• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于二氧化釩的吸收帶寬可調(diào)諧超材料吸收器

    2022-02-22 00:52:14江孝偉王勝武華
    光子學報 2022年1期
    關鍵詞:二氧化吸收器北京工業(yè)大學

    江孝偉,王勝,武華

    (1 衢州職業(yè)技術學院信息工程學院,浙江衢州324000)

    (2 贛南師范大學物理與電子信息學院,江西贛州341000)

    (3 北京工業(yè)大學光電子技術教育部重點實驗室,北京100124)

    0 Introduction

    Adjusting the Metamaterial(MM) cell resonance structure may show many exotic electromagnetic properties, such as negative refraction[1-2], perfect absorption[3-4], electromagnetic stealth[5-6], and electromagnetic induction transparency[7].Because MM has the above-mentioned abnormal electromagnetic properties,it has gradually become a research hotspot,and has been widely used in national defense,communications,and biomedical sensing.[8-10].

    The Metamaterial Perfect Absorber(MPA)has attracted widespread attention due to unprecedented characteristics compared to taper-like structure absorbers[11]or ordinary absorbers,such as high absorption efficiency,ultrathin thickness,and a scalable working wavelength[12].Since Landy et al.first proposed an MPA with perfect absorption characteristics[3],different types of MPAs have been proposed,and the absorption wavelengths over microwave[13],terahertz[14],infrared,[15]and visible bands have been identified[16].However,once the structural parameters of MPAs are fixed,their absorption characteristics are difficult to be tuned.On the other hand,demand on tunable MPA is increasing in many applications,such as modulators,optical switches,and smart reflectors.[17].

    To realize the dynamic tunability of the absorption characteristics of MPA,many research groups choose to incorporate varactor diodes or graphene into the design of MPA.In the low-frequency band,diodes with changeable capacitance are generally used to change the equivalent capacitance of MPA to achieve dynamic tuning of MPA absorption wavelength and absorption efficiency[18-19].In the high-frequency band,graphene is used in MPA.By changing the chemical potential of graphene,one can achieve dynamic control of absorption wavelength,absorption efficiency,and even absorption bandwidth of MPAs[20-21].

    In recent years,phase-changing material vanadium dioxide(VO2)demonstrated outstanding optical and electrical properties,and can realize the transition between metallic state and dielectric state through external excitations,such as light,electricity,and heat[22-23].Because VO2has reversible phase-changing characteristics,it is an ideal material for preparing a tunable MPA,and many research work has been done on tunable MPAs based on VO2.LEI L et al from Shenzhen University designed an absorption-bandwidth-tunable MPA based on VO2and metallic chromium materials[24].DAO Rina et al from Nanjing University of Posts and Telecommunications used VO2as a resonance unit material,and the absorption efficiency of MPA could be tuned by changing the temperature of the resonance unit[25].Our research group also demonstrated tunable absorption wavelength and absorption efficiency of MPA by using VO2and graphene in MPA[26].

    To the best of our knowledge,current VO2-based MPA can realize tunable absorption efficiency,but the tuning of absorption bandwidth is rarely involved.Moreover,the tunable MPA bandwidth in visible and nearinfrared bands is even less involved.However,at present,for the application of intelligent windows,intelligent reflectors,intelligent temperature control systems,and heat emitters,MPA absorption bandwidth is required to be tunable in the visible and near-infrared bands[27-28].Therefore,in this paper,a bandwidth-tunable VO2-based MPA in visible and near-infrared bands is proposed and studied using Finite Difference Time Domain(FDTD)method.The simulation results showed that the bandwidth,Wa,of the tunable MPA proposed in this paper could reach 1.03 μm and 0.652 μm with absorption efficiency higher than 90% in the VO2dielectric and metallic state.By analyzing the electromagnetic field distribution of MPA,it was observed that as VO2was in the dielectric state,MPA achieved a wide bandwidth and high absorption owing to the Propagating Surface Plasmon(PSP),Localized Surface Plasmon(LSP),and the resonance of Fabry-Perot(FP)cavity.

    1 Device structure and theory

    The structure of the absorption-bandwidth-tunable MPA is shown in Fig.1.Fig.1(a)is overall view of the MPA structure,and Fig.1(b)is zoom-in view of one MPA unit cell.The MPA unit cell is composed of an Au substrate and four cylindrical resonance units with different radii.The cylindrical resonance units are of twolayered structure,with VO2as bottom layer and Au as top layer.The structural parameters are as follows:Pis the period of the MPA unit cell;r1,r2,r3,andr4are the radii of the four cylindrical resonance units respectively;hm=0.03 μm andhv=0.11 μm are the thickness of Au and VO2in the cylindrical resonance unit respectively;w1,w2,w3andw4are spacing between different cylinder resonant elements.In this work,the thickness of the Au substrate is 0.2 μm,which is thick enough to block the incident light effectively,and the transmission of the structure is nearly zero.

