朱哿瑞 王靜 劉成海 陶艷艷
摘要 自從20世紀(jì)90年代確認(rèn)馬兜鈴酸具有腎毒性以來,已有部分藥材被禁用;但由于部分含馬兜鈴酸藥物的不可替代性,仍然應(yīng)用于臨床。圍繞馬兜鈴酸腎毒性及其毒性機(jī)制展開了諸多研究,本文對(duì)馬兜鈴酸腎毒性機(jī)制研究進(jìn)行綜述,以期為臨床合理運(yùn)用含馬兜鈴酸類中草藥及預(yù)防中藥藥源性腎損傷提供參考。
關(guān)鍵詞 馬兜鈴酸;馬兜鈴酸腎病;腎毒性
Abstract Since aristolochic acids(aristolochic acids,AAs) were confirmed to be nephrotoxic in the 1990s,some drugs which contains AAs have been banned while some others are still used in clinical practice due to their irreplaceable properties.A lot of studies have been carried out on the nephrotoxicity and toxic mechanism of aristolochic acids.This paper reviews the mechanism of aristolochic acids nephrotoxicity in order to provide reference for the rational use of Chinese herbal medicine containing aristolochic acids and the prevention of drug-induced renal injury.
Keywords Aristolochic acids; Aristolochic acid nephropathy; Nephrotoxicity
中圖分類號(hào):R285.5文獻(xiàn)標(biāo)識(shí)碼:A doi:10.3969/j.issn.1673-7202.2022.01.024
馬兜鈴酸(Aristolochic Acids,AAs)是一類硝基菲甲酸類化合物的總稱,廣泛存在于馬兜鈴屬和細(xì)辛屬植物中[1]?,F(xiàn)代藥理研究證明,AAs藥理活性廣,具有利尿、抗感染、消炎、抗蛇毒和抗癌等功效,因而廣泛應(yīng)用于臨床[2]。但含AAs的中藥或中成藥有潛在的不良反應(yīng),如腎毒性、致癌性和致突變性等。繼20世紀(jì)90年代初中國(guó)學(xué)者吳松寒首次報(bào)道使用含AAs的中藥導(dǎo)致急性腎功能衰竭后[3],1993年又有比利時(shí)學(xué)者報(bào)道了含有AAs成分的減肥藥導(dǎo)致腎功能衰竭的事件,此后,國(guó)內(nèi)外又相繼報(bào)道了此類事件,并將之命名為“中草藥腎病”(Chinese Herb Nephropathy,CHN)[4-6]。2001年,中國(guó)學(xué)者胡世林提出用AAs腎?。ˋristolochic Acid Nephropathy,AAN)取代CHN,這一舉措得到了國(guó)際腎臟病學(xué)界的認(rèn)可,并一直沿用至今。但到目前為止,其腎毒性機(jī)制尚未完全明了解及闡明。
1 AAs的結(jié)構(gòu)
AAs是天然植物中的硝基菲羧酸,主要包含AAsⅠ(AAⅠ)和AAsⅡ(AAⅡ)[7],此外,還含有其他一些衍生物,如7-羥基AAⅠ、AAⅠa、AA-C等[8]。研究證明,AAⅠ毒性最強(qiáng),AAⅠI次之,二者是引起腎毒性和基因毒性的主要原因,其他結(jié)構(gòu)類似物則毒性較低或幾乎沒有毒性[9]。Michl等[1,10]認(rèn)為,AAⅠ和AAⅡ不一定是馬兜鈴屬唯一的或最有效的毒性成分,其他化合物如AAsⅣ(AAⅣ)也有毒性;AAⅡ在體內(nèi)不會(huì)引起腎毒性,但其致癌性比AAⅠ更強(qiáng)[11]。
