• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aug-PDG:帶不等式約束凸優(yōu)化算法的線性收斂性

    2022-02-28 09:54:34孟敏李修賢
    控制理論與應(yīng)用 2022年10期
    關(guān)鍵詞:工程系同濟(jì)大學(xué)收斂性

    孟敏,李修賢

    (同濟(jì)大學(xué)電子與信息工程學(xué)院控制科學(xué)與工程系,上海 201804;同濟(jì)大學(xué)上海自主智能無(wú)人系統(tǒng)科學(xué)中心,上海 201210;同濟(jì)大學(xué)上海智能科學(xué)與技術(shù)中心,上海 200092)

    1 Introduction

    This paper deals with the constrained optimization problem formulated as follows:

    where the objective functionf: Rn →R andg(x)(g1(x)g2(x)...gm(x))Twithgi: Rn →R being convex and continuously differentiable.By resorting to the(or augmented)LagrangianL(x,λ)of problem(1),the corresponding(or augmented)primal-dual gradient algorithm(PDG)(or Aug-PDG)can be designed as

    whereα >0 is a stepsize and[.]+denotes the projection operator onto the nonnegative orthants componentwisely.It is known that Eq.(2) can find a saddle point ofL(x,λ),and thus it has been extensively studied to solve the constrained optimization problem[1].

    Optimization has wide applications in the artificial intelligence field such as smart grids [2-3],wireless communication[4],robot systems[5],game theory [6-7],to name just a few.To date,there is a large body of literature on theoretical analysis of asymptotic convergence of various algorithms,including primaldual gradient-based algorithms,for tackling the optimization problem under different settings[8-18].

    In recent decades,researchers have focused on the linear convergence and exponential convergence of primal-dual gradient-based algorithms in discrete-time and continuous-time,respectively.It is well-known that when the objective function is strongly convex and smooth,the gradient decent algorithm for unconstrained convex optimization can achieve global exponential convergence in continuous-time and global linear convergence in discrete-time.In the context of constrained optimization with equality constraintsAxbor affine inequality constraintsAx≤b,PDG is proved to converge globally exponentially in continuous-time setup [19].A proximal gradient flow was proposed in [20],which can be applied to resolve convex optimization problems with affine inequality constraints and has global exponential convergence whenAhas full row rank.Local exponential convergence of the primal-dual gradient dynamics can be established with the help of spectral bounds of saddle matrices[21].Recently,the authors in [22] proved that the Aug-PDGD in continuous-time for optimization with affine equality and inequality constraints achieves global exponential convergence,and the global linear converge of primal-dual gradient optimization (PDGO) in discretetime was discussed in [23] by contraction theory.It should be noted that the aforementioned works focus on unconstrained optimization or constrained optimization with affine equality and/or affine inequality constraints.For the case with nonlinear inequality constraints,the asymptotic convergence has been extensively studied such as in [24].However,the linear/exponential convergence for the optimization with nonlinear inequality constraints is seldom investigated in the literature.One exception is the recent work [25],where the authors established a semi-global exponential convergence of continuous-time Aug-PDGD in the sense that the convergence rate depends on the distance from the initial point to the optimal point.

    However,[25]concentrates on the continuous-time dynamics.As discrete-time algorithms are easily implemented in practical applications,in this paper,the discrete-time algorithm is addressed for the optimization problem with nonlinear inequality constraints.Theoretical analysis based on a quadratic Lyapunov function that has non-zero off-diagonal terms is first presented to show that the Aug-PDG achieves semi-global linear convergence.

    The rest of this paper is organized as follows.Section 2 introduces preliminaries on optimization with nonlinear equality constraints.The main result on the semi-global linear convergence of Aug-PDGA,along with its proof,is presented in Section 3.Section 4 provides a numerical example to illustrate the feasibility of the obtained result.Section 5 makes a brief conclusion.

    Notations.Let Rm,and Rm×nbe the sets ofmdimensional real column vectors,m-dimensional nonnegative column vectors andm×nreal matrices,respectively.Define [x]+to be the component-wise projection of a vectorRmonto Rm+.x≥0 for any vectorRmmeans that each entry ofxis nonnegative.For an integern >0,denote[n] :{1,2,...,n}.Inis the identity matrix of dimensionn.1n(resp.0n)represents ann-dimensional vector with all of its elements being 1(resp.0).For a vector or matrixA,ATdenotes the transpose ofAandAIis a matrix composed of the rows ofAwith the indices inI.For real symmetric matricesPandQ,P ?(?,?,?)Qmeans thatP-Qis positive (positive semi-,negative,negative semi-) definite,while for two vectors/matricesw,vof the same dimension,w≤vmeans that each entry ofw -vis nonnegative.diag{a1,a2,...,an}represents a diagonal matrix withai,[n],on its diagonal.