    Fig.1 schematic of the structure of absorption-bandwidth-tunable MPA

    With the development of material preparation technology and nanofabrication technology,the current micro-nano machining technology can fully meet the requirements of MPA processing as shown in Fig.1.Therefore,the MPA structure proposed in this paper is easier to realize in an actual experiment.The proposed structure in Fig.1 can easily be realized by current nano-fabrication technology.Firstly,a continuous VO2layer is prepared on the Au substrate by the lower-cost sol-gel method[29],then a thin Au layer was sputtered on the VO2layer by magnetron sputtering,finally the required cylindrical resonance units are patterned by electron beam lithography and ion beam etching.

    The refractive indexn,and coefficientkof Au for different light wavelengths could be obtained from Ref.[30],as shown in Fig.2.According to the Bruggeman′s effective medium theory[31],The dielectric constant of VO2could be calculated by Eq.(1).In Eq.(1),εi≈9 is the dielectric constant of VO2in the dielectric state,εmis the dielectric constant of VO2in the metallic state,andfrepresents the volume ratio of VO2in the metallic state in the entire VO2.Moreover,εmcould be obtained by Eq.(2).In Eq.(2),ωpis the plasma frequency,ωis the incident light angular frequency,τ=2 μme/e is the relaxation time,meis the mass of free electrons,u≈2 cm2/V.sis carrier mobility,andeis the amount of free electron charge.Furthermore,fcould be obtained by Eq.(3),whereTrepresents the environment temperature,T0=68° C represents the VO2phase transition temperature,and ΔT=6°C is the transition width.Eqs.(1)~(3)could be combined to obtain the refractive index,nVO2,and the extinction coefficient,kVO2,of VO2for different wavelengths at different temperatures,as shown in Fig.3.

    Fig.2 Refractive index and extinction coefficient of Au

    Fig.3 Refractive index and extinction coefficient of VO2 at different temperatures

    2 Results and discussions

    The characteristics of proposed MPA is studied by FDTD simulation.Since the MPA is of periodic structure,by carefully setting boundary conditions,it is feasible to only simulate the unit structure as shown in Fig.1(b)in FDTD software.A periodic boundary condition was added in thex- andy-directions.A perfect match layer was added in thez-direction as the boundary condition.The polarization of the incident light was set to be TM polarization(Along thexaxis).Incident light was perpendicular to the surface of the structure,which indicated the incident angleθis 0.To ensure that the simulation results were closer to reality,the grid type was auto non-uniform during simulation,and the grid accuracy was set to the maximum value of 8.The details are shown in Fig.4.

    Fig.4 Detailed settings of the FDTD simulation

    Fig.5 shows FDTD simulation results of absorption spectra of MPA at different temperatures.As Fig.5 shows,atT=80°C,the MPA could maintain more than 90% absorption efficiency between 0.505 μm and 1.157 μm,and the absorption bandwidthWacould reach 0.652 μm.When the temperatureTdropped from 80°C to 25°C,the MPA could maintain more than 90% absorption efficiency between 0.505 μm and 1.535 μm,and the absorption bandwidth,Wareached 1.03 μm.These findings indicate that the MPA proposed in this paper can realize the tuning of absorption bandwidth by changing the VO2temperature,and the tuning range of absorption bandwidth can reach 0.378 μm.In addition,the results show that the absorption spectrum of MPA covers both the visible and near-infrared bands.

    Fig.5 Absorption as a function of wavelength of MPA at different temperature

    To explore the internal physical mechanism of the MPA with tunable absorption bandwidth,the electromagnetic field distribution of MPA at different resonance wavelengths is simulated and calculated at low temperature.Fig.6 shows the electric field distribution of MPA in thex-zplane(y=?0.125 μm,e.g.the center plane of cylinders with radiir3andr4)under different resonance wavelength conditions(T=25°C).As shown in Fig.6,under different resonance wavelength conditions,the electric field is basically concentrated between the gaps of the cylindrical resonance units and the corners of the Au cylinder,which indicates the incident light excites the surface plasmon polaritons(SPPs)in the MPA.Therefore,from the electric field distribution,it can be concluded that the high absorption of the MPA at each resonance wavelength is due to SPP resonance[24].

    Fig.6 Electric field distribution of MPA at the different resonance wavelength(T=25°C)

    Unlike the electric field distribution,the magnetic field distribution(T=25°C)of the MPA under different resonance wavelength conditions is very different.As shown in Fig.7(a)and 7(b),LSP resonance is the mainreason for the high absorption efficiency of MPA at long wavelengths(1.4 μm and 1.2 μm).Moreover,most of the magnetic field is confined to the VO2layer,which is between the Au cylinder and the Au substrate[23].Fig.7(e)shows that the high absorption efficiency of MPA at a short wavelength(0.505 μm)is mainly due to PSP resonance,because only a small part of the magnetic field is restricted to the VO2layer,and most of magnetic field is located between adjacent cylindrical resonance units,which is a significant PSP resonance feature[32-33].The specific proof can also be seen in Fig.9(a).As for the resonance absorption of MPA at wavelengths of 0.8 μm and 1 μm,F(xiàn)ig.7(c)and 7(d)show that it is not only caused by LSP resonance and PSP resonance,but is also mixed with FP cavity resonance,that is,the light wave oscillated back and forth between the Au cylindrical layer and the Au substrate.In this case,the Au cylindrical layer and Au substrate act as mirrors to form a FP resonator.