AAⅠ在有氧條件下生成的代謝產(chǎn)物為AAsIa(Aristolochic Acid CYP1A1、CYP1A2a,AA CYP1A1、CYP1A2a),在厭氧條件下生成的代謝產(chǎn)物為馬兜鈴內(nèi)酰胺Ⅰ(Hydroxyaristolatam Ⅰ,ALⅠ);AAⅡ只在厭氧條件下生成馬兜鈴內(nèi)酰胺Ⅱ(Hydroxyaristolatam Ⅱ,ALⅡ)[2]。研究發(fā)現(xiàn),當(dāng)AAs進(jìn)入人體后,一部分經(jīng)肝臟細(xì)胞色素(Cytochrome Protein,CYP)的作用,分解成無活性的AAⅠa及N-羥基馬兜鈴內(nèi)酰胺Ⅰa(N-hydroxyaristolactam Ⅰa,N-OH-ALIa)等代謝產(chǎn)物[12];另一部分經(jīng)肝臟、腎臟醌氧化還原酶(NADPH)、CYP1A1、CYP1A2等酶的還原活化作用,生成ALⅠ,進(jìn)一步與DNA堿基環(huán)外氨基結(jié)合生成加合產(chǎn)物DNA-AAⅠ。DNA-AAⅠ被認(rèn)為是導(dǎo)致AAN的關(guān)鍵[13]。
2 AAsI腎毒性機(jī)制
AAsI腎毒性的病例特征可概括為:腎臟體積縮小、形態(tài)不規(guī)則;鏡下可見廣泛的間質(zhì)纖維化伴腎小管萎縮和/或消失,由淺層皮層向深層皮質(zhì)延伸;盡管在后期表現(xiàn)為毛細(xì)血管輕度塌陷和基底膜皺縮,腎小球損傷相對(duì)較輕[14-16]。而其腎毒性機(jī)制主要表現(xiàn)在以下幾個(gè)方面:腎小管上皮細(xì)胞壞死或凋亡、腎小管上皮細(xì)胞轉(zhuǎn)分化、微小RNA變化,此外還有DNA損傷、炎癥反應(yīng)等[17]。
2.1 腎小管上皮細(xì)胞壞死或凋亡機(jī)制
2.1.1 內(nèi)質(zhì)網(wǎng)應(yīng)激與氧化應(yīng)激 內(nèi)質(zhì)網(wǎng)應(yīng)激是細(xì)胞的一種自我保護(hù)機(jī)制,常導(dǎo)致內(nèi)質(zhì)網(wǎng)內(nèi)未折疊蛋白質(zhì)或錯(cuò)誤折疊蛋白的蓄積、鈣水平失衡,引起未折疊蛋白反應(yīng)、內(nèi)質(zhì)網(wǎng)超負(fù)荷反應(yīng)以及細(xì)胞凋亡[18]。許多研究證實(shí)內(nèi)質(zhì)網(wǎng)應(yīng)激參與了AAⅠ誘導(dǎo)的細(xì)胞凋亡,Zhu等[19]研究發(fā)現(xiàn),AAⅠ孵育HK-2細(xì)胞可以誘導(dǎo)真核細(xì)胞翻譯起始因子2α磷酸化,使內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)蛋白X盒蛋白1 mRNA的剪接增加,上調(diào)內(nèi)質(zhì)網(wǎng)應(yīng)激的標(biāo)志性蛋白葡萄糖調(diào)節(jié)蛋白78和轉(zhuǎn)錄因子CHOP(CAAT/enhancer-binding Protein-homologous Protein)基因的表達(dá),激活Caspase-3;用4-苯丁酸鈉(4-phenylbutyrate,4-PBA)預(yù)處理,發(fā)現(xiàn)可顯著抑制AAⅠ誘導(dǎo)的凋亡,從而證實(shí)AAⅠ可誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng),并且經(jīng)CHOP介導(dǎo)的通路引發(fā)細(xì)胞凋亡。