• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A chromosome-level genome assembly of the blackspotted croaker(Protonibea diacanthus)

    2022-03-01 03:32:20TinjunXuYeLiWeiweiZhengYuenSun
    Aquaculture and Fisheries 2022年6期

    Tinjun Xu, Ye Li, Weiwei Zheng, Yuen Sun,c

    aLaboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China

    bLaboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China

    cKey Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China

    dNational Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China

    Keywords:

    Blackspotted croaker

    Chromosomal assembly

    Genome annotation

    Genome evolution

    Phylogenetic

    A B S T R A C T

    The blackspotted croaker (Protonibea diacanthus) is an endangered coastal marine fish.It is also a valuable species that is cultured on the southeast coast of China.While some genetic studies have been conducted to protect this species, genomic resources are lacking.Here, we report a chromosome-scale assembly of P.diacanthus genome by high-depth genome sequencing, assembly, and annotation.The genome scale was 635.69 Mb with contig and scaffold N50 length of 3.33 Mb and 25.60 Mb, respectively.Hi-C scaffolding of the genome resulted in 24 chromosomes of 94.15% total genome.We predicted 23,971 protein-coding genes.In addition, we constructed a phylogenetic tree using 2755 single-copy gene families and identified 462 unique gene families in P.diacanthus genome compared to three other sciaenids.What’s more, from the analysis of gene families, we found that several gene families related to innate immunity were significantly expanded in the blackspotted croaker genome compared to other teleost genomes.The high-quality genome can improve our understanding of the molecular mechanisms behind economically valuable traits and provide insights into characteristics of the immune system.

    1.Introduction

    Marine ecosystems provide an important source of food for human populations and especially nearshore coastal ecosystems support the highest quantity of wild fish harvest worldwide (Pauly et al., 2002).As global demand for seafood increases, many exploited species in these regions have declined and large numbers of species were fished at unsustainable levels (Jackson et al., 2001).Fishes of the family Sciaenidae are important components of coastal biological resources (Lenanton &Potter, 1987).Many species of Sciaenidae have declined in recent decades due to overexploitation, and several were considered threatened(Sadovy & Cheung, 2003; Tuuli, 2010).

    Protonibea diacanthuswas one of these species (Sadovy & Cheung,2003).It can grow to a large size (>1.5 m max.tatal length; up to 42 kg mass) (Phelan, Gribble, & Garrett, 2008).P.diacanthusis widely distributed throughout coastal waters and estuaries of the tropical Indo-West Pacific (Sasaki, 2001).In China, it was distributed along the southeastern coast from the north of Taiwan to Fujian.P.diacanthuscan also be found in the coast of Japan.In Australia, it is distributed along the northern coast from Shark Bay, Western Australia, to Hervey Bay,Queensland (Phelan, 2007).Annually,P.diacanthusaggregates to spawn like other sciaenids.Historically, it was heavily harvested during breeding periods for commercial and recreational purposes.These periods accounted for a large proportion of the annual total catch and repeated unsustainable harvesting of these aggregations led to the decline ofP.diacanthus.(Sadovy & Cheung, 2003; Phelan, 2007).P.diacanthusis now under threat and methods for protecting the species have advanced considerably in recent years.In Australia, to support sustainable harvests, the population structure ofP.diacanthusacross north-western Australia was examined (Taillebois et al., 2017).However, there is a lack of genetic information which is required to make informed management practices based on species-specific knowledge.A complete genome will also allow further studies on population genetics.In China, to protect these commercially important fish, people began to culture this species instead of large-scale fishing.There has been a dramatic increase in aquaculture production ofP.diacanthusin China in recent years (Rong et al., 2020; Li et al., 2017).However, the knowledge of this species’ genome is lacking.Based on this resource, we can study its growth and immune related genes to molecular mechanism behind growth characteristics and make a good knowledge of immune system.Many researchers conduct molecular breeding based on genomic information (Zhu, He, & Chen, 1992; Du et al., 1992).We think that this genetic resource may be helpful for breeding technologies in the future.

    This study is the first to present a high-quality genome sequence and annotation ofP.diacanthus.This complete genome would allow further studies in population genetics and serve as the genetic basis for future investigation of evolution and biology, which will be a valuable resource to conservation ofP.diacanthus.Our genomic analyses related to growth and immunity would improve our understanding of the molecular mechanisms behind economically valuable traits and provide insights into characteristics of the immune system, which would inform how to breed the species to enhance its economic traits and reduce the incidence of diseases.In addition, by analyzing the expanded gene families,we found thatP.diacanthusevolved a well-developed immune system,which may benefit their survival in the muddy inhabits.We think this resource may be used as a reference for studying the adaptation of other sciaenids to the coastal environment.

    2.Materials and methods

    2.1.Sample collection and sequencing

    A one-year-old maleP.diacanthus(NCBI taxonomy ID: 335060), bred at the Laboratory of Fish Molecular Immunology of Shanghai Ocean University, Shanghai, China, was used for DNA sequencing.The DNA ofP.diacanthus was extracted from the blood and muscle tissue using a Blood & Cell Culture DNA Mini Kit (Cat# 13,323, Qiagen).The quality and the quantity of total DNA were determined by a NanoDrop UV-Vis spectrophotometer (Thermo Fisher Scientific, USA) and Qubit 3.0 Fluorometer (Invitrogen, USA), respectively.The qualified genomic DNA (OD 260/280: 1.8-2.0; OD 260/230: 2.0-2.2) was then used to construct survey, single tube long fragment read (stLFR), Nanopore and Hi-C libraries, respectively.

    Two stLFR libraries with insert size of 300-1000 bp were constructed using MGIEasy stLFR Library Prep Kit and then sequenced on BGISEG-500 sequencing platform.The raw data were filtered using the stLFR2Supernova pipeline “-y -F $ADAPTOR_F -R $ADAPTOR_R -p -M 2-f-1 -Q 10” (https://github.com/BGI-Qingdao/stlfr2supernova_pipelin e).To get long single reads, we built an Oxford Nanopore library.Approximately 8 μg of gDNA was size-selected (10-50 kb) with a Blue Pippin (Siage Science, USA) and processed using the Nanopore SQKLSK109 kit (Cat# SQK-LSK109, Oxford).One library was contracted and sequenced on the R9.4 Flow Cell using the Oxford Nanopore PromethION sequencer (ONT, UK).ONT reads were based called with Guppy (version 2.2.3).1 μg DNA was taken for the survey library.In brief, DNA was randomly interrupted and purified to 200-400 bp using Covaris (LE220).After that, these fragments were connected to the joints which were designed by BGI (Qingdao, China).At last, single-chain circularization and purification were performed.Finally, one library was generated and sequenced on the BGISEQ-500 sequencing platform.