    Fig.7 The magnetic field distribution of MPA at the different resonance wavelength(T=25°C)

    To understand the intrinsic physical mechanism of the high absorptivity of MPA in the VO2metallic state,the electromagnetic field distribution of MPA at the wavelength of 0.505 μm and 1 μm atT=80°C is calculated,as shown in Fig.8.Fig.8(a)shows the magnetic field distribution of the MPA at a wavelength of 0.505 μm.Compared with Fig.7(e),the magnetic field distribution of VO2at the short wavelength is basically the same regardless of whether VO2is in the dielectric state or metallic state.That is,the physical mechanism leading to the high absorption efficiency of MPA at the short wavelength is the same,which is because of the PSP resonance.

    Fig.8 The electromagnetic field distribution of MPA at resonance wavelength(T=80°C)

    Comparing Fig.8(b)with Fig.7(c),it can be seen that when VO2is in the metallic state,the high absorption efficiency of MPA at long wavelengths(1 μm)is not only caused by LSP or PSP resonance,but also mainly because of FP cavity resonance.The FP cavity resonance here is mainly composed of an adjacent cylinder resonance units and air gap[24].The FP cavity length is the thickness of cylinder resonance unit(hm+hv).The width of FP cavity isw1.Owing to the formation of the FP cavity,more magnetic fields are concentrated between the air gaps of the adjacent cylinder resonance units.Figs.8(c)and 8(d)show the electric field distribution of MPA at a wavelength of 0.505 μm and 1 μm when VO2is in a metallic state,respectively.It can be seen the high absorption efficiency of MPA at high temperature is also due to the SPP resonance.

    To explore the influence of MPA structural parameters on its absorption characteristics at low temperature(VO2is in dielectric state,T=25℃),the MPA absorption spectra(T=25°C)under the conditions of different periodsPand cylindrical resonance unit radius were simulated and calculated.Fig.9(a)shows the influence ofPon the absorption spectrum of MPA.AsPincreased,the absorption bandwidth of MPA gradually narrowed,and the absorption wavelength of MPA at the short-wavelength gradually showed redshift.WhenPincreased from 0.5 μm to 0.6 μm,the initial wavelength of the MPA absorption spectrum shifted from 0.505 μm to 0.599 μm.It can be found that the absorption wavelength of MPA at short wavelengths is very close toP.This phenomenon is due to the fact that high absorption efficiency of MPA at short wavelengths is caused by PSP resonance.The PSP resonance wavelength,λPSP,is related to the MPA period,P,which can be seen in Eq.(4)[32].In Eq.(4),mis an integer,λ0is the free-space wavelength.Because the incident light is perpendicular to the surface of the MPA,θis 0,thereforeλPSPequals toP.

    Fig.9 The influence of MPA structural parameters on the absorption spectrum of MPA(T=25°C)

    As Fig.9(a)shows,although thePof MPA gradually increased,there is no obvious redshift or blueshift at the MPA wavelength of 1.4 μm.This is because,as can be seen from Fig.7(a),the high absorption efficiency of MPA at 1.4 μm is caused by LSP resonance,and periodPhas almost no effect on the LSP resonance wavelength.

    Fig.9(b)shows the MPA absorption spectra versus the radii of different cylindrical resonance units.As can be seen from Fig.9(b),with an increase in the radius of the resonance unit,the MPA absorption bandwidth,Wa,increased firstly and then decreased.In the short wavelength range between 0.5 μm and 1 μm,in all the 4 simulated conditions,the MPA could maintain a relatively high absorption efficiency(>75%).The reason for this is that the high absorption efficiency of MPA at short wavelength is caused by the PSP resonance,as shown in Fig.7(e).From Eq.(4),we know the resonance wavelength of PSP is mainly determined by the periodP,so as long asPdid not change,the MPA could maintain the PSP resonance at the short wavelength.However,the absorption efficiency varied greatly at long wavelengths(>1 μm).The reason for this is that the high absorption efficiency of MPA at long wavelength is caused by LSP resonance,as shown in Fig.7(a)and 7(b).According to Ref.[32],LSP resonance is mainly affected by the shape and size of the MPA resonance unit.Therefore,when the radius of the resonance unit is small,the absorption efficiency of MPA is extremely low because it cannot meet the conditions to excite LSP resonance;when the radius of the resonance element increases,it gradually meets the excitation conditions of LSP resonance,and increases the absorption efficiency of MPA at the long-wavelength range.