Hsin等[20]認(rèn)為,AA可能是通過釋放內(nèi)質(zhì)網(wǎng)中的鈣儲(chǔ)存和細(xì)胞外鈣內(nèi)流引起鈣內(nèi)穩(wěn)態(tài)的失衡,并經(jīng)Caspase途徑誘導(dǎo)腎小管上皮細(xì)胞凋亡。此外,有研究發(fā)現(xiàn),連續(xù)給予AAⅠ后,大鼠腎臟組織中鈣蛋白酶基因表達(dá)上調(diào)、Caspase-12激活,提示由內(nèi)質(zhì)網(wǎng)Caspase-12途徑介導(dǎo)的細(xì)胞凋亡也是AAⅠ腎毒性的可能機(jī)制[21]。由此可見,AAⅠ可誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激,激活細(xì)胞內(nèi)凋亡相關(guān)的信號(hào)通路,如CHOP、Caspase-12,從而啟動(dòng)細(xì)胞的凋亡程序。
氧化應(yīng)激是指氧化還原狀態(tài)的失衡,導(dǎo)致活性氧(ROS)的增加,從而氧化細(xì)胞、細(xì)胞膜和細(xì)胞器等基本生命物質(zhì),并產(chǎn)生相應(yīng)的結(jié)構(gòu)和功能變化。國(guó)內(nèi)學(xué)者通過AAⅠ誘導(dǎo)的腎毒性大鼠模型研究發(fā)現(xiàn),AAⅠ能明顯升高模型大鼠腎組織中丙二醛(MDA)含量,并降低超氧化物歧化酶(SOD)生物活性,表明氧化應(yīng)激參與了AAⅠ腎損傷過程[22]。Romanov等[23]發(fā)現(xiàn)AAⅠ孵育腎小管上皮細(xì)胞可導(dǎo)致大量的活性氧簇和氮類(ROS/RNS)的產(chǎn)生。AAⅠ通過激活DNA損傷通路ATM-chk2-P53-p21誘導(dǎo)細(xì)胞周期阻滯于G2/M期,而DNA損傷信號(hào)通路的激活可能是因?yàn)镽OS生成的增加,其次是AAⅠ直接引起的DNA損傷。因此,氧化應(yīng)激可能為AAⅠ腎毒性的機(jī)制之一。
2.1.2 細(xì)胞凋亡 細(xì)胞凋亡,又稱程序性細(xì)胞死亡(Programmed Cell Death,PCD),是由基因控制的細(xì)胞自主有序的主動(dòng)死亡過程。過度的凋亡會(huì)破壞組織的正常結(jié)構(gòu)導(dǎo)致其功能的喪失。許多研究已證實(shí),細(xì)胞凋亡參與了AAs誘導(dǎo)的腎小管上皮損傷。利用siRNA沉默水通道蛋白-1(Aquaporin-1,AQP1)的表達(dá)可抑制AAⅠ誘導(dǎo)的人近端小管上皮(HK-2)細(xì)胞的凋亡。相關(guān)實(shí)驗(yàn)發(fā)現(xiàn),AAⅠ可激活Caspase-3同時(shí)增加HK-2細(xì)胞凋亡率,然而敲除AQP1可顯著抑制HK-2細(xì)胞中Caspase-3的活性,而這正是通過Caspase-3依賴途徑來對(duì)凋亡進(jìn)行抑制[24]。張良等[25]發(fā)現(xiàn),在AAⅠ刺激下,腎組織凋亡小體明顯增多,凋亡相關(guān)蛋白Caspase-3、Caspase-9、Bax表達(dá)水平以及Bax/Bcl-2比值升高,凋亡相關(guān)信號(hào)通路P38 MAPK激活。Zhou等[26]實(shí)驗(yàn)發(fā)現(xiàn),P53基因敲除可以抑制AAs腎病的進(jìn)展,從而表明P53通路激活可能參與AAs誘導(dǎo)的細(xì)胞凋亡過程。