    2 Preliminaries

    Consider problem (1).An augmented Lagrangian associated with problem(1)is introduced as[26]

    whereRn,λ(λ1λ2...λm)TRm,ρ >0 is the penalty parameter,and

    It can be verified thatU(x,λ) is convex inxand concave inλ,andU(x,λ) is continuously differentiable,i.e.,

    whereeiis ann-dimensional vector with theith entry being 1 and others 0.Then the Aug-PDG is explicitly written as

    where(0,ρ] is the stepsize to be specified.Here,the initial conditions are arbitrarily chosen asx0Rnandλ0≥0.

    To proceed,the following results are vital for solving the constrained optimization problem.

    Lemma 1For Aug-PDG (7),ifλ0≥0,thenλk≥0,?k≥0.

    ProofThis result can be proved by mathematical induction,which is omitted here.

    Lemma 2A primal-dual pair (x*,λ*) is an equilibrium point of the Aug-PDG(7)if and only if(x*,λ*)is a Karush-Kuhn-Tucker(KKT)point of(1).

    ProofIf a primal-dual pair (x*,λ*) is an equilibrium point of the Aug-PDG (7),that is,x*x*-α?xL(x*,λ*)andλ*λ*+α?λL(x*,λ*),then?xL(x*,λ*)0 and?λL(x*,λ*)0.?λL(x*,λ*)0 is equivalent to

    Thus,it can be claimed that the primal-dual pair(x*,λ*)is a KKT point.

    Conversely,if(x*,λ*)is a KKT point of(1),then

    Via a simple computation,?xL(x*,λ*)0 and?λL(x*,λ*)0,which implies that (x*,λ*) is an equilibrium point of the Aug-PDG(7).

    3 Main results

    In this section,the main result on the linear convergence of the Aug-PDG is presented.

    3.1 Convergence results

    The following assumptions are essential for deriving the main result.

    Assumption 1The problem (1) has a unique feasible solutionx*,and atx*,the linear independence constraint qualification (LICQ) holds atx*,i.e.,{?gi(x*)is linearly independent,whereI:[m]|gi(x*)0}is the so-called active set atx*.

    Under Assumption 1,the optimal Lagrangian multiplierλ*is also unique[27].Denote byJthe Jacobian ofg(x)atx*andJIthe matrix composed of the rows ofJwith the indices inI.LICQ in Assumption 1 also implies that0[25].Define

    to be the smallest eigenvalue of

    Assumption 2The objective functionf(x)has a quadratic gradient growth with parameterμ>0 over Rn,i.e.,for anyRn,

    The concept of quadratic gradient growth was introduced in [28],which is a relaxation of strong convexity condition for guaranteeing linear convergence of gradient-based optimization algorithms.In fact,the class of functions having quadratic gradient growth include the strongly convex functions as a proper subset and some functions with quadratic gradient growth are even not convex.

    Assumption 3The objective functionfislsmooth over Rn,i.e.,

    For any[m],gi(x) isLgi-smooth and has bounded gradient,i.e.,for someLgi,Bgi >0 and anyRn,there holds

    Denote

    Under Assumption 3,one can obtain that

    Before giving the main result of this paper,it is convenient to list the following concept similar to that in continuous-time setting[29].

    Definition 1Consider the dynamicsz(t+1)φ(z(t)) with initial pointz(0)z0.Assume thatzeis an equilibrium point satisfyingzeφ(ze).zeis said to be a semi-global linear stable point if for anyh >0,there existc >0 and 0<γ <1 such that for anyz0satisfying‖z0-ze‖≤h,‖z(t)-ze‖≤cγt‖z0-ze‖,?t≥0.zeis said to be a global linear stable point ifcandγdo not depend onh.

    Then the main result is presented as follows.

    Theorem 1Under Assumptions 1-3,if the stepsize 0<α <1 is chosen such that

    whereδ >0 satisfies

    where 0<γ <1 satisfies

    Proof The proof is postponed to the next subsection.

    Remark 1The selection of parametersαandδensures thatc1,c2,c3are positive,and thenγ >0 can be guaranteed.From Theorem 1,one can see that the convergence rate is related toπ*,where the distanced0between the initial point and the optimal one is involved.Therefore,the convergence rate decreases to 0 asd0goes to infinity.The rate also changes as(xk,λk)approaches the optimal point.In fact,any(xk,λk)can be regarded as an initial point of the studied algorithm in the sense of running the algorithm from the point (xk,λk).Then,when (xk,λk) approaches the optimal point,π*is smaller,leading to smaller 1-γ.As a result,the rate is slow at the beginning and then becomes fast whenxkgoes to the optimal point.Consequently,Theorem 1 does not guarantee the existence of a global linear convergence,and only semi-global linear convergence can be ensured.