    In order to understand the influence of structural parameters on the absorption characteristics of MPA at high temperature(VO2is in metallic state,T=80℃),we changed the thickness of top Au layerhmand the radius of the resonance units.Fig.10(a)shows the influence ofhmon the absorption characteristics of MPA as VO2is in metallic state(T=80℃).As can be seen from Fig.10(a),whenhmincreases,the absorption wavelength of MPA at short wavelength almost unchanged,but the absorption efficiency gradually declines.Refer to Fig.8(a),when VO2is in metallic state,the high absorption efficiency of MPA at the short wavelength is caused by the PSP resonance.On the contrary,the absorption wavelength of MPA in the long wavelength is red-shifted.This is because when VO2is the metallic state(T=80℃),the high absorption efficiency of MPA at the long wavelength is due to the FP cavity resonance rather than LSP resonance.The relationship between the FP cavity resonance wavelengthλFPandhmis shown in Eq.(5)[34],whereneffis the FP cavity effective refractive index.According to Eq.(5),with the increase ofhm,the resonant wavelength of FP cavityλFPwill increase,resulting in the red shift of MPA at the long wavelength.

    Fig.10 The influence of MPA structural parameters on the absorption spectrum of MPA(T=80°C)

    Fig.10(b)shows the influence of the MPA resonance unit radius on the absorption characteristics of the MPA.Different from VO2in dielectric state,when VO2is in metallic state,the absorption efficiency of MPA at long wavelength gradually increases with the increase of the resonance unit radius.As comparison,when VO2is in dielectric state,as shown in Fig.9(b),with the increase of the resonance unit radius,the absorption efficiency of MPA at long wavelength first increases and then decreases.This is mainly because when VO2is metallic state,the high absorption efficiency of MPA at long wavelength is due to the FP cavity resonance.With the increase of resonance unit radius,the FP equivalent refractive index gradually meets the resonance condition of long wavelength(see Fig.11),so that the absorption efficiency of MPA at long wavelength is gradually improved.

    The relationship between the width of FP cavitywand the equivalent refractive index of FP cavityneffcan be obtained by Eqs.(6)~(8).εmandεd=1 are the dielectric constants of Au and air respectively.k0=2π/λ,whereλis the incident light wavelength.Fig.11 shows the relationship betweenwandneffwhen the wavelength of incident light is 1 μm(εm=?47.84+3.11i).It can be seen from Fig.11 that aswdecreases,that is,as the radius of the cylinder resonance unit increases,neffwill gradually increase.Because the length of the FP cavity unchanged,the resonance wavelengthλFPof the FP cavity will increase when theneffincreases.Therefore,as shown in Fig.10(b),when the radius of the cylindrical resonance unit increases,the absorption efficiency of MPA at the long wavelength increases.

    Fig.11 The influence of FP cavity wdith w on the FP cavity equivalent refractive index neff

    3 Conclusions

    We designed a MPA with high absorption efficiency and tunable absorption bandwidth in visible and nearinfrared light bands.The simulation results indicate that by changing temperature,the absorption bandwidthWaof the MPA can be tuned,and the tuning range can reach 0.375 μm.We also studied the effects of structural parameters on absorption bandwidth.By analyzing the electromagnetic field of the MPA at absorption wavelength,it can be found that when VO2is at a low temperature(T=25°C),the high absorption efficiency of the MPA in the near-infrared band is due to LSP resonance,and the high absorption efficiency of the MPA in the visible band is due to the PSP resonance.However,when VO2is at high temperature,the high absorption efficiency of the MPA in the near-infrared band is caused by FP resonance.The research in this paper can provide a theoretical basis for design and fabrication of a high-performance,dynamic,adjustable MPA in the future.