    To acquire a chromosomal-level assembly of the genome, we built a high-throughput chromatin conformation capture (Hi-C) library for sequencing.Briefly, the fresh blood cells were collected by centrifugation and resuspended in PBS by repetitive pipetting.The cells were crosslinked by adding 37% formaldehyde (SIGMA, America) to obtain 1% final concentration and then added 2.5M glycine solution (SIGMA,America) to a final concentration of 0.2M to quench the reaction.To prepare nuclei, the formaldehyde fixed powder was re-suspended in nuclei isolation buffer (10 mM Tris-HCl pH 8.0 (SIGMA, America), 10 mM NaCl (BEYOTIME, Shanghai, China), 1 ×phenylmethanesulfonyl fluoride (PMSF) (SIGMA, St.Louis, America) and then incubated in 0.5% SDS for 10 min at 62 ℃.SDS was immediately quenched with 10% Triton X-100 (SIGMA, St.Louis, America) and the nuclei were collected by brief centrifugation.Afterwards, DNA was digested with the restriction enzyme (MboI) that gets a 5′overhang.The 5′overhang was filled, including a biotinylated residue.Then the resulting blunt-end fragments were ligated in situ by using T4 DNA ligase.Finally, the isolated DNA was purified using the cetyl trimethylammonium bromide(CTAB) method.The Hi-C library was created by shearing DNA and capturing the biotin containing fragments with streptavidin beads using Dynabeads MyOne Streptavidin T1 (Cat# 65,601, Invitrogen).We used T4 DNA polymerase (NEB) to repair the ends of DNA fragments to obtain blunt ends which were then 3′-adenlyated to create sticky ends.These DNA fragments were ligated at both ends to T-tailed adapters and amplified for eight cycles using KAPA HiFi HotStart ReadyMix (Cat#KK2600, Kapa Biosystems).After that, the standard circularization step required for BGISEQ-500 was carried out.A PE library with 200-400 bp insert size was constructed.Sequencing of Hi-C library was performed using the BGISEQ-500 platform with a read length of 100 bp for each end.The raw reads of survey and Hi-C were filtered out using SOAPnuke(Chen et al., 2017) with parameters “-n 0.05 -l 10 -q 0.1 -M 2 -Q 2 -G”and “-n 0.05 -l 5 -q 0.5 -A 0.5 -M 1 -Q 2 -G -d”, respectively.

    2.2.Genome assembly

    First, we used a K-mer frequency distribution method to estimate the genome size with Jelly fish (version 2.2.10) (Marcais & Kingsford, 2011).For this, 17-bp k-mers (17mers) were extracted from the sequencing data and the frequency of each 17-mers was calculated.The genome size was estimated to 675.06 Mb.The stLFR sequencing valid reads was first transferred into 10X Genomics format using stLFR2Supernova pipeline(https://github.com/BGI-Qingdao/stlfr2supernova_pipeline).Then we used Supernova (version 1.12) (Weisenfeld, Kumar, Shah, Church, &Church, 2017) to assemble the genome with parameters “supernova run-id =$projiect_name -maxreads =$max_reads -fastqs =./-localcores=$threads -localmem =$memory -accept-extreme-coverage -noprefl ight>supernova_run_’$tag’.log 2>supernova_run_’$tag’.err || exit 1”.The gaps in the assembly were filled using Gapcloser (version 1.12) (Luo et al., 2012) with clean reads in survey library for two times.Here are the parameters: “max_rd_len =100, avg_ins =350, reverse_seq =0,asm_flags =3, rank =1, pair_num_cutoff =3, map_len =32”.Then, we enhanced the draft assembly using TGS-GapCloser pipeline (https://gith ub.com/BGI-Qingdao/TGS-GapCloser) based on the long Oxford Nanopore reads and clean reads for genome survey with parameters “pion_-mem = ’300G′, chunk_num =1, cpu =30, minimap2_pram = ’-x ava-ont’, minidy = ’0.30′, minmatch =300”.

    We performed quality control of Hi-C raw data using HiC-Pro(version 2.8.0) (Servant et al., 2015).To obtain the valid pairs, we used bowtie2 (version 2.2.5) (Langmead, Trapnell, Pop, & Salzberg,2009) to align raw reads to the draft assembled sequence with the end-to-end model (-very-sensitive -L 30).Here are parameters: “min_-frag_size =100, max_frag_size =100,000, min_insert_size =50, max_-insert_size =1500, max_iter =100,filter_low_count_perc =0.02,filter_high_count_perc =0.” In the next, we then used Juicer (version 1.5) (Durand et al., 2016), an open-source tool for analysis of Hi-C data sets with parameter “-sMboI”, and a 3Dde novoassembly (3D-DNA,version 70.123) (Dudchenko et al., 2017) to anchor primary scaffolds into 24 chromosomes with parameters “-m haploid -s 4 -c 24 -S split”.

    2.3.Genome prediction and annotation

    We used TRF (version 4.09) (Benson et al., 1999), RepeatMasker(version 3.3.0) and RepeatProteinMask (version 3.3.0) (Tarailo-Graovac& Chen, 2009) to detect repeat sequences and classify different types of repetitive sequences by aligning genome sequences to the Repbase library (version 17.01) (Jurka, Kapitonpy, Pavlicek, ).We also conducted a RepeatModeler analysis on thede novolibrary and used RepeatMasker(version 3.3.0) (Jurka, Kapitonpy, Pavlicek, ) to classify transposable elements (TEs) in the genome.