    Remark 2Compared with the most related literature [25],where a continuous-time algorithm,called Aug-PDGD,was studied with a semi-global exponential convergence,a discrete-time algorithm Aug-PDG is analyzed here with a semi-global linear convergence.Although discrete-time algorithms may be obtained by discretizing the continuoustime Aug-PDGD using such as explicit Euler method,it is unclear how to select the sampling stepsize to guarantee the convergence especially in the sense of semi-global convergence.In comparison,an explicit bound on the stepsizeαis established here.However,one drawback is that the upper bound ofαdepends on the bounds of the cost functions,constraint functions and their gradients,as well as the optimal solution.This may be tackled by adaptive methods,which will be our future research of interest.

    3.2 Proof of Theorem 1

    To prove Theorem 1,intermediate results are first presented as follows.

    Lemma 3[22]For anyy,y*R,there exists[0,1]such that[y]+-[y*]+ξ(y-y*).Specifically,ξcan be chosen as

    Lemma 4Under Assumption 1-3,xkgenerated by the Aug-PDG(7)satisfies

    ProofBy iterations in(7),one has that

    Based on

    for the second term on the right side of(18),one has

    Note that

    Define

    if(ρgi(xk)+λi,k)-(ρgi(x*)+λ*)0.Thenξi,j[0,1].It can be obtained from Lemma 3 that

    Substituting Eq.(23)into Eq.(20)yields that

    By Eqs.(19)-(24)and Assumption 3,one has that

    For the third term on the right side of Eq.(18),

    where the inequality is derived based on Assumption 2 and the convexity ofU(x,λ)atx,i.e.,

    for anyx,x'Rn.Plugging Eq.(25)and Eq.(26)into Eq.(18),one concludes that Eq.(17)holds.

    Lemma 5Under Assumptions 1-3,λkgenerated by the Aug-PDG(7)satisfies

    ProofFor‖λk+1-λ*‖2,by iteration (7b),one has

    Recalling?λL(x*,λ*)?λU(x*,λ*)0 and the notation ofξi,kin Eqs.(21)-(22),it can be obtained that

    whereΞkdiag{ξ1,k,...,ξm,k},the inequality is obtained based on Eq.(12) and‖Ξk‖≤1,‖Ξk -Im‖≤1 forξi,k[0,1],[m].

    AsU(x,λ)is concave atλ,one has

    By Eqs.(30)-(31),it can be derived from Eq.(29)that Eq.(28)holds.

    In what follows,we prove Theorem 1 in detail.

    Proof of Theorem 1Define

    where

    The bounds of‖xk+1-x*‖2andλk+1-λ*are given in Lemmas 4 and 5,respectively.It suffices to compute the bound of 2δ(xk+1-x*)TJT(λk+1-λ*).

    Note that(x*,λ*)is the KKT point of(1),that is,

    It is easy to obtain that

    By Eq.(24),one has that

    Similar to Eqs.(21)-(22),define

    then

    whereΞλ:diag{ξ1,λ,...,ξm,λ}.For the last term of Eq.(36),it holds that

    Therefore,by Eqs.(30)and(37)-(41),Eq.(36)is rewritten as

    where the last inequality is obtained by a simple computation,along with Eqs.(24),(30)and(38).

    Define

    Combining with Eqs.(17) (28) (42) and (44),the bound ofVδ,k+1can be derived that

    Hence,to proveQ ?0,it suffices to ensure

    By Eq.(16),one can obtain that

    where

    Subsequently,by the mathematical induction,Eq.(52)can be proved.The proof is completed.

    4 Example

    In this section,an example motivated by applications in power systems[25]is presented to illustrate the feasibility of the discrete-time Aug-PGD(7).Consider the following constrained optimization problem:

    wherex(p1...pn q1...qn)Tandpv,i,Si,[n]are constants.The problem Eq.(53)along with an affine inequality constraint was considered in [25] but via a continuous-time dynamics Aug-PDGD.The affine inequality constraints can be regarded as special nonlinear constraints.Hence the algorithm Aug-PDG in this paper is applicable to the optimization problem Eq.(53).

