhang Wei-xi2,Zhao Wei3△
(1,,325027,;2,,325027,;3,325027,)
To investigate the effect of inhibition of G-protein-coupled receptor 40 (GPR40) on the symptoms of asthmatic mice,and to explore the mechanism.Healthy male C57BL/6 mice (=28) were randomly divided into normal control group,model group,low-dose GPR40 inhibitor DC260126 group (3 mg/kg DC260126 group) and high-dose DC260126 group (10 mg/kg DC260126 group). The allergic asthma mouse model was induced by ovalbumin. The airway hyperresponsiveness was detected by the mouse lung function instrument. The pathological changes of the lung tissues were observed by HE staining. The protein levels of GPR40,GTP-RhoA and Rho-associated kinase 1 (ROCK1) in lung tissues were determined by Western blot.Compared with model group,DC260126 at the dose of 10 mg/kg significantly reduced the airway resistance and the accumulation of inflammatory cells. The inhibition of GPR40 decreased the infiltration of eosinophils and lymphocytes in lung tissues. In addition,both GTP-RhoA and ROCK1 were significantly decreased after the treatment with 10 mg/kg DC260126.Inhibition of GPR40 attenuates the airway inflammation and airway hyperresponsiveness of allergic asthma mice through the Rho/ROCK1 signaling pathway.
Asthma; G-protein-coupled receptor 40; Rho/ROCK1 signaling pathway; Airway hyperresponsiveness
R562.2+5; R363.2
A
10.3969/j.issn.1000-4718.2022.02.002
1000-4718(2022)02-0202-07
2021-09-23
2021-11-23
[基金項目]國家自然科學基金資助項目(No. 81803544)
Tel: 0577-88002944; E-mail: wzhao@hotmail.com
(責任編輯:林白霜,羅森)