2.1.3 線粒體損傷 線粒體在調(diào)節(jié)細(xì)胞生長(zhǎng)、增殖、分化和死亡以及其他生命活動(dòng)中起著重要作用[27-28]。當(dāng)AAⅠ≥200 μmol/L時(shí),細(xì)胞內(nèi)游離鈣離子濃度會(huì)明顯升高,鈣的體內(nèi)穩(wěn)態(tài)不平衡。在500 μmol/L時(shí),細(xì)胞內(nèi)線粒體自由基的產(chǎn)生可以增加,活性氧可以顯著增加,線粒體腫脹,基質(zhì)電子密度降低,嵴形態(tài)異常,表明其可能干擾了線粒體的氧化磷酸化途徑,破壞了線粒體的氧化-抗氧化平衡,導(dǎo)致線粒體功能障礙和結(jié)構(gòu)異常,加速了細(xì)胞凋亡[29]。Qi等[30]發(fā)現(xiàn),在腎小管上皮細(xì)胞(HK-2)中,AAⅠ顯著降低了線粒體膜電位與細(xì)胞內(nèi)ATP含量,并使細(xì)胞色素C釋放,Caspase-3活性明顯增加;而線粒體通透性的特異性抑制劑——環(huán)孢菌素A和米酵菌酸顯著抑制AAⅠ的損傷作用;同時(shí)還發(fā)現(xiàn),AAⅠ可以顯著抑制與線粒體通透性改變密切相關(guān)的ADP/ATP轉(zhuǎn)運(yùn)酶活性。此外,Penzo等[31]發(fā)現(xiàn),AA增加了線粒體通透性轉(zhuǎn)換孔(Permeability Transition Pore,PTP)的開放時(shí)間,后者導(dǎo)致細(xì)胞色素C的釋放,激活了Caspase-9和Caspase-3,最終導(dǎo)致細(xì)胞凋亡。總而言之,線粒體損傷也可通過影響細(xì)胞凋亡而導(dǎo)致AAs腎毒性。
2.2 微小RNA 微小RNA(miRNA)是一種非編碼RNA,長(zhǎng)度為22~24個(gè)核苷酸,其不直接參與蛋白質(zhì)的合成,而是通過改變蛋白編碼轉(zhuǎn)錄的穩(wěn)定性或減弱蛋白翻譯來調(diào)節(jié)靶mRNA的轉(zhuǎn)錄,從而影響細(xì)胞功能[32],包括促進(jìn)或抑制細(xì)胞凋亡[33-34]。Pu等[35]采用AAⅠ誘導(dǎo)大鼠急性腎損傷的第2、4、6天3個(gè)時(shí)間點(diǎn)的21個(gè)miRNA顯著上調(diào),其中有5個(gè)miRNA在3個(gè)時(shí)間點(diǎn)均上調(diào)。通過定量分析發(fā)現(xiàn),miR-21-3p在第4、6天顯著上調(diào);miR-21-3p的含量在AAⅠ處理大鼠第2天時(shí)就有增加,并且血漿中miR-21-3p的升高先于肌酐和尿素氮,miR-21-3p可作為AAⅠ誘導(dǎo)大鼠急性腎損傷的新的標(biāo)志物。Lv等[36]利用HK-2細(xì)胞在體外研究miRNA與AA腎毒性的關(guān)系,發(fā)現(xiàn)有11個(gè)差異性表達(dá)的miRNAs與AA腎毒性有關(guān),其中,Has-miR-192、Has-miR-194、Has-miR-542-3p、Has-miR-450a、Has-miR-584和Has-miR-33a等6個(gè)差異性表達(dá)的miRNAs是AAN的表型標(biāo)志物,其中Has-miR-194、Has-miR-542-3p和Has-miR-450a則是首次被發(fā)現(xiàn)與AAN相關(guān),而Has-miR-584和Has-miR-33a被認(rèn)為可能和AAN的進(jìn)展有關(guān)。此外,Jenkins等[37]的研究結(jié)果提示,AA誘導(dǎo)的細(xì)胞周期阻滯由miRNA調(diào)控,其中miR-192在AA誘導(dǎo)的G2/M阻滯中發(fā)揮關(guān)鍵作用。
2.3 腎小管上皮細(xì)胞轉(zhuǎn)分化機(jī)制 腎小管上皮細(xì)胞轉(zhuǎn)分化則是腎間質(zhì)纖維化的主要機(jī)制,轉(zhuǎn)化生長(zhǎng)因子-β(Transforming Growth Factor β,TGF-β)途徑的活化則是最主要及重要的機(jī)制之一。國(guó)內(nèi)相關(guān)研究證明,TGF-β1/Smad信號(hào)通路參與AAⅠ誘導(dǎo)的腎小管上皮細(xì)胞轉(zhuǎn)分化,并證實(shí)Smad7是AAⅠ的靶點(diǎn)[38];蛋白酶體抑制劑硼替佐米通過抑制TGFβ1/Smad3信號(hào)直接抑制AAⅠ引起的腎功能不全和蛋白尿,降低腎纖維化相關(guān)蛋白和腎損傷標(biāo)志物α-SMA、Kim1和Ngal的表達(dá),預(yù)防腎纖維化[39]。