    Letn10,S(S1,...,Sn)(2.7,1.35,2.7,1.35,2.025,2.025,2.7,2.7,1.35,2.025) andpv(pv,1,...,pv,n)4S.Chooseρ0.1.Three cases are simulated,where the initial point (x0,λ0) is selected randomly such that the distance from the initial point (x0,λ0) to the optimal point (x*,λ*) (i.e.,d0) is 0.1‖(x*,λ*)‖,5‖(x*,λ*)‖and 10‖(x*,λ*)‖,respectively.The curves of the normalized distancewith respect to the iterationkare shown in Fig.1 when choosingα0.1 and in Fig.2 when choosingα0.05,where for each case,10 instances of randomly selected initial points are considered.From Fig.1,it can be seen that the convergence rates are different for differentd0,and the distance‖(xk-x*,λk-λ*)‖linearly decays on the whole.From Figs.1 and 2,when the algorithm is convergent by choosing appropriate stepsizeα,it can be seen that the convergence rate is smaller ifαis smaller.Moreover,for each case,the decreasing rate also changes as (xk,λk) approaches the optimal point.Specifically,the decreasing rates are small at the beginning and then become large when(xk,λk)goes to the optimal point.These observations support the semi-global linear convergence of the Aug-PDG,which is consistent with our theory analysis.

    Fig.1 Simulation of the relative distances to‖(x*,λ*)‖with respect to iteration k by choosing α0.1

    Fig.2 Simulation of the relative distances to‖(x*,λ*)‖with respect to iteration k by choosing α0.05

    5 Conclusion

    In this paper,the linear convergence of an Aug-PDG in discrete-time for convex optimization with nonlinear inequality constraints has been investigated.Under some mild assumptions,the Aug-PDG has been proved to semi-globally converge at a linear rate,which depends on the distance from the initial point to the optimal point.Future research of interest may be to adopted adaptive methods to determine the upper bound of stepsizes.