    猜你喜歡
    二氧化吸收器北京工業(yè)大學
    腔式寬光譜高吸收比標準器研制及測試分析
    北京工業(yè)大學
    基于二氧化釩相變實現(xiàn)動態(tài)可調(diào)的亞波長光學材料和器件(特邀)
    光子學報(2022年5期)2022-06-28 09:24:42
    北京工業(yè)大學
    北京工業(yè)大學
    納米二氧化鈰改性水性氟碳涂料的研究
    波浪能點吸收器結構設計與數(shù)值優(yōu)化
    北京工業(yè)大學
    能源吸收器
    基于CST的紅外吸收器特性分析
    国产成人精品一,二区| 日韩中字成人| 免费看不卡的av| 成人美女网站在线观看视频| 涩涩av久久男人的天堂| 99热这里只有精品一区| 18禁动态无遮挡网站| 久久久久网色| 99久国产av精品国产电影| 一区二区三区四区激情视频| 国产亚洲午夜精品一区二区久久 | 啦啦啦在线观看免费高清www| 欧美日韩在线观看h| 国产高潮美女av| 欧美日韩一区二区视频在线观看视频在线 | 狂野欧美激情性xxxx在线观看| 大片电影免费在线观看免费| 亚洲av.av天堂| 各种免费的搞黄视频| 中文精品一卡2卡3卡4更新| 99久久中文字幕三级久久日本| 亚洲av.av天堂| 久久精品久久久久久噜噜老黄| 欧美日韩视频精品一区| av在线蜜桃| 国产熟女欧美一区二区| 最近最新中文字幕大全电影3| 六月丁香七月| 一区二区av电影网| 国产成人精品福利久久| 久久精品国产亚洲网站| 激情 狠狠 欧美| 日产精品乱码卡一卡2卡三| 97超碰精品成人国产| 在线免费十八禁| 97超视频在线观看视频| 国产精品一区二区三区四区免费观看| 国产精品99久久99久久久不卡 | videos熟女内射| 日本av手机在线免费观看| 精品国产三级普通话版| 亚洲成人中文字幕在线播放| 黄片无遮挡物在线观看| av免费观看日本| 九九久久精品国产亚洲av麻豆| 亚洲一级一片aⅴ在线观看| 免费观看a级毛片全部| av在线app专区| 成人美女网站在线观看视频| 成人无遮挡网站| 午夜福利视频精品| 国产乱人视频| 成人毛片60女人毛片免费| 国产成人精品久久久久久| 国内精品美女久久久久久| 精品国产乱码久久久久久小说| 深夜a级毛片| 看非洲黑人一级黄片| 少妇被粗大猛烈的视频| 久久久成人免费电影| 免费观看a级毛片全部| 亚洲av成人精品一二三区| 精品久久久久久久久亚洲| 深夜a级毛片| 搡女人真爽免费视频火全软件| 欧美日韩精品成人综合77777| 久久99热这里只有精品18| 九色成人免费人妻av| 在线观看国产h片| 午夜免费鲁丝| 好男人视频免费观看在线| 99久久精品国产国产毛片| 亚洲最大成人手机在线| 免费观看的影片在线观看| 成年人午夜在线观看视频| 韩国av在线不卡| 在线亚洲精品国产二区图片欧美 | 精品一区二区三卡| 青春草视频在线免费观看| 亚洲人成网站在线观看播放| 欧美老熟妇乱子伦牲交| 内射极品少妇av片p| 特级一级黄色大片| 亚洲经典国产精华液单| 肉色欧美久久久久久久蜜桃 | 美女内射精品一级片tv| 国产精品嫩草影院av在线观看| 国产美女午夜福利| 婷婷色av中文字幕| 成人亚洲精品av一区二区| 欧美成人午夜免费资源| 一级爰片在线观看| 人妻 亚洲 视频| 人妻 亚洲 视频| 不卡视频在线观看欧美| 夫妻性生交免费视频一级片| av.在线天堂| 日韩一本色道免费dvd| 亚洲真实伦在线观看| 搡女人真爽免费视频火全软件| 爱豆传媒免费全集在线观看| 色哟哟·www| 日韩强制内射视频| 日本爱情动作片www.在线观看| 性插视频无遮挡在线免费观看| 久久国内精品自在自线图片| 亚洲欧美日韩另类电影网站 | 我要看日韩黄色一级片| 超碰av人人做人人爽久久| 91在线精品国自产拍蜜月| 欧美zozozo另类| 禁无遮挡网站| 最近的中文字幕免费完整| 女人被狂操c到高潮| 国产91av在线免费观看| 97在线人人人人妻| 国产精品嫩草影院av在线观看| 在线免费观看不下载黄p国产| 欧美成人精品欧美一级黄| 男人添女人高潮全过程视频| 高清视频免费观看一区二区| 伊人久久精品亚洲午夜| 久久精品人妻少妇| 美女被艹到高潮喷水动态| 午夜老司机福利剧场| 国产亚洲av嫩草精品影院| 蜜桃亚洲精品一区二区三区| 日韩视频在线欧美| 亚洲欧美日韩东京热| 精品国产露脸久久av麻豆| 九九久久精品国产亚洲av麻豆| 亚洲av电影在线观看一区二区三区 | 亚洲精华国产精华液的使用体验| 熟妇人妻不卡中文字幕| 欧美日韩视频高清一区二区三区二| 久久久精品94久久精品| 