Li等[40]證實(shí)AAs還可通過激活TGF-β/Smad非依賴信號(hào)通路(TGF-β/Erk信號(hào)通路),進(jìn)而誘導(dǎo)腎小管上皮細(xì)胞間充質(zhì)轉(zhuǎn)化促進(jìn)腎小管間質(zhì)纖維化。更進(jìn)一步的研究表明,AAs還可通過激活PTEN/p-AKT途徑[41]以及過度自噬[42],誘導(dǎo)腎小管上皮細(xì)胞-間充質(zhì)轉(zhuǎn)化、細(xì)胞外基質(zhì)積聚及成纖維細(xì)胞增殖,促進(jìn)腎小管間質(zhì)纖維化。
2.4 DNA損傷 Lebeau等[43]認(rèn)為AAs在體內(nèi)可以通過體內(nèi)的硝基還原代謝生成馬兜鈴內(nèi)酰胺,并在一系列酶如微粒體酶類、胞質(zhì)酶和NADPH(醌氧化還原酶)等作用下,與DNA形成AA-DNA加合物,不斷在腎臟中累積,進(jìn)而干擾、阻斷轉(zhuǎn)錄和DNA復(fù)制導(dǎo)致細(xì)胞凋亡,甚則導(dǎo)致癌變。Stiborová等[44]也證明,AAs在體內(nèi)可以與嘌呤共價(jià)結(jié)合形成AAs-DNA加合物,導(dǎo)致A-T與T-A堿基突變,影響細(xì)胞代謝過程,此被認(rèn)為是AAs誘導(dǎo)腎毒性的關(guān)鍵因素。
2.5 其他 朱鐵錘[45]研究發(fā)現(xiàn),AAⅠ損傷組小鼠血清IL-1β和IL-18含量均顯著升高,腎組織NLRP3的表達(dá)水平亦顯著升高且隨劑量增大而升高,該研究提示AAⅠ的腎毒性可能與激活NLRP3炎性體Caspase-1-IL-1β-IL-18軸有關(guān)。楊召聰?shù)萚46]用AAⅠ連續(xù)對(duì)大鼠腹腔注射給藥14 d后,AAⅠ組大鼠的腎臟出現(xiàn)顯著的炎癥變化,IL-6和TNF-α的表達(dá)明顯升高,PI3K、AKT、NF-кB蛋白及其磷酸化蛋白的表達(dá)水平核因子升高,表明AAⅠ可以通過激活PI3K/AKT/NF-кB信號(hào)轉(zhuǎn)導(dǎo)途徑誘導(dǎo)炎癥,進(jìn)一步加重腎臟組織的損害。
3 結(jié)語
AAⅠ可通過一種或者多種機(jī)制導(dǎo)致不同程度的腎損傷,甚至導(dǎo)致慢性腎衰竭,含有馬AAs的中藥與中成藥具有不可替代的作用。因此,AAs腎毒性應(yīng)引起臨床醫(yī)生的足夠重視。臨床上應(yīng)慎用含有AAs的中草藥及中成藥;若使用,應(yīng)嚴(yán)格掌握用藥劑量和時(shí)間,避免超量或長(zhǎng)期服用,防止誤用或混用。醫(yī)生應(yīng)正確認(rèn)識(shí)AAs腎毒性的發(fā)生機(jī)制和規(guī)律,將關(guān)注點(diǎn)放在早期診斷和有效干預(yù)上,以減少AAs腎損害的發(fā)生與發(fā)展。開展對(duì)馬兜鈴屬中草藥及中成藥腎毒性的臨床及流行病學(xué)調(diào)查研究,不僅為AAs腎毒性發(fā)病機(jī)制的研究提供基礎(chǔ),也能從現(xiàn)代科學(xué)的角度更客觀地認(rèn)識(shí)中藥的毒性,從而更好地發(fā)揚(yáng)中醫(yī)、用好中藥。
參考文獻(xiàn)
[1]Michl J,Ingrouille MJ,Simmonds MS,et al.Naturally occurring aristolochic acid analogues and their toxicities[J].Nat Prod Rep,2014,31(5):676-693.