    猜你喜歡
    工程系同濟(jì)大學(xué)收斂性
    《同濟(jì)大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》介紹
    Lp-混合陣列的Lr收斂性
    《同濟(jì)大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》介紹
    《同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿啟事
    《同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿啟事
    同濟(jì)大學(xué)醫(yī)學(xué)院介紹
    END隨機(jī)變量序列Sung型加權(quán)和的矩完全收斂性
    電子信息工程系
    機(jī)電工程系簡(jiǎn)介
    穿行:服裝工程系畢業(yè)設(shè)計(jì)作品
    久久精品综合一区二区三区| 蜜桃久久精品国产亚洲av| 丁香六月欧美| 午夜福利在线观看免费完整高清在 | 熟女电影av网| 久久精品国产亚洲av香蕉五月| 欧美性猛交黑人性爽| 成人无遮挡网站| 国产v大片淫在线免费观看| 国产亚洲精品综合一区在线观看| 午夜免费成人在线视频| 久久久久久久午夜电影| 亚洲国产色片| 99久久精品一区二区三区| 精品国产亚洲在线| 五月玫瑰六月丁香| 亚洲精品久久国产高清桃花| 欧美大码av| 婷婷亚洲欧美| 国产欧美日韩一区二区三| 69人妻影院| 亚洲一区高清亚洲精品| 伊人久久精品亚洲午夜| 亚洲乱码一区二区免费版| 色综合站精品国产| 老司机午夜十八禁免费视频| 久久精品亚洲精品国产色婷小说| 91av网一区二区| 叶爱在线成人免费视频播放| 久久草成人影院| 亚洲国产欧美网| 日韩人妻高清精品专区| 成人特级av手机在线观看| 99精品久久久久人妻精品| 精品久久久久久久久久免费视频| 三级男女做爰猛烈吃奶摸视频| 久久精品国产自在天天线| 我要搜黄色片| 色av中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 3wmmmm亚洲av在线观看| 男女视频在线观看网站免费| 中文在线观看免费www的网站| 欧美日韩精品网址| 男女下面进入的视频免费午夜| 性色av乱码一区二区三区2| 亚洲成a人片在线一区二区| 在线国产一区二区在线| 2021天堂中文幕一二区在线观| 九九热线精品视视频播放| 国产欧美日韩一区二区精品| 麻豆一二三区av精品| 91久久精品电影网| 久久精品综合一区二区三区| 亚洲精品456在线播放app | 看免费av毛片| 国产精品久久久久久亚洲av鲁大| 国内毛片毛片毛片毛片毛片| 特大巨黑吊av在线直播| 岛国在线观看网站| 国产高清激情床上av| 嫩草影院入口| 亚洲人成网站高清观看| 国产乱人视频| 在线观看美女被高潮喷水网站 | 中文在线观看免费www的网站| 在线a可以看的网站| 黄色女人牲交| 好男人在线观看高清免费视频| 天堂网av新在线| 亚洲18禁久久av| 久久久久九九精品影院| 啦啦啦观看免费观看视频高清| 国产老妇女一区| 欧美bdsm另类| 18美女黄网站色大片免费观看| 欧洲精品卡2卡3卡4卡5卡区| 999久久久精品免费观看国产| 欧美黄色片欧美黄色片| 黄色片一级片一级黄色片| a级一级毛片免费在线观看| 我的老师免费观看完整版| 久久精品夜夜夜夜夜久久蜜豆| 国产一区二区在线av高清观看| 国产探花极品一区二区| 国产精品一区二区免费欧美| 99热精品在线国产| 国内精品一区二区在线观看| 亚洲成人久久性| 18禁黄网站禁片免费观看直播| eeuss影院久久| 长腿黑丝高跟| 亚洲aⅴ乱码一区二区在线播放| 熟女人妻精品中文字幕| 黄色丝袜av网址大全| 欧美乱色亚洲激情| 人妻夜夜爽99麻豆av| 国产主播在线观看一区二区| 国产精品爽爽va在线观看网站| 午夜免费激情av| 成年女人毛片免费观看观看9| 日韩大尺度精品在线看网址| 少妇高潮的动态图| 精品人妻偷拍中文字幕| 黄片小视频在线播放| 一边摸一边抽搐一进一小说| 窝窝影院91人妻| 在线观看av片永久免费下载| 91久久精品国产一区二区成人 | 国产精品亚洲一级av第二区| 久久精品综合一区二区三区| 蜜桃久久精品国产亚洲av| 国产精品亚洲一级av第二区| 国产一区二区亚洲精品在线观看| 狂野欧美激情性xxxx| 国产精品一区二区三区四区免费观看 | 成人av在线播放网站| 99久久99久久久精品蜜桃| 国产成人系列免费观看| 国产精华一区二区三区| 国产午夜精品论理片| 亚洲精品日韩av片在线观看 | 国产伦在线观看视频一区| 亚洲精品日韩av片在线观看 | 国产精品乱码一区二三区的特点| 日韩欧美三级三区| 亚洲人成电影免费在线| 成人高潮视频无遮挡免费网站| 久久99热这里只有精品18| 午夜免费激情av| 丁香六月欧美| 搡女人真爽免费视频火全软件 | 女同久久另类99精品国产91| 亚洲无线在线观看| 日韩欧美在线二视频| 久久精品91蜜桃| 国产成人福利小说| 人妻久久中文字幕网| 麻豆成人av在线观看| 亚洲18禁久久av| 一级黄片播放器| 欧美激情久久久久久爽电影| 美女黄网站色视频| 国产视频内射| 中文亚洲av片在线观看爽| 亚洲熟妇熟女久久| 亚洲av电影不卡..