    Based on the repeat masked genome, gene models were constructed,which incorporatesab initioprediction and homology-based prediction.Augustus (version 2.5.5) (Stanke et al., 2006), Gummerhmm (version 3.01) (Majoros et al., 2004) and Genescan (Burge & Karlin, 1997) were used forde novogene prediction with default settings.For homology-based methods, protein sequences ofCynoglossus semilaevis(GCF_000523025.1),Danio rerio(GCF_000002035.6),Gadus morhua(GCF_902167405.1),Gasterosteus aculeatus(GCA_006229165.1),Oreochromisniloticus(GCF_001858045.2),Oryziaslatipes(GCF_002234675.1),Seriola lalandi(GCA_003054885.1) andTakifugu rubripes(GCF_901000725.2) were download from the NCBI database and aligned to the blackspotted croaker genome using TBLASTN(E-value ≤10-5).GENEWISE (version 2.4.0) (Doerks, Copley, Schultz,Ponting, & Bork, 2002) was used to generated gene structure based on the alignment with parameters “blat -t 5 -a 0.3 -d 0.2 -c 50 -e 1000”.We performed GLEAN (Elsik et al., 2017) to integrate the results of thede novogene predictions and homolog-based gene annotations.In homolog-based gene annotations, we removed genes supported by only one homologous species.Genes which were only predicted inde novomethod and not jointly predicted by the three software were filtered out.

    Functional annotations of the blackspotted croaker were then made by homology searching in several public gene databases, including Interpro, Kyoto Encyclopedia of Genes and Genomes (KEGG), Swissprot,and TrEMBL using BLASTP (E-value ≤10-5).We also used InterProScan(version 4.7) (Jones et al., 2004) to obtain protein domain annotations in Gene ontology (GO) databases.Finally, functional annotations of the best alignments in each database were used as the final consensus gene annotation result.To get noncoding RNAs, we also used BLAST to align theP.diacanthusgenome against the Rfam database (version 11.0)(Burge et al., 2013).

    2.4.Assessment of completeness of the assembly and annotation

    To assess the completeness of the assembly, reads from one small library were mapped back to the scaffolds using BWA (version 0.7.12)(Houtgast, Sima, & Al-Ars, 2018).We also conducted single-nucleotide polymorphism (SNP) analysis using Genome Analysis Toolkit (GATK)(version 4.0.2.1) (McKenna et al., 2010).Moreover, we performed analysis with Benchmarking Universal Single-Copy Orthologs (BUSCO,version 3.0) (Simao, Waterhouse, Ioannidis, Kriventseva, & Zdobnov,2015) with anActinopterygiigene set.In addition, to assess the completeness of the gene annotation, we used the Benchmarking Universal Single-Copy Orthologs (BUSCO, version 3.0) (Simao et al., 2015)with anActinopterygiigene set.

    2.5.Phylogenetic analysis and gene family expansion and contraction analysis

    To reveal phylogenetic relationships amongP.diacanthusand other species and analyze expansion and contraction of gene families between species, we identified gene families in theP.diacanthusgenome and 11 other vertebrate species, includingSciaenopsocellatus(GCA_014183145.1),Miichthys miiuy(GCA_001593715.1),Larimichthys crocea(GCF_000972845.2),Danio rerio(GCF_000002035.6),Oryzias latipes(GCF_002234675.1),Gasterosteus aculeatus(GCA_006229165.1),Tetraodonnigroviridis(GCA_000180735.1),Takifugurubripes(GCF_901000725.2),Cynoglossus semilaevis(GCF_000523025.1),Xiphophorus maculatus(GCF_002775205.1) andCallorhinchus milii(GCF_000165045.1).Firstly, we used BLASTP to align protein sequences of the 12 species with anE-value threshold of 1e-5.All genes were then clustered using OrthoMCL (Li, Stoeckert, & Roos, 2003) with the parameter of “mode 3”.We used single-copy orthologues which exist in all species to construct the phylogenetic tree.In brief, we used MUSCLE(version 3.6) (Edgar, 2004) to align the sequences of protein-coding genes with default parameters.The aligned protein and the fourfold degenerate sites in the corresponding coding sequences were each concatenated into a super gene (Lin et al., 2016).In the next, the phylogenetic tree was then constructed using maximum-likelihood algorithm in RAxML (version 8.2.4) (Stamatakis, 2006) with the optimal amino acid substitution model selected by PROTGAMMAAUTO parameter.Robustness of the maximum-likelihood tree was assessed using the bootstrap method (100 pseudo-replicates).MCMCtree in the PAML package (Yang, 2007) was used to predict divergence times.To visualize the concordances between the finalP.diacanthusassembly and three other sciaenids, the 24P.diacanthuschromosomes were aligned to the three other sciaenids chromosomes using LASTZ with default settings, respectively (version 1.10) (Harris, 2007).

    We used CAFE (De Bie, Cristianini, Demuth, & Hahn, 2006) to identify expanded and contracted gene families betweenP.diacanthus,L.crocea,S.ocellatus,G.aculeatus,T.rubripes,T.nigroviridis,O.latipesandD.reriowith parameters “-p 0.05 -t 4 -r 10,000 -filter lambda -s”.We chose these species based on their evolutional significance and potential research value.The corresponding p-values were calculated in each lineage based on the conditional likelihood.

    3.Results and discussion

    3.1.Genome sequencing and assembly

    We sequenced the genome ofP.diacanthuswith NGS and Oxford Nanopore sequencing technology.Two stLFR libraries and one survey library generated 179.6 Gb and 81.84 Gb raw data, respectively.In addition, we obtained 69.30 Gb long single reads from Oxford Nanopore libraries (Table 1, Figure S1).We also obtained 264.20 Gb valid Hi-C data after quality control (Table 1).The genome assembly spanned 635.69 Mb with a contig N50 of 3.326 Mb, a scaffold N50 of 25.60 Mb,and a GC content of 41.41% (Table 2).Using Hi-C data, we anchored and orientated scaffolds into 24 chromosomes (Fig.1).The length of 24 chromosomes ranged from 13.35 Mb to 32.49 Mb (Table S1), which additively covered 94.16% of the whole genome sequences.

    Fig.1.Heat map of chromosomal interactions in the P.diacanthus genome.The intensity of red represents the relative contact density between contigs, with deeper colours representing higher density.Numbers on the top and left represent the cumulative size of the genome.(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

    Table 1Statistics of the genome sequencing data.