日韩视频在线欧美| 男人爽女人下面视频在线观看| 91在线精品国自产拍蜜月| 人妻 亚洲 视频| 激情 狠狠 欧美| 久久精品久久久久久噜噜老黄| 亚洲欧美成人综合另类久久久| 亚州av有码| 六月丁香七月| 国产精品伦人一区二区| 男人添女人高潮全过程视频| 久久久久国产网址| 国产极品天堂在线| 国产精品久久久久久精品电影| 激情五月婷婷亚洲| 久久97久久精品| 午夜爱爱视频在线播放| 熟妇人妻不卡中文字幕| 亚洲精品一二三| 国产av码专区亚洲av| 男女下面进入的视频免费午夜| 成人特级av手机在线观看| 婷婷色综合www| 晚上一个人看的免费电影| 亚洲成人一二三区av| 狂野欧美激情性bbbbbb| 久久国内精品自在自线图片| 欧美成人a在线观看| 欧美性猛交╳xxx乱大交人| 一级毛片 在线播放| 亚洲怡红院男人天堂| 少妇人妻一区二区三区视频| 男人舔奶头视频| 欧美精品人与动牲交sv欧美| 夫妻性生交免费视频一级片| 高清视频免费观看一区二区| 亚洲丝袜综合中文字幕| 国产大屁股一区二区在线视频| 香蕉精品网在线| 国产69精品久久久久777片| 国产精品一区www在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 精华霜和精华液先用哪个| 亚洲av欧美aⅴ国产| 国产精品一区二区在线观看99| 国产一区二区三区综合在线观看 | 国产欧美日韩一区二区三区在线 | 久久久久久久久久人人人人人人| 精品人妻视频免费看| 男女边吃奶边做爰视频| 国产高清有码在线观看视频| 美女主播在线视频| 午夜免费鲁丝| 欧美丝袜亚洲另类| 熟妇人妻不卡中文字幕| h日本视频在线播放| 视频区图区小说| 91久久精品国产一区二区成人| 婷婷色av中文字幕| 18禁裸乳无遮挡动漫免费视频 | 欧美日韩亚洲高清精品| 国产精品人妻久久久久久| 久久久亚洲精品成人影院| 国产精品国产三级国产av玫瑰| 亚洲最大成人av| 国产淫片久久久久久久久| 成年av动漫网址| 男女无遮挡免费网站观看| 国产精品一区二区三区四区免费观看| 精华霜和精华液先用哪个| 黄色怎么调成土黄色| 亚洲精品成人av观看孕妇| 国产又色又爽无遮挡免| 成人毛片a级毛片在线播放| 男女下面进入的视频免费午夜| 一区二区三区四区激情视频| 欧美 日韩 精品 国产| kizo精华| 久久久久久九九精品二区国产| av免费在线看不卡| 久久国内精品自在自线图片| 高清毛片免费看| 成人欧美大片| av女优亚洲男人天堂| 中文字幕制服av| 国产欧美日韩精品一区二区| 亚洲av二区三区四区| 日本午夜av视频| 国产高清国产精品国产三级 | 舔av片在线| 99久国产av精品国产电影| 97在线人人人人妻| h日本视频在线播放| 五月伊人婷婷丁香| 欧美性感艳星| 99热6这里只有精品| 日韩一区二区视频免费看| 九九在线视频观看精品| 看非洲黑人一级黄片| 久久人人爽av亚洲精品天堂 | 简卡轻食公司| 亚洲av在线观看美女高潮| 国产一区二区三区综合在线观看 | 99热这里只有是精品50| 99久久精品一区二区三区| av在线亚洲专区| 不卡视频在线观看欧美| 十八禁网站网址无遮挡 | 日韩av在线免费看完整版不卡| 两个人的视频大全免费| 永久免费av网站大全| 交换朋友夫妻互换小说| 国产黄色免费在线视频| 午夜福利在线在线| 久久久午夜欧美精品| 中文欧美无线码| 国产69精品久久久久777片| 国产69精品久久久久777片| 成年av动漫网址| 精品久久久噜噜| 特级一级黄色大片| 久久热精品热| a级毛片免费高清观看在线播放| 亚洲精品成人av观看孕妇| 国产伦在线观看视频一区| 久久99精品国语久久久| 九九久久精品国产亚洲av麻豆| 日本黄大片高清| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久99热这里只频精品6学生| 久久人人爽人人片av| 午夜免费观看性视频| 天天躁夜夜躁狠狠久久av| 国产亚洲午夜精品一区二区久久 | 边亲边吃奶的免费视频| 色哟哟·www| 久久99热6这里只有精品| 国产成人午夜福利电影在线观看| 在线观看av片永久免费下载| 97在线视频观看| 少妇熟女欧美另类| 午夜视频国产福利| 91久久精品电影网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久性生活片| 免费看不卡的av| 交换朋友夫妻互换小说| 欧美少妇被猛烈插入视频| 欧美丝袜亚洲另类| 在线精品无人区一区二区三 | 精品人妻视频免费看| 日韩强制内射视频| 人妻系列 视频| 国产伦在线观看视频一区| 26uuu在线亚洲综合色| 