在线观看| 精品国产亚洲在线| 亚洲av第一区精品v没综合| 黄色丝袜av网址大全| 日韩欧美 国产精品| 欧美日韩乱码在线| 国产色婷婷99| 男女下面进入的视频免费午夜| 免费观看的影片在线观看| 美女被艹到高潮喷水动态| 少妇人妻一区二区三区视频| 亚洲成av人片免费观看| 亚洲国产日韩欧美精品在线观看 | 99热这里只有是精品50| 精华霜和精华液先用哪个| 十八禁人妻一区二区| 可以在线观看毛片的网站| 日本与韩国留学比较| 国产精品 国内视频| 免费在线观看日本一区| 午夜免费成人在线视频| 国产亚洲av嫩草精品影院| 波多野结衣巨乳人妻| 国产一区在线观看成人免费| 一级作爱视频免费观看| 老熟妇乱子伦视频在线观看| 国产精品爽爽va在线观看网站| 欧美另类亚洲清纯唯美| 亚洲精品亚洲一区二区| 亚洲精品久久国产高清桃花| 日韩欧美在线乱码| 色吧在线观看| 在线看三级毛片| 免费av不卡在线播放| 国产一区二区激情短视频| 特大巨黑吊av在线直播| 亚洲专区中文字幕在线| 午夜免费激情av| 亚洲成av人片在线播放无| 最新中文字幕久久久久| 非洲黑人性xxxx精品又粗又长| 亚洲av五月六月丁香网| 亚洲性夜色夜夜综合| 99久久成人亚洲精品观看| 国产精品综合久久久久久久免费| 91在线精品国自产拍蜜月 | 日韩欧美免费精品| 99热这里只有是精品50| www日本黄色视频网| 桃红色精品国产亚洲av| 无限看片的www在线观看| 国产精品久久久久久精品电影| 在线免费观看不下载黄p国产 | 国产成+人综合+亚洲专区| 18禁国产床啪视频网站| 老司机午夜福利在线观看视频| 999久久久精品免费观看国产| 国内毛片毛片毛片毛片毛片| 搡女人真爽免费视频火全软件 | 国产一级毛片七仙女欲春2| 听说在线观看完整版免费高清| 人妻久久中文字幕网| 国产精品亚洲一级av第二区| 两个人视频免费观看高清| 国产成人av激情在线播放| 无遮挡黄片免费观看| a在线观看视频网站| 国产熟女xx| 一区福利在线观看| 女警被强在线播放| 在线天堂最新版资源| 听说在线观看完整版免费高清| 午夜久久久久精精品| 精品人妻1区二区| 十八禁人妻一区二区| 国产伦一二天堂av在线观看| 哪里可以看免费的av片| 在线播放国产精品三级| 亚洲精品日韩av片在线观看 | 日本成人三级电影网站| 最近最新中文字幕大全免费视频| 午夜日韩欧美国产| 中文字幕人妻丝袜一区二区| svipshipincom国产片| 午夜福利在线在线| 国产精品嫩草影院av在线观看 | 国产精品永久免费网站| 亚洲欧美日韩无卡精品| 国产成人av教育| h日本视频在线播放| 国产精品爽爽va在线观看网站| 午夜久久久久精精品| 久久国产乱子伦精品免费另类| 嫁个100分男人电影在线观看| 搡老熟女国产l中国老女人| 深夜精品福利| 一本精品99久久精品77| 少妇丰满av| 很黄的视频免费| 国产精品亚洲一级av第二区| 成人午夜高清在线视频| 国产精品亚洲美女久久久| 国产欧美日韩精品亚洲av| 内地一区二区视频在线| 亚洲精品成人久久久久久| 最近在线观看免费完整版| 老熟妇乱子伦视频在线观看| 欧美性感艳星| 成人精品一区二区免费| www.999成人在线观看| 蜜桃久久精品国产亚洲av| 欧美又色又爽又黄视频| 操出白浆在线播放| 精品国产超薄肉色丝袜足j| 亚洲欧美日韩卡通动漫| 久久精品国产综合久久久| 久久中文看片网| 色综合欧美亚洲国产小说| 日本免费一区二区三区高清不卡| 成年人黄色毛片网站| 国产乱人伦免费视频| 深爱激情五月婷婷| 免费观看精品视频网站| 久久99热这里只有精品18| 国产精品亚洲av一区麻豆| 欧美一区二区精品小视频在线| 欧美成人一区二区免费高清观看| 一本综合久久免费| 国产亚洲欧美在线一区二区| 精品一区二区三区av网在线观看| 香蕉av资源在线| 特大巨黑吊av在线直播| 国产成人系列免费观看| 首页视频小说图片口味搜索| 一进一出抽搐gif免费好疼| 母亲3免费完整高清在线观看| 欧美高清成人免费视频www| 一二三四社区在线视频社区8| 国产精品永久免费网站| 婷婷六月久久综合丁香| 熟女少妇亚洲综合色aaa.