    Table 2Summary of P.diacanthus genome assembly.

    By assessing the accuracy and completeness of the genome assembly ofP.diacanthus, we obtained 8246 homozygous single-nucleotide polymorphisms (SNP) (Table S2).The extremely low proportion of homozygosis SNPs showed that the assembly has a high single-base accuracy so that we can infer that the assembly is of high accuracy.Moreover, the mapping rate of reads from the small library was 98.50%,and the genome coverage was 96.94% (Table S3).The BUSCO results showed that the assembly contained 97.70% complete and 1.2% fragmented orthologue genes (Table S4).The assessment results indicate that the genome assembly had good coverage and completeness.

    3.2.Genome annotation

    De novoprediction and homology search against the Rephase database showed that repetitive elements comprised 19.98% ofP.diacanthusgenome (Table S5).The most abundant TEs were DNA transposons(10.35% of the genome), followed by long interspersed elements (LINEs,5.66%) and long terminal repeats (LTRs, 3.27%) (Table S6; Figure S2).

    After integrating results of thede novoand homolog-based gene predictions, we obtained a non-redundant gene set containing 23,971 protein-coding genes, with an average gene and CDS lengths of 13,531.62 bp and 1710.28 bp, respectively (Table S7), which were consistent with the distributions of gene features in other teleosts(Figure S3).Among predicted genes, 23,141 genes were functionally annotated in at least one of Swissprot, KEGG, TrEMBL, Interpro or GO databases (Figure S4; Table S8).Non-coding RNA such as rRNA, tRNA,snRNA, miRNA, not translating proteins, has important biological functions.We identified 2970 non-coding RNA, including 265 miRNA,1433 tRNA, 336 rRNA and 295 snRNA (Table S9).Finally, we assessed the completeness of gene annotation.The BUSCO results showed that our gene set contained 93.50% complete and 4.80% fragmented orthologue genes (Table S10), showing that our gene annotation was highly complete.

    3.3.Phylogenetic and gene family expansion and contraction analysis

    To investigate phylogenetic relationships ofP.diacanthuswith other species, we compared the genomes ofP.diacanthusand 11 other published vertebrate species.Finally, we obtained 17,779 gene families and 2755 single-copy orthologues (Fig.2a, Table S11).In addition, we found that there were 11,132 gene families shared byS.ocellatus,P.diacanthus,M.miiuyandL.crocea(Fig.2b).We identified 462 unique gene families inP.diacanthusgenome.These lineage-specific gene families may contribute to traits that are specific toP.diacanthus(Fig.2b).Using these single-copy orthologues, we constructed a phylogenetic tree.It showed thatM.miiuy,L.croceaandS.ocellatusare most closely related toP.diacanthuswith a divergence time ~60 million years ago.The ancestors ofP.diacanthusand the three sciaenids separated from the ancestor ofG.aculeatus~90 million years ago (Fig.3a).

    Fig.2.Comparison of genes and gene families.(a) Comparison of the number of homolog genes among S.ocellatus, M.miiuy, L.crocea, D.rerio, O.latipes, G.aculeatus, T.nigroviridis, T.rubripes, C.milii, C.semilaevis, X.maculatus and P.diacanthus.(b) Venn diagram of orthologous gene families.Four teleost species(S.ocellatus, L.crocea, M.miiuy, and P.diacanthus) were used to generate the Venn diagram in accordance with gene family cluster analysis.

    Respectively, we then comparedP.diacanthusgenome withM.miiuy,L.croceaandS.ocellatusgenomes to examine chromosome evolution events after speciation.We conducted whole genome alignment betweenP.diacanthusand the three sciaenids with LASTZ (version 1.10)(Harris, 2007).We found that 24 chromosomes ofP.diacanthuscould be unambiguously aligned to single chromosomes ofM.miiuyandS.ocellatuswith 0.94 and 0.96 average coverage ratio, respectively.However, compared withP.diacanthusgenome,L.croceashowed a lower coverage 0.83 (Fig.3b, Table S12) compared to two other sciaenids, indicating these two species are less related.

    Fig.3.Genome evolution analysis.(a) Phylogenetic tree of 12 vertebrate genomes.We used 2755 single-copy orthologous gene families from 11 teleost species.Divergence times from C.milii-D.rerio (452~496 Mya), D.rerio-C.semilaevis (165~209 Mya), X.maculatus-O.latipes (74~98 Mya), and T.rubripes-T.nigroviridis(40~52 Mya) from the Time Tree database were used as the calibration times.The blue numbers on the branches indicate the estimated diverge times in millions of years ago (Mya), and red circles indicate the calibration time.(b) Collinear blocks between P.diacanthus and M.miiuy, L.crocea, and S.ocellatus genomes,respectively.Each colored arc represents a best match between two species.Pdi_1-24 represents chromosomes 1-24 of P.diacanthus genome.Mmi_1-24, Lcr_1-24,and Soc_1-24 represent chromosomes 1-24 of M.miiuy, L.crocea, and S.ocellatus genome, respectively.(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

    A total of 698 expanded gene families (P <.05) and 1393 contracted gene families (P <.05) were identified inP.diacanthusgenome compared to 7 other teleost species, includingL.crocea,S.ocellatus,G.aculeatus,T.rubripes,T.nigroviridis,O.latipesandD.rerio(Fig.4,Table S13; Table S14).These expanded genes were significantly enriched in immunity, growth and development.

    Fig.4.Expansion and contraction of gene families.Blue and red numbers represent the expanded or contracted gene families in each lineage, respectively.MRCA:most recent common ancestor.(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

    Like many other sciaenids,P.diacanthusinhabits coastal bottom water.This water area is relatively turbid and the bottom is mostly sandy mud.In previous study (Xu et al., 2016), we usedM.miiuyas a research species and have investigated some genes related to vision,taste and smell to try to understand sciaenids’ adaption to muddy environments.We found thatM.miiuyseems to evolve stronger physiological functions of smell and taste to adapt turbid waters.On the other hand, usually muddy sand contains more microorganisms, and the pathogenicity of these microorganisms may be a challenge forP.diacanthusand other sciaenids.In this study, we decided to focus on the development and evolution of the immune system ofP.diacanthusto understand the adaption to muddy inhabits.We found expanded genes were significantly enriched in immune system pathways such as the NOD-like receptor signaling pathway, phagosome and autophagy.