[2]Kumar V,Poonam,Prasad AK,et al.Naturally occurring aristolactams,aristolochic acids and dioxoaporphines and their biological activities[J].Nat Prod Rep,2003,20(6):565-583.
[3]吳松寒.木通所致急性腎功能衰竭二例報(bào)告[J].江蘇中醫(yī)藥,1964(10):12-13.
[4]Vanherweghem JL,Depierreux M,Tielemans C,et al.Rapidly progressive interstitial renal fibrosis in young women:association with slimming regimen including Chinese herbs[J].Lancet,1993,341(8842):387-391.
[5]Arlt VM,F(xiàn)erluga D,Stiborova M,et al.Is aristolochic acid a risk factor for Balkan endemic nephropathy-associated urothelial cancer?[J].Int J Cancer,2002,101(5):500-502.
[6]de Jonge H,Vanrenterghem Y.Aristolochic acid:the common culprit of Chinese herbs nephropathy and Balkan endemic nephropathy[J].Nephrol Dial Transplant,2008,23(1):39-41.
[7]Wang Y,Chan W.Determination of aristolochic acids by high-performance liquid chromatography with fluorescence detection[J].J Agric Food Chem,2014,62(25):5859-5864.
[8]Cosyns JP.Aristolochic acid and 'Chinese herbs nephropathy':a review of the evidence to date[J].Drug Saf,2003,26(1):33-48.
[9]Jelakovi'c B,Karanovi'c S,Vukovi'c-Lela I,et al.Aristolactam-DNA adducts are a biomarker of environmental exposure to aristolochic acid[J].Kidney Int,2012,81(6):559-567.
[10]Michl J,Kite GC,Wanke S,et al.LC-MS-and(1)H NMR-Based Metabolomic Analysis and in Vitro Toxicological Assessment of 43 Aristolochia Species[J].J Nat Prod,2016,79(1):30-37.
[11]Michl J,Ingrouille MJ,Simmonds MS,et al.Naturally occurring aristolochic acid analogues and their toxicities[J].Nat Prod Rep,2014,31(5):676-693.
[12]Schmeiser HH,Stiborovà M,Arlt VM.Chemical and molecular basis of the carcinogenicity of Aristolochia plants[J].Curr Opin Drug Discov Devel,2009,12(1):141-148.