嫩草影院入口| tube8黄色片| 人妻夜夜爽99麻豆av| 色哟哟·www| 久久精品久久久久久久性| 国产伦在线观看视频一区| 少妇被粗大猛烈的视频| 国产成人免费无遮挡视频| 丝瓜视频免费看黄片| 最近中文字幕2019免费版| 色吧在线观看| 在线 av 中文字幕| 久热这里只有精品99| 汤姆久久久久久久影院中文字幕| 校园人妻丝袜中文字幕| 国产高清国产精品国产三级 | 天堂俺去俺来也www色官网| 久久精品国产亚洲av涩爱| 欧美日韩精品成人综合77777| 亚洲国产精品成人综合色| 国产乱人偷精品视频| 亚洲欧美一区二区三区黑人 | 91精品国产九色| av天堂中文字幕网| 五月玫瑰六月丁香| 久久99热6这里只有精品| 国产探花极品一区二区| 国产 一区精品| 亚洲婷婷狠狠爱综合网| 精品亚洲乱码少妇综合久久| 全区人妻精品视频| 久久久国产一区二区| 91精品国产九色| 国产有黄有色有爽视频| 国产精品三级大全| a级毛色黄片| 成年版毛片免费区| 日韩精品有码人妻一区| 久久久久九九精品影院| 精品一区二区三卡| 日韩av在线免费看完整版不卡| 免费大片18禁| 亚洲国产成人一精品久久久| 免费av不卡在线播放| 国产成人精品婷婷| 一级黄片播放器| 免费大片黄手机在线观看| 亚洲伊人久久精品综合| 欧美成人一区二区免费高清观看| 免费少妇av软件| 免费高清在线观看视频在线观看| 国产黄片视频在线免费观看| 精品99又大又爽又粗少妇毛片| 国产老妇女一区| a级毛片免费高清观看在线播放| 美女视频免费永久观看网站| 亚洲成人av在线免费| 亚洲av福利一区| 亚洲人与动物交配视频| 另类亚洲欧美激情| 少妇丰满av| 91精品伊人久久大香线蕉| 中文字幕人妻熟人妻熟丝袜美| 1000部很黄的大片| 一级二级三级毛片免费看| 亚洲精品456在线播放app| av.在线天堂| 国产一区亚洲一区在线观看| 少妇人妻精品综合一区二区| 内射极品少妇av片p| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 嘟嘟电影网在线观看| 三级男女做爰猛烈吃奶摸视频| 中文精品一卡2卡3卡4更新| 在线免费观看不下载黄p国产| www.av在线官网国产| 久久久久久伊人网av| 国产美女午夜福利| 大香蕉久久网| 国产一区亚洲一区在线观看| 三级国产精品片| 久久女婷五月综合色啪小说 | av女优亚洲男人天堂| 一个人看视频在线观看www免费| 亚洲国产精品专区欧美| 51国产日韩欧美| 国产亚洲av片在线观看秒播厂| 久久久久久久国产电影| 国产精品一区二区在线观看99| 大码成人一级视频| 亚洲精品,欧美精品| 亚洲av一区综合| 新久久久久国产一级毛片| 久久久午夜欧美精品| 国产免费一区二区三区四区乱码| 日韩电影二区| 国产一区二区三区av在线| 亚洲精品影视一区二区三区av| 日韩视频在线欧美| 91aial.com中文字幕在线观看| 日韩免费高清中文字幕av| 人人妻人人看人人澡| 九九久久精品国产亚洲av麻豆| 精品人妻熟女av久视频| 岛国毛片在线播放| av又黄又爽大尺度在线免费看| 麻豆乱淫一区二区| 大陆偷拍与自拍| 国产精品女同一区二区软件| 日本一本二区三区精品| 神马国产精品三级电影在线观看| 毛片一级片免费看久久久久| 青春草视频在线免费观看| 国产 一区精品| 在线 av 中文字幕| 国产探花极品一区二区| av又黄又爽大尺度在线免费看| 国产精品久久久久久精品古装| 天堂中文最新版在线下载 | 夫妻午夜视频| 男人狂女人下面高潮的视频| 在线a可以看的网站| 久久久久久国产a免费观看| 久热久热在线精品观看| 欧美日韩综合久久久久久| 18禁在线播放成人免费| 日本一本二区三区精品| 亚洲欧美日韩无卡精品| 男插女下体视频免费在线播放| 人妻一区二区av| 美女国产视频在线观看| 人妻系列 视频| 大话2 男鬼变身卡| 亚洲色图综合在线观看| 国产 一区 欧美 日韩| 欧美bdsm另类| 亚洲精品第二区| 成年女人看的毛片在线观看| 69人妻影院| 大又大粗又爽又黄少妇毛片口| 26uuu在线亚洲综合色| 少妇 在线观看| 精品国产一区二区三区久久久樱花 | 国产日韩欧美亚洲二区| 大话2 男鬼变身卡| 精品亚洲乱码少妇综合久久| 只有这里有精品99| 中文乱码字字幕精品一区二区三区| 一个人看视频在线观看www免费| 精品一区在线观看国产| 男女无遮挡免费网站观看| 久久久久久伊人网av| 色视频www国产| 亚洲精品乱码久久久久久按摩| 国产 精品1| 国内少妇人妻偷人精品xxx网站| 亚洲最大成人手机在线| 一级毛片黄色毛片免费观看视频| 午夜老司机福利剧场| 