    In NOD-like receptor signaling pathway, we found that the gene families NACHT, LRR and PYD domains-containing proteins (NLRPs)were significantly expanded inP.diacanthusincludingNLRP3andNLRP12.NLRP3, the sensor component of the NLRP3 inflammasome,plays a crucial role in innate immunity and inflammation (Nakanishi et al., 2017).WhileNLRP12plays an essential role as a potent mitigator of inflammation (Normand et al., 2018).The two genes are essential in response to pathogens and other damage-associated signals in NOD-like receptor signaling pathway.We also found that tripartite motif-containing proteins (TRIMs) were significantly expanded includingTRIM21andTRIM25.They modulate innate immune responses to bacterial and viral infections that involve the activation of IFN-regulatory factor 3 (IRF3),IRF7and nuclear factor-κB (NF-κB)(Ozato, Shin, Chang, & Morse III, 2008).Other genes related to immune system such as Acidic mammalian chitinase (Chia), apoptosis-associated speck-like protein containing a CARD (PYCARD) also expanded inP.diacanthus.We also identified specific gene families inP.diacanthus(Table S15).Many specific genes may be involved in immune system such as butyrophilin subfamily 1 member A1-like (BTN1A1) and leukocyte elastase inhibitor-like (SERPINB1) (Table S15).Therefore, we inferred thatP.diacanthusmay evolve an enhanced immune system to adapt to the muddy inhabits compared to other teleosts.

    4.Conclusion

    In this study, combined with stLFR reads (generated by BGISEQ-500), Oxford Nanopore long reads (generated by Oxford Nanopore PromethION sequencer), survey reads (generated by BGISEQ-500) and Hi-C reads (generated by BGISEQ-500), we obtained totally about 500 Gb clean data.We first assembledP.diacanthusgenome at chromosomelevel.The final genome assembly contain 24 chromosomes ranging from 13,348,899 bp to 32,491,028 bp.We also predicted 23,971 genes, of which 96.54% can be functionally annotated.In addition, we obtained some expanded and contracted gene families inP.diacanthuscompared to other species.The investigation of genome characteristics and function features provides insights into the molecular mechanism of the biology ofP.diacanthus.This study will not only be beneficial to improve molecular assisted breeding techniques and disease management in the blackspotted fish, but also provided references for the study of the genome of sciaenids.

    Author contributions

    T.X.designed the project.Y.L., W.Z., and T.X.analyzed the data.Y.S.,and T.X.prepared the samples and conducted the experiments.Y.L., and T.X.wrote and revised the manuscript.

    Date availability statement

    The genome assembly and raw data has been deposited into the NCBI with Bioproject accession PRJNA608639.Gene annotations are now available at: https://doi.org/10.5281/zenodo.3969378.

    Declaration of competing interest

    The authors declare that they have no competing interests.

    Acknowledgements

    This study was supported by the National Key Research and Development Project (2018YFD0900301) and the National Natural Science Foundation of China (31802325).

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.aaf.2021.05.003.