[13]Li Y,Liu Z,Guo X,et al.Aristolochic acid I-induced DNA damage and cell cycle arrest in renal tubular epithelial cells in vitro[J].Arch Toxicol,2006,80(8):524-532.
[14]Debelle FD,Vanherweghem JL,Nortier JL.Aristolochic acid nephropathy:a worldwide problem[J].Kidney Int,2008,74(2):158-169.
[15]Depierreux M,Van Damme B,Vanden Houte K,et al.Pathologic aspects of a newly described nephropathy related to the prolonged use of Chinese herbs[J].Am J Kidney Dis,1994,24(2):172-180.
[16]Shibutani S,Dong H,Suzuki N,et al.Selective toxicity of aristolochic acids I and II[J].Drug Metab Dispos,2007,35(7):1217-22.
[17]李文婷,吳勉華.中藥馬兜鈴酸的腎毒性研究[J].世界科學(xué)技術(shù)-中醫(yī)藥現(xiàn)代化,2015,17(5):1095-1099.
[18]Wang S,Binder P,F(xiàn)ang Q,et al.Endoplasmic reticulum stress in the heart:insights into mechanisms and drug targets[J].Br J Pharmacol,2018,175(8):1293-1304.
[19]Zhu S,Wang Y,Jin J,et al.Endoplasmic reticulum stress mediates aristolochic acid I-induced apoptosis in human renal proximal tubular epithelial cells[J].Toxicol In Vitro,2012,26(5):663-671.
[20]Hsin YH,Cheng CH,Tzen JT,et al.Effect of aristolochic acid on intracellular calcium concentration and its links with apoptosis in renal tubular cells[J].Apoptosis,2006,11(12):2167-2177.
[21]邢同岳,江振洲,蘇鈺文,等.內(nèi)質(zhì)網(wǎng)應(yīng)激介導(dǎo)的腎損傷及干預(yù)和保護(hù)策略[J].藥學(xué)進(jìn)展,2012,36(10):445-451.
[22]張良,楊召聰,顧亞琴,等.馬兜鈴酸Ⅰ致大鼠腎損傷后血清miRNA差異表達(dá)的研究[J].中草藥,2016,47(11):1903-1907.
[23]Romanov V,Whyard TC,Waltzer WC,et al.Aristolochic acid-induced apoptosis and G2 cell cycle arrest depends on ROS generation and MAP kinases activation[J].Arch Toxicol,2015,89(1):47-56.
[24]Zhang L,Li J,Jiang Z,et al.Inhibition of aquaporin-1 expression by RNAi protects against aristolochic acid I-induced apoptosis in human proximal tubular epithelial(HK-2) cells[J].Biochem Biophys Res Commun,2011,405(1):68-73.
[25]張良,楊召聰,顧亞琴,等.馬兜鈴酸I激活大鼠腎臟p38 MAPK通路并導(dǎo)致腎細(xì)胞凋亡的研究[J].中藥新藥與臨床藥理,2015,26(5):576-581.
[26]Zhou L,F(xiàn)u P,Huang XR,et al.Activation of p53 promotes renal injury in acute aristolochic acid nephropathy[J].J Am Soc Nephrol,2010,21(1):31-41.
[27]Narayanan PK,Hart T,Elcock F,et al.Troglitazone-induced intracellular oxidative stress in rat hepatoma cells:a flow cytometric assessment[J].Cytometry A,2003,52(1):28-35.
[28]Shishido S,Koga H,Harada M,et al.Hydrogen peroxide overproduction in megamitochondria of troglitazone-treated human hepatocytes[J].Hepatology,2003,37(1):136-147.
[29]Bova MP,Tam D,McMahon G,et al.Troglitazone induces a rapid drop of mitochondrial membrane potential in liver HepG2 cells[J].Toxicol Lett,2005,155(1):41-50.