国产精品99久久久久久久久| 大码成人一级视频| 免费黄网站久久成人精品| 久久鲁丝午夜福利片| 纵有疾风起免费观看全集完整版| 国产免费视频播放在线视频| 看黄色毛片网站| 亚洲av男天堂| 啦啦啦啦在线视频资源| 两个人的视频大全免费| 亚洲高清免费不卡视频| 欧美+日韩+精品| 成人特级av手机在线观看| 丝袜喷水一区| 亚洲欧美成人综合另类久久久| 秋霞在线观看毛片| 麻豆久久精品国产亚洲av| 97热精品久久久久久| 国产探花极品一区二区| 色哟哟·www| 亚洲精品乱码久久久v下载方式| 国产精品无大码| 人妻系列 视频| 91久久精品电影网| 亚洲综合精品二区| 黄色配什么色好看| 视频中文字幕在线观看| 国产精品国产av在线观看| 国产亚洲91精品色在线| 老师上课跳d突然被开到最大视频| 欧美bdsm另类| 婷婷色av中文字幕| 亚洲精品视频女| 一本一本综合久久| 你懂的网址亚洲精品在线观看| 天天躁日日操中文字幕| 欧美+日韩+精品| 国产视频首页在线观看| 成人一区二区视频在线观看| 日韩三级伦理在线观看| 久久久久久久久久久丰满| 精品久久久久久久久亚洲| 日本黄色片子视频| 亚洲av国产av综合av卡| 日本一二三区视频观看| 人人妻人人澡人人爽人人夜夜| 69人妻影院| 内射极品少妇av片p| 亚洲av电影在线观看一区二区三区 | av在线老鸭窝| 少妇人妻久久综合中文| 国产爽快片一区二区三区| 精华霜和精华液先用哪个| 热re99久久精品国产66热6| 国产午夜福利久久久久久| 少妇猛男粗大的猛烈进出视频 | 男女国产视频网站| 亚洲三级黄色毛片| 亚洲一级一片aⅴ在线观看| 老师上课跳d突然被开到最大视频| 一区二区av电影网| 国产精品蜜桃在线观看| 只有这里有精品99| 男男h啪啪无遮挡| 久热这里只有精品99| 97在线人人人人妻| 久久99精品国语久久久| 啦啦啦中文免费视频观看日本| 久久久久久久国产电影| 51国产日韩欧美| 欧美+日韩+精品| 97在线视频观看| 国产色婷婷99| 一级毛片 在线播放| 99久久人妻综合| 精品国产三级普通话版| 成人亚洲精品av一区二区| 久久99蜜桃精品久久| 天堂俺去俺来也www色官网| 天天躁夜夜躁狠狠久久av| 日韩亚洲欧美综合| 亚洲欧美一区二区三区黑人 | 狂野欧美激情性bbbbbb| 亚洲av欧美aⅴ国产| 在线免费十八禁| 99视频精品全部免费 在线| 一区二区三区免费毛片| 三级男女做爰猛烈吃奶摸视频| 大片免费播放器 马上看| av天堂中文字幕网| 欧美日韩国产mv在线观看视频 | 亚洲成人av在线免费| 一区二区三区免费毛片| 成年版毛片免费区| 六月丁香七月| 欧美日韩综合久久久久久| 婷婷色综合www| 制服丝袜香蕉在线| 丰满少妇做爰视频| 久久久久国产网址| 久久精品久久精品一区二区三区| 精品少妇黑人巨大在线播放| 亚洲av电影在线观看一区二区三区 | 人人妻人人澡人人爽人人夜夜| av卡一久久| 亚洲成人av在线免费| 成人无遮挡网站| 国产熟女欧美一区二区| 毛片女人毛片| 成人毛片a级毛片在线播放| 水蜜桃什么品种好| 亚洲av国产av综合av卡| 三级国产精品片| 中文欧美无线码| 国产v大片淫在线免费观看| 99热国产这里只有精品6| 亚洲人成网站在线播| 日韩制服骚丝袜av| 中文在线观看免费www的网站| 99热网站在线观看| 国产成人a区在线观看| 国产亚洲91精品色在线| 国产淫语在线视频| 久久久精品94久久精品| 免费看不卡的av| 综合色丁香网| 少妇高潮的动态图| 六月丁香七月| 亚洲国产高清在线一区二区三| 美女cb高潮喷水在线观看| 永久免费av网站大全| 国产黄色视频一区二区在线观看| 日韩av不卡免费在线播放| 午夜激情福利司机影院| 边亲边吃奶的免费视频| 欧美日韩精品成人综合77777| 人妻系列 视频| 国产一区二区三区av在线| 亚洲精品中文字幕在线视频 | 街头女战士在线观看网站| 插阴视频在线观看视频| 成人毛片a级毛片在线播放| 亚洲欧美日韩另类电影网站 | 美女脱内裤让男人舔精品视频| 久久久色成人| 2022亚洲国产成人精品| 美女高潮的动态| 美女国产视频在线观看| 真实男女啪啪啪动态图| av一本久久久久| 内射极品少妇av片p| 性插视频无遮挡在线免费观看| 高清午夜精品一区二区三区| 亚洲四区av| 1000部很黄的大片| 国产老妇伦熟女老妇高清| 日韩一本色道免费dvd| 亚洲精品成人av观看孕妇| 国产精品福利在线免费观看| 女人被狂操c到高潮| 亚洲欧洲国产日韩| 卡戴珊不雅视频在线播放| 免费黄频网站在线观看国产| 自拍欧美九色日韩亚洲蝌蚪91 | 精品久久久久久电影网|