    亚洲中文字幕一区二区三区有码在线看 | 亚洲在线自拍视频| 久久国产精品人妻蜜桃| 免费一级毛片在线播放高清视频 | 啦啦啦 在线观看视频| 久久香蕉国产精品| 国产精品av久久久久免费| 久久久精品欧美日韩精品| 满18在线观看网站| 极品人妻少妇av视频| 日日摸夜夜添夜夜添小说| 国产99白浆流出| 国产蜜桃级精品一区二区三区| 亚洲av第一区精品v没综合| 日本vs欧美在线观看视频| 欧美最黄视频在线播放免费| 老汉色∧v一级毛片| 国产一卡二卡三卡精品| 亚洲精品久久国产高清桃花| 中文字幕最新亚洲高清| 麻豆成人av在线观看| 国产精品香港三级国产av潘金莲| 国产伦人伦偷精品视频| 成人国语在线视频| 欧美国产日韩亚洲一区| 757午夜福利合集在线观看| 国产视频一区二区在线看| 亚洲精品在线观看二区| 黑丝袜美女国产一区| 国产精品美女特级片免费视频播放器 | 91字幕亚洲| 亚洲精品美女久久久久99蜜臀| a在线观看视频网站| 国内久久婷婷六月综合欲色啪| 欧美不卡视频在线免费观看 | 老熟妇仑乱视频hdxx| www.999成人在线观看| 国产色视频综合| 欧美大码av| 国产亚洲精品久久久久久毛片| 国产精品久久久久久精品电影 | √禁漫天堂资源中文www| 天天一区二区日本电影三级 | 国产激情久久老熟女| 成人国产综合亚洲| 婷婷六月久久综合丁香| 久久久久国内视频| 两个人看的免费小视频| 国产成人欧美| 久久久久久久午夜电影| 免费在线观看亚洲国产| 欧美乱色亚洲激情| 亚洲国产精品999在线| 俄罗斯特黄特色一大片| 老司机午夜福利在线观看视频| 韩国av一区二区三区四区| 久久狼人影院| 一二三四社区在线视频社区8| 亚洲黑人精品在线| 久久久久久亚洲精品国产蜜桃av| 午夜免费鲁丝| 九色亚洲精品在线播放| 亚洲少妇的诱惑av| 99国产精品免费福利视频| 一级片免费观看大全| 亚洲一区高清亚洲精品| 欧美久久黑人一区二区| 又黄又粗又硬又大视频| 老熟妇仑乱视频hdxx| 久久天堂一区二区三区四区| 久久中文字幕人妻熟女| 黄色片一级片一级黄色片| 可以在线观看毛片的网站| 男人舔女人的私密视频| 淫秽高清视频在线观看| 国产精品亚洲av一区麻豆| 色综合婷婷激情| 男人舔女人的私密视频| 欧美日韩亚洲综合一区二区三区_| 免费不卡黄色视频| 久久久久国产精品人妻aⅴ院| 国产真人三级小视频在线观看| 亚洲av熟女| 成人亚洲精品av一区二区| 精品福利观看| 欧美激情 高清一区二区三区| 给我免费播放毛片高清在线观看| 看片在线看免费视频| 亚洲精品在线观看二区| 高清黄色对白视频在线免费看| 国产激情久久老熟女| 亚洲专区国产一区二区| 99国产精品免费福利视频| 精品熟女少妇八av免费久了| 女人爽到高潮嗷嗷叫在线视频| 波多野结衣av一区二区av| 欧美成人性av电影在线观看| 亚洲欧洲精品一区二区精品久久久| 黄网站色视频无遮挡免费观看| 99国产精品免费福利视频| 在线观看日韩欧美| 午夜福利影视在线免费观看| 精品人妻在线不人妻| 丝袜人妻中文字幕| 99精品在免费线老司机午夜| 久久欧美精品欧美久久欧美| 大型av网站在线播放| 国产激情久久老熟女| 国产视频一区二区在线看| 中文字幕人妻丝袜一区二区| aaaaa片日本免费| 免费在线观看视频国产中文字幕亚洲| 亚洲精品久久成人aⅴ小说| 一边摸一边抽搐一进一小说| 日日摸夜夜添夜夜添小说| av中文乱码字幕在线| 亚洲精品中文字幕一二三四区| 亚洲国产精品久久男人天堂| 久久婷婷成人综合色麻豆| videosex国产| 一卡2卡三卡四卡精品乱码亚洲| 精品少妇一区二区三区视频日本电影| 国产黄a三级三级三级人| 免费在线观看亚洲国产| 午夜激情av网站| 在线免费观看的www视频| 在线观看日韩欧美| 精品久久久精品久久久| 男人舔女人下体高潮全视频| 午夜精品在线福利| av电影中文网址| avwww免费| 国产精华一区二区三区| 热re99久久国产66热| 天天躁狠狠躁夜夜躁狠狠躁| 18禁裸乳无遮挡免费网站照片 | 久久精品国产综合久久久| 丁香欧美五月| 给我免费播放毛片高清在线观看| 久久精品国产综合久久久| 午夜福利欧美成人| 禁无遮挡网站| 国产伦一二天堂av在线观看| 亚洲成人国产一区在线观看| 很黄的视频免费| 国产精品乱码一区二三区的特点 | 亚洲在线自拍视频| 亚洲精品一区av在线观看| 亚洲国产精品成人综合色| 9色porny在线观看| 男女午夜视频在线观看| 久久精品成人免费网站| 久久 成人 亚洲| 亚洲美女黄片视频| a在线观看视频网站| 免费观看精品视频网站| 午夜影院日韩av| 日韩av在线大香蕉| 日日摸夜夜添夜夜添小说| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲av嫩草精品影院| 国产成人精品久久二区二区免费| 日本 av在线| 真人一进一出gif抽搐免费| 韩国av一区二区三区四区| 久久亚洲精品不卡| 人人妻人人澡人人看| 女性被躁到高潮视频| 免费在线观看完整版高清| x7x7x7水蜜桃| 精品少妇一区二区三区视频日本电影| 午夜福利免费观看在线| 在线播放国产精品三级| 精品人妻1区二区| 日本 欧美在线| 亚洲精品av麻豆狂野| 一级a爱片免费观看的视频| 午夜免费激情av| 色综合婷婷激情| 国产主播在线观看一区二区| 黄色片一级片一级黄色片| 日韩精品中文字幕看吧| 亚洲熟妇熟女久久| 精品久久久久久成人av| 自线自在国产av| 国产成人精品无人区| 午夜免费鲁丝| 男女下面进入的视频免费午夜 | 欧美黄色淫秽网站| 亚洲熟女毛片儿| 亚洲狠狠婷婷综合久久图片| 久久国产精品人妻蜜桃| 国产在线观看jvid| 欧美日韩福利视频一区二区| 黄色成人免费大全| 俄罗斯特黄特色一大片| 50天的宝宝边吃奶边哭怎么回事| 国产xxxxx性猛交| 制服诱惑二区| 精品一区二区三区av网在线观看| 啦啦啦免费观看视频1| 欧美乱妇无乱码| 欧美绝顶高潮抽搐喷水| 19禁男女啪啪无遮挡网站| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩黄片免| 