| 日本与韩国留学比较| 亚洲人成电影免费在线| 一区二区三区高清视频在线| 国产亚洲精品久久久com| 757午夜福利合集在线观看| 午夜福利免费观看在线| 免费观看精品视频网站| 日本精品一区二区三区蜜桃| 制服人妻中文乱码| 久久久成人免费电影| 色综合欧美亚洲国产小说| 日本与韩国留学比较| 国产美女午夜福利| 日韩人妻高清精品专区| 亚洲成人久久爱视频| 夜夜看夜夜爽夜夜摸| 亚洲精品影视一区二区三区av| 天天一区二区日本电影三级| 90打野战视频偷拍视频| 看片在线看免费视频| 波多野结衣高清作品| 丰满人妻熟妇乱又伦精品不卡| 欧美在线黄色| 国产精品久久久久久久久免 | 久久婷婷人人爽人人干人人爱| 国产97色在线日韩免费| 色在线成人网| 桃色一区二区三区在线观看| 日本五十路高清| 18禁黄网站禁片午夜丰满| 一区二区三区激情视频| 桃红色精品国产亚洲av| 精品国产超薄肉色丝袜足j| 国模一区二区三区四区视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲七黄色美女视频| netflix在线观看网站| 久久久久久国产a免费观看| 99热这里只有是精品50| 国产精品一区二区三区四区久久| 亚洲欧美日韩高清在线视频| 99精品欧美一区二区三区四区| 国产精品永久免费网站| 香蕉av资源在线| 亚洲国产精品久久男人天堂| 日本 av在线| 狂野欧美激情性xxxx| 亚洲乱码一区二区免费版| 99热6这里只有精品| 1000部很黄的大片| 精品一区二区三区视频在线 | 日本黄色片子视频| 国产三级在线视频| 日本黄色片子视频| 最好的美女福利视频网| 成年免费大片在线观看| 少妇人妻一区二区三区视频| 婷婷丁香在线五月| 国产高清激情床上av| 精品99又大又爽又粗少妇毛片 | 2021天堂中文幕一二区在线观| 午夜激情欧美在线| 男女午夜视频在线观看| 美女高潮的动态| 亚洲乱码一区二区免费版| 国产日本99.免费观看| 波多野结衣高清无吗| 国产成人aa在线观看| 欧美一区二区精品小视频在线| 精品一区二区三区视频在线 | 久久精品国产99精品国产亚洲性色| 久久久久亚洲av毛片大全| 无人区码免费观看不卡| 神马国产精品三级电影在线观看| 免费在线观看成人毛片| 日韩成人在线观看一区二区三区| 黄色片一级片一级黄色片| 亚洲 国产 在线| 国产真实乱freesex| 精品一区二区三区人妻视频| 国产美女午夜福利| 女人高潮潮喷娇喘18禁视频| 亚洲精品456在线播放app | 此物有八面人人有两片| 久久久久性生活片| 久久人人精品亚洲av| 欧美激情在线99| 亚洲国产精品合色在线| 亚洲精华国产精华精| 欧美最新免费一区二区三区 | 99热6这里只有精品| 欧美+亚洲+日韩+国产| 黄色片一级片一级黄色片| 嫩草影视91久久| 久久久久性生活片| 亚洲成人中文字幕在线播放| 亚洲不卡免费看| 日韩欧美一区二区三区在线观看| 日本一本二区三区精品| 亚洲精品粉嫩美女一区| 欧美高清成人免费视频www| 黄色视频,在线免费观看| 啦啦啦韩国在线观看视频| 国产av不卡久久| 国产精品野战在线观看| 欧美性感艳星| 欧美不卡视频在线免费观看| 国产成人影院久久av| 在线天堂最新版资源| 亚洲av免费高清在线观看| 精品一区二区三区人妻视频| 三级毛片av免费| 亚洲av成人不卡在线观看播放网| 国产单亲对白刺激| 国产精品香港三级国产av潘金莲| 99久久成人亚洲精品观看| 精品乱码久久久久久99久播| 国产精品野战在线观看| 色综合站精品国产| 中文字幕久久专区| 午夜福利欧美成人| 婷婷丁香在线五月| 欧美av亚洲av综合av国产av| 亚洲人与动物交配视频| av在线蜜桃| 午夜免费激情av| 欧美绝顶高潮抽搐喷水| 久久久精品欧美日韩精品| 中文字幕av在线有码专区| 长腿黑丝高跟| 99热这里只有是精品50| 欧美午夜高清在线| 亚洲精品乱码久久久v下载方式 | 蜜桃亚洲精品一区二区三区| 嫩草影视91久久| 男插女下体视频免费在线播放| 欧美精品啪啪一区二区三区| 两个人视频免费观看高清| 亚洲av二区三区四区| 男人的好看免费观看在线视频| 国产午夜福利久久久久久| 欧美日韩福利视频一区二区| 女人高潮潮喷娇喘18禁视频| 校园春色视频在线观看| 亚洲av免费在线观看| 亚洲成av人片免费观看| 九九在线视频观看精品| 在线观看免费午夜福利视频| 日韩欧美精品v在线| 内地一区二区视频在线| 亚洲国产欧洲综合997久久,| 成人精品一区二区免费| 亚洲av第一区精品v没综合| 婷婷精品国产亚洲av| 禁无遮挡网站| 欧美又色又爽又黄视频| 欧美另类亚洲清纯唯美| 五月玫瑰六月丁香| 中文资源天堂在线| 色播亚洲综合网| 精品国产亚洲在线| 亚洲人成伊人成综合网2020| 