[30]Qi X,Cai Y,Gong L,et al.Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid[J].Toxicol Appl Pharmacol,2007,222(1):105-110.
[31]Penzo D,Petronilli V,Angelin A,et al.Arachidonic acid released by phospholipase A(2) activation triggers Ca(2+)-dependent apoptosis through the mitochondrial pathway[J].J Biol Chem,2004,279(24):25219-25225.
[32]Gon Y,Shimizu T,Mizumura K,et al.Molecular techniques for respiratory diseases:MicroRNA and extracellular vesicles[J].Respirology,2020,25(2):149-160.
[33]Otsuka K,Ochiya T.Genetic networks lead and follow tumor development:microRNA regulation of cell cycle and apoptosis in the p53 pathways[J].Biomed Res Int,2014,2014:749724.
[34]Adlakha YK,Saini N.MicroRNA:a connecting road between apoptosis and cholesterol metabolism[J].Tumour Biol,2016,37(7):8529-8554.
[35]Pu XY,Shen JY,Deng ZP,et al.Plasma-specific microRNA response induced by acute exposure to aristolochic acid I in rats[J].Arch Toxicol,2017,91(3):1473-1483.
[36]Lv Y,Que Y,Su Q,et al.Bioinformatics facilitating the use of microarrays to delineate potential miRNA biomarkers in aristolochic acid nephropathy[J].Oncotarget,2016,7(32):52270-52280.
[37]Jenkins RH,Davies LC,Taylor PR,et al.miR-192 induces G2/M growth arrest in aristolochic acid nephropathy[J].Am J Pathol,2014,184(4):996-1009.
[38]Wang Y,Zhang Z,Shen H,et al.TGF-beta1/Smad7 signaling stimulates renal tubulointerstitial fibrosis induced by AAⅠ[J].J Recept Signal Transduct Res,2008,28(4):413-428.
[39]Zeniya M,Mori T,Yui N,et al.The proteasome inhibitor bortezomib attenuates renal fibrosis in mice via the suppression of TGF-β1[J].Sci Rep,2017,7(1):13086.
[40]Li J,Zhang M,Mao Y,et al.The potential role of aquaporin 1 on aristolochic acid I induced epithelial mesenchymal transition on HK-2 cells[J].J Cell Physiol,2018,233(6):4919-4925.
[41]吳聲,梁怡然,焦曉燕,等.微小RNA-21持續(xù)上調(diào)可促進(jìn)馬兜鈴酸急性腎損傷后的腎小管間質(zhì)纖維化[J].中華腎臟病雜志,2016,32(4):292-299.
[42]Yang CC,Wu CT,Chen LP,et al.Autophagy induction promotes aristolochic acid-I-induced renal injury in vivo and in vitro[J].Toxicology,2013,312:63-73.
[43]Lebeau C,Debelle FD,Arlt VM,et al.Early proximal tubule injury in experimental aristolochic acid nephropathy:functional and histological studies[J].Nephrol Dial Transplant,2005,20(11):2321-2332.
[44]Stiborová M,Arlt VM,Schmeiser HH.DNA Adducts Formed by Aristolochic Acid Are Unique Biomarkers of Exposure and Explain the Initiation Phase of Upper Urothelial Cancer[J].Int J Mol Sci,2017,18(10):2144-2163.
[45]朱鐵錘.NLRP3在馬兜鈴酸致腎損傷小鼠腎臟組織中的表達(dá)及其意義[J].吉林大學(xué)學(xué)報(bào):醫(yī)學(xué)版,2013,39(5):919-922.
[46]楊召聰,陸茵,顧亞琴,等.馬兜鈴酸Ⅰ對(duì)大鼠體內(nèi)PI3K/Akt/NF-кB通路的影響[J].南京中醫(yī)藥大學(xué)學(xué)報(bào),2015,31(3):250-253.
(2020-06-11收稿 本文編輯:芮莉莉)