日韩欧美免费精品| 我的亚洲天堂| 男女下面进入的视频免费午夜 | 中出人妻视频一区二区| 亚洲一区二区三区色噜噜| 一夜夜www| 啦啦啦观看免费观看视频高清 | 亚洲欧美日韩高清在线视频| 男女下面进入的视频免费午夜 | 成人亚洲精品av一区二区| 悠悠久久av| 18禁美女被吸乳视频| 精品国产乱子伦一区二区三区| 一级a爱片免费观看的视频| 后天国语完整版免费观看| 欧美精品啪啪一区二区三区| 国产午夜精品久久久久久| 美女扒开内裤让男人捅视频| 男女午夜视频在线观看| 久久久国产成人免费| 国产伦一二天堂av在线观看| 亚洲国产精品sss在线观看| 国产成人系列免费观看| 老熟妇仑乱视频hdxx| 欧美黑人欧美精品刺激| 99riav亚洲国产免费| 欧美一级a爱片免费观看看 | 亚洲人成电影免费在线| 成人精品一区二区免费| 黑人巨大精品欧美一区二区蜜桃| 国产黄a三级三级三级人| 在线观看日韩欧美| 丁香六月欧美| 婷婷精品国产亚洲av在线| 免费看美女性在线毛片视频| www国产在线视频色| 亚洲av五月六月丁香网| av视频免费观看在线观看| 久久精品成人免费网站| 久久人人爽av亚洲精品天堂| 老汉色∧v一级毛片| 国产精品日韩av在线免费观看 | 久久久久亚洲av毛片大全| 欧美日韩乱码在线| 一卡2卡三卡四卡精品乱码亚洲| 久久国产精品影院| 免费在线观看完整版高清| 给我免费播放毛片高清在线观看| 老司机福利观看| 国产免费男女视频| 男女下面进入的视频免费午夜 | 国产精品av久久久久免费| 国产国语露脸激情在线看| 黄片播放在线免费| 在线观看免费视频日本深夜| 精品国产美女av久久久久小说| 这个男人来自地球电影免费观看| 精品欧美一区二区三区在线| 国产精品乱码一区二三区的特点 | www国产在线视频色| 欧美精品啪啪一区二区三区| 两个人免费观看高清视频| 久久久久九九精品影院| 一级毛片女人18水好多| 黑人巨大精品欧美一区二区蜜桃| 叶爱在线成人免费视频播放| 自拍欧美九色日韩亚洲蝌蚪91| 国产高清激情床上av| 亚洲五月天丁香| 好看av亚洲va欧美ⅴa在| АⅤ资源中文在线天堂| 高清在线国产一区| av欧美777| 亚洲免费av在线视频| 亚洲精品在线美女| 1024视频免费在线观看| 亚洲色图av天堂| 俄罗斯特黄特色一大片| 亚洲国产欧美网| 十八禁网站免费在线| 亚洲第一电影网av| 日本 av在线| 最新在线观看一区二区三区| 日韩欧美国产一区二区入口| 国产欧美日韩综合在线一区二区| 99久久久亚洲精品蜜臀av| 免费看十八禁软件| av免费在线观看网站| 精品国产乱码久久久久久男人| 一级毛片精品| 久久久水蜜桃国产精品网| 制服人妻中文乱码| 亚洲激情在线av| 成人亚洲精品av一区二区| av中文乱码字幕在线| 久久香蕉激情| 一区二区三区高清视频在线| 国产熟女午夜一区二区三区| 国产午夜福利久久久久久| 国产精品久久视频播放| 一级a爱视频在线免费观看| 国产精品av久久久久免费| 久久国产亚洲av麻豆专区| 国产真人三级小视频在线观看| 18禁裸乳无遮挡免费网站照片 | 一个人免费在线观看的高清视频| a在线观看视频网站| 正在播放国产对白刺激| 成人av一区二区三区在线看| 99国产综合亚洲精品| 日本在线视频免费播放| 色哟哟哟哟哟哟| videosex国产| 国产亚洲欧美精品永久| 在线十欧美十亚洲十日本专区| 一区二区日韩欧美中文字幕| 在线观看免费日韩欧美大片| 麻豆一二三区av精品| 久久狼人影院| 午夜福利视频1000在线观看 | 日韩三级视频一区二区三区| 国产激情欧美一区二区| 黄色视频不卡| 99国产精品99久久久久| 欧美日韩中文字幕国产精品一区二区三区 | 国产乱人伦免费视频| 亚洲七黄色美女视频| 成人永久免费在线观看视频| 黄频高清免费视频| 国产精品综合久久久久久久免费 | 国产精品99久久99久久久不卡| 亚洲av第一区精品v没综合| 香蕉久久夜色| 18禁美女被吸乳视频| 一本综合久久免费| 精品免费久久久久久久清纯| 两性午夜刺激爽爽歪歪视频在线观看 | 波多野结衣高清无吗| 国产精品美女特级片免费视频播放器 | 亚洲黑人精品在线| 国产精品1区2区在线观看.| 色播亚洲综合网| 欧美激情久久久久久爽电影 | 在线观看www视频免费| 国产成人影院久久av| 国产亚洲av高清不卡| 在线观看午夜福利视频| 成人特级黄色片久久久久久久| 久久精品成人免费网站| 亚洲电影在线观看av| 嫁个100分男人电影在线观看| 黑人巨大精品欧美一区二区mp4| 久久精品91无色码中文字幕| 中文亚洲av片在线观看爽| 十八禁人妻一区二区| 亚洲人成网站在线播放欧美日韩| 禁无遮挡网站| 成人av一区二区三区在线看| 精品国产一区二区久久| av天堂在线播放| 日韩一卡2卡3卡4卡2021年| 神马国产精品三级电影在线观看 | 日本免费一区二区三区高清不卡 | 日韩 欧美 亚洲 中文字幕| 99久久综合精品五月天人人| 亚洲国产看品久久| 亚洲第一电影网av| 美女高潮喷水抽搐中文字幕| 国产激情欧美一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲三区欧美一区| 好男人在线观看高清免费视频 | 91精品三级在线观看| 日韩大尺度精品在线看网址 | 亚洲自偷自拍图片 自拍| 丝袜美腿诱惑在线| 又黄又爽又免费观看的视频| 麻豆av在线久日| 久热爱精品视频在线9| 午夜福利在线观看吧| 久久国产精品影院| 午夜精品在线福利| 伊人久久大香线蕉亚洲五| 久久久精品国产亚洲av高清涩受| 亚洲自拍偷在线| 亚洲免费av在线视频| 亚洲成人精品中文字幕电影| 亚洲精品国产一区二区精华液| 在线观看免费视频网站a站| 亚洲男人的天堂狠狠| 一a级毛片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 男人舔女人下体高潮全视频| 欧美大码av| 男女床上黄色一级片免费看| 91精品国产国语对白视频| 国产成人精品在线电影| 亚洲专区字幕在线| 老鸭窝网址在线观看| 