在线观看一区二区三区| 亚洲在线观看片| 综合色av麻豆| 国产探花极品一区二区| 日韩欧美精品免费久久 | 床上黄色一级片| 在线观看舔阴道视频| 69av精品久久久久久| 麻豆成人av在线观看| 久9热在线精品视频| 午夜免费成人在线视频| 亚洲国产精品久久男人天堂| 99在线人妻在线中文字幕| 欧美乱码精品一区二区三区| 色精品久久人妻99蜜桃| 国产爱豆传媒在线观看| 国产单亲对白刺激| 高清日韩中文字幕在线| 波多野结衣巨乳人妻| 搡老妇女老女人老熟妇| 一区二区三区激情视频| 免费在线观看成人毛片| 热99在线观看视频| 国产色婷婷99| 欧美日韩乱码在线| 在线天堂最新版资源| 国产麻豆成人av免费视频| 一级a爱片免费观看的视频| 中文字幕人妻熟人妻熟丝袜美 | 日本熟妇午夜| a在线观看视频网站| 精品人妻偷拍中文字幕| 成人亚洲精品av一区二区| 亚洲av免费在线观看| 午夜日韩欧美国产| 国产精品 国内视频| 99久久久亚洲精品蜜臀av| 97超级碰碰碰精品色视频在线观看| 精品国产三级普通话版| 窝窝影院91人妻| 亚洲av第一区精品v没综合| 在线天堂最新版资源| 在线免费观看不下载黄p国产 | 国产午夜精品久久久久久一区二区三区 | 757午夜福利合集在线观看| 黄片大片在线免费观看| 亚洲av成人不卡在线观看播放网| 日韩欧美在线二视频| 国产黄a三级三级三级人| 国产探花极品一区二区| 成年人黄色毛片网站| 男女午夜视频在线观看| 中文字幕人妻熟人妻熟丝袜美 | 网址你懂的国产日韩在线| 国产亚洲精品久久久com| 亚洲真实伦在线观看| 在线播放国产精品三级| 淫秽高清视频在线观看| 免费av不卡在线播放| 一进一出抽搐动态| 男人舔女人下体高潮全视频| 怎么达到女性高潮| 日日干狠狠操夜夜爽| 亚洲一区二区三区色噜噜| 两人在一起打扑克的视频| 久久久久久久久大av| 亚洲av中文字字幕乱码综合| av视频在线观看入口| 我的老师免费观看完整版| 老司机午夜福利在线观看视频| 黄片小视频在线播放| 亚洲无线观看免费| 性色avwww在线观看| 日本五十路高清| 午夜久久久久精精品| 嫩草影院精品99| 在线观看免费视频日本深夜| 欧美色欧美亚洲另类二区| 国产精品久久久久久精品电影| 少妇的逼水好多| 色精品久久人妻99蜜桃| 亚洲av成人不卡在线观看播放网| 在线播放国产精品三级| 最近视频中文字幕2019在线8| 亚洲av二区三区四区| 三级毛片av免费| 国产蜜桃级精品一区二区三区| 少妇的逼水好多| 国产精品久久视频播放| av天堂在线播放| 最新美女视频免费是黄的| 我要搜黄色片| 三级国产精品欧美在线观看| 亚洲av电影不卡..在线观看| 国产一区二区亚洲精品在线观看| 国产精品1区2区在线观看.| 少妇人妻精品综合一区二区 | or卡值多少钱| 亚洲成人免费电影在线观看| 久久久国产成人精品二区| 99热只有精品国产| 欧美乱色亚洲激情| 欧美色视频一区免费| 国产不卡一卡二| 99精品在免费线老司机午夜| 99久久无色码亚洲精品果冻| 亚洲av成人不卡在线观看播放网| 尤物成人国产欧美一区二区三区| 国产精品精品国产色婷婷| 九九在线视频观看精品| 女人被狂操c到高潮| 亚洲av成人av| 岛国在线观看网站| 狂野欧美白嫩少妇大欣赏| 国产高清激情床上av| 99久久99久久久精品蜜桃| 一本久久中文字幕| 亚洲精品日韩av片在线观看 | 欧美黄色片欧美黄色片| 天天一区二区日本电影三级| 欧美日韩福利视频一区二区| 99久久精品热视频| 香蕉久久夜色| 99在线视频只有这里精品首页| 一区福利在线观看| 99久久99久久久精品蜜桃| 禁无遮挡网站| 欧美bdsm另类| 亚洲午夜理论影院| 给我免费播放毛片高清在线观看| 国产一区二区在线观看日韩 | 最近最新中文字幕大全电影3| 我要搜黄色片| 91久久精品电影网| av黄色大香蕉| 男女之事视频高清在线观看| 免费在线观看影片大全网站| svipshipincom国产片| 国内毛片毛片毛片毛片毛片| 1000部很黄的大片| 亚洲第一电影网av| av在线天堂中文字幕| 我的老师免费观看完整版| 日本三级黄在线观看| 欧美一区二区亚洲| 一区二区三区高清视频在线| 黄色丝袜av网址大全| 搡老妇女老女人老熟妇| 91字幕亚洲| 男女那种视频在线观看| 69av精品久久久久久| av天堂在线播放| 国产高清videossex| 51午夜福利影视在线观看| 大型黄色视频在线免费观看| 精品久久久久久久久久久久久| 男女之事视频高清在线观看| 大型黄色视频在线免费观看| 国产色爽女视频免费观看| 69av精品久久久久久| 2021天堂中文幕一二区在线观| 国产探花在线观看一区二区| 国产精品 国内视频| 日韩欧美精品v在线| 亚洲av中文字字幕乱码综合| 日本一二三区视频观看|