一级a爱视频在线免费观看| 日韩高清综合在线| 女人被躁到高潮嗷嗷叫费观| 国产精品秋霞免费鲁丝片| 不卡一级毛片| 国产精品精品国产色婷婷| 精品久久久久久成人av| 99久久久亚洲精品蜜臀av| 欧美激情 高清一区二区三区| 精品无人区乱码1区二区| 手机成人av网站| 亚洲av日韩精品久久久久久密| 国产极品粉嫩免费观看在线| 韩国av一区二区三区四区| 男女下面进入的视频免费午夜 | 琪琪午夜伦伦电影理论片6080| 在线国产一区二区在线| 欧美激情高清一区二区三区| 国产乱人伦免费视频| 18禁裸乳无遮挡免费网站照片 | 99riav亚洲国产免费| 国产一级毛片七仙女欲春2 | 午夜福利影视在线免费观看| 免费搜索国产男女视频| 亚洲中文字幕日韩| 日本一区二区免费在线视频| 欧美日本亚洲视频在线播放| 国产成人啪精品午夜网站| 国产91精品成人一区二区三区| 中文字幕久久专区| 久久久精品欧美日韩精品| 熟妇人妻久久中文字幕3abv| 中国美女看黄片| 亚洲国产高清在线一区二区三 | 桃色一区二区三区在线观看| 国产又色又爽无遮挡免费看| 久久人妻av系列| 亚洲精品美女久久av网站| 亚洲国产欧美网| 一夜夜www| 黄色成人免费大全| 国产熟女午夜一区二区三区| 亚洲美女黄片视频| 国内久久婷婷六月综合欲色啪| 99精品欧美一区二区三区四区| 可以在线观看毛片的网站| 久久久精品欧美日韩精品| 欧美日韩瑟瑟在线播放| 91国产中文字幕| 亚洲 国产 在线| 久久久久久亚洲精品国产蜜桃av| 黄色女人牲交| 国产99久久九九免费精品| 大陆偷拍与自拍| 在线十欧美十亚洲十日本专区| 欧美成人一区二区免费高清观看 | 日韩有码中文字幕| 日韩成人在线观看一区二区三区| 亚洲精品国产色婷婷电影| 99在线人妻在线中文字幕| 香蕉久久夜色| 这个男人来自地球电影免费观看| 亚洲成人久久性| 操美女的视频在线观看| 黄色女人牲交| 国产1区2区3区精品| 久久人妻熟女aⅴ| 在线观看免费视频日本深夜| 无人区码免费观看不卡| 男人舔女人下体高潮全视频| 精品国产乱子伦一区二区三区| 亚洲性夜色夜夜综合| 成年版毛片免费区| 亚洲人成电影观看| 欧美+亚洲+日韩+国产| 国产区一区二久久| 日韩欧美一区二区三区在线观看| 99精品在免费线老司机午夜| 18禁美女被吸乳视频| 欧美成人午夜精品| 国产麻豆69| 男人舔女人下体高潮全视频| 免费观看精品视频网站| 一夜夜www| 黄网站色视频无遮挡免费观看| 欧美日韩福利视频一区二区| 精品国产一区二区三区四区第35| 9色porny在线观看| 久久中文字幕人妻熟女| 国产亚洲av高清不卡| 三级毛片av免费| 午夜a级毛片| 人人澡人人妻人| 黄色视频,在线免费观看| 女性被躁到高潮视频| 久久性视频一级片| 村上凉子中文字幕在线| 欧美一级a爱片免费观看看 | 午夜福利免费观看在线| 国语自产精品视频在线第100页| 69精品国产乱码久久久| 搡老岳熟女国产| 久久久久久久久免费视频了| 日韩欧美免费精品| 亚洲国产高清在线一区二区三 | 在线播放国产精品三级| 久久久久久大精品| 黄色成人免费大全| 美女 人体艺术 gogo| 久久狼人影院| 丁香六月欧美| 母亲3免费完整高清在线观看| 国产高清视频在线播放一区| 欧美日韩亚洲国产一区二区在线观看| 欧美日本中文国产一区发布| 又黄又爽又免费观看的视频| 别揉我奶头~嗯~啊~动态视频| 啦啦啦免费观看视频1| 夜夜躁狠狠躁天天躁| 午夜亚洲福利在线播放| 亚洲中文字幕一区二区三区有码在线看 | 999久久久精品免费观看国产| 国产亚洲欧美98| 国产私拍福利视频在线观看| 香蕉久久夜色| 91国产中文字幕| 无遮挡黄片免费观看| 最新美女视频免费是黄的| 黄色视频,在线免费观看| 国产亚洲av高清不卡| 免费不卡黄色视频| 18禁国产床啪视频网站| 女人爽到高潮嗷嗷叫在线视频| 亚洲人成电影观看| 久久人人精品亚洲av| 最新美女视频免费是黄的| 大陆偷拍与自拍| 日韩中文字幕欧美一区二区| 夜夜夜夜夜久久久久| 欧美老熟妇乱子伦牲交| 亚洲专区字幕在线| 国产av又大| 中文字幕人成人乱码亚洲影| 国产精品野战在线观看| 色精品久久人妻99蜜桃| av中文乱码字幕在线| 久久国产精品人妻蜜桃| 性色av乱码一区二区三区2| 身体一侧抽搐| 色综合欧美亚洲国产小说| 亚洲精品美女久久av网站| 激情在线观看视频在线高清| 国产极品粉嫩免费观看在线| 日韩欧美一区二区三区在线观看| 91九色精品人成在线观看| 亚洲五月婷婷丁香| 国产在线观看jvid| 成人欧美大片| 午夜福利在线观看吧| 亚洲少妇的诱惑av| 精品久久久久久久久久免费视频| 两个人视频免费观看高清| 亚洲电影在线观看av| 精品久久蜜臀av无| 国产一区二区在线av高清观看| 国语自产精品视频在线第100页| 国产成人一区二区三区免费视频网站| 久久精品国产清高在天天线| 国产免费男女视频| av福利片在线| 他把我摸到了高潮在线观看| 久久精品亚洲精品国产色婷小说| 99在线视频只有这里精品首页| 亚洲片人在线观看| 欧美日本视频| 精品欧美国产一区二区三| 午夜a级毛片| 亚洲午夜理论影院| 香蕉国产在线看| 国产又色又爽无遮挡免费看| 看黄色毛片网站| 91国产中文字幕| 男人舔女人下体高潮全视频| 国产亚洲精品综合一区在线观看 | 日本 欧美在线| 涩涩av久久男人的天堂| 人妻丰满熟妇av一区二区三区| 一个人观看的视频www高清免费观看 | 久久久国产精品麻豆| 亚洲欧美激情在线| 国产成人欧美在线观看| 欧美激情极品国产一区二区三区| 亚洲五月色婷婷综合| 久久草成人影院| 女性生殖器流出的白浆| 夜夜看夜夜爽夜夜摸| 精品欧美一区二区三区在线| videosex国产| 亚洲精品在线美女| 国产激情久久老熟女| av在线天堂中文字幕| 12—13女人毛片做爰片一| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩乱码在线| 亚洲全国av大片| 9色porny在线观看| 亚洲黑人精品在线| 免费在线观看影片大全网站| 国产单亲对白刺激| 亚洲第一青青草原|