• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    One-step synthesis of FeO(OH) nanoparticles by electric explosion of iron wire underwater

    2022-02-15 03:48:06HoYinXinGoPengwnChen
    Defence Technology 2022年1期

    Ho Yin ,Xin Go ,Peng-wn Chen*

    a Institute of Systems Engineering,China Academy of Engineering Physics,Mianyang,Sichuan,612900,China

    b State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing,100081,China

    Keywords:Electric wire explosion Plasma tunnel Nanoparticles FeO(OH)

    ABSTRACT In this study,we investigated electric explosion of iron wire in distilled water with different energy input adjusted by charging voltage.The as-prepared samples were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS),showing the presence of iron and multiple iron-based compounds oxides with contents influenced by the experimental conditions.In particular,pure FeO(OH) nanoparticles were obtained using electric explosion of iron wire with energy input of 1125 J at charging voltage of 15 kV.Analysis of discharge current and resistive voltage data indicate that the high energy input induced by strong plasma discharge at high charging voltage is a key factor to form FeO(OH).This study presents a one-step method to synthesize FeO(OH) nanoparticles using electric explosion of iron wire.

    1.Introduction

    Nanoparticles (NP) typically features diameters below 100 nm taking into account their surrounding interfacial layers [1].Owing to the size effects,NPs possess various unique properties,such as quantum confinement,plasmonic effects,high catalytic efficiency,high reactivity,etc.[1-5].Therefore,investigation on synthesis and applications of NPs has been a central focus of materials science since 1970s[6-8].These and later studies demonstrated influence of structures and morphologies of NPs on their properties and applications in electronics,optics,energy storage,catalysis,medicine,etc [1,9].

    Iron or iron-based compound nanoparticles possess various outstanding properties such as high surface area,high reactivity and strong reducibility.Moreover,iron oxides and hydroxides are used for decontamination of harmful pollutants [9-12] as well as catalysts[13],electrode materials[14],for bio-medical applications[15,16]and as gas sensors[17,18].However,the toxicity of free iron inhibits the applications of iron nanomaterials [19],examples of which are mutagenicity induced by Fenton reaction[20]and auxoaction of microorganism proliferation [21].Therefore,inert and non-toxic iron oxides and hydroxides attracts more attention of researchers.

    Among above iron-based compounds,FeO(OH) can be applied as pigments[22],as precursors for high-quality magnetic materials[22,23] and as ion exchangers [24] owing to the active functional hydroxyl groups [25].Moreover,FeO(OH) is also effective as photocatalysts for cleaning water [24,25] because of its efficient UV light absorption and narrow energy gap(around 2.2 eV)[26-28].In addition,FeO(OH) can be utilized as one component of functional composite materials,including new magnetic sorbents [29],new composite electrodes[30,31]and photocatalysts[32].Besides,Liou et al.[33] reveals the high performance of FeO(OH) on catalytic degradation of explosives,indicating its high potential application on safety engineering and environmental protection fields.

    Various methods have been reported to prepare FeO(OH)nanoparticles,including solution-oxidation methods [22],hydrothermal synthesis [34-36],photosynthetic microorganismmediated synthesis [37],microwave-assisted synthesis [31,38,39],hydrolysis method [40],irradiation reduction and oxidation method [41],etc.Using solution-oxidation method,Ni et al.[22]obtained α-FeO(OH) nano-rods by purifying the precipitates from the solution containing iron sulfate and sodium acetate ions.Hydrothermal synthesis was used to prepare β-FeO(OH)nano-rod by precipitating (at certain pH values and temperatures) solutions of FeCl[34] and FeCl[18].In photosynthetic microorganismmediated synthesis,multiple microorganisms in sterile Bold's basal medium with iron salts at 20.0C are exposed to luminescence,leading to the synthesis of β-FeO(OH) as part of the physiological,chemical and photosynthesis processes[37].With respect to microwave-assisted synthesis,the solution of iron salts (e.g.FeClwith HCl) was heated using microwave oven to induce the reaction for the FeOOH synthesis [31,38].Kasparis et al.[40]employed hydrolysis method to obtainβ-FeO(OH)nanoellipsoids,in which the mixed solution of FeCland polyethyleneimine was heated using oil bath treatment at 80C for 2 h under magnetic stirring(500 rpm).Besides,Jurkin et al.[41]reported the synthesis of δ-FeOOH nanosheets through irradiation reduction and oxidation method,in which Fe(OH)was obtained by the γ-irradiation treatment to FeClsolution with 2-propanol and diethylaminoethyl-dextran hydrochloride at temperature lower than 25C,then dried and oxidized in air to produce δ-FeOOH nanosheets.

    Electric wire explosion refers to the phenomenon that,in vacuum or a certain medium,when a strong current produced by the discharge of a capacitor passes through a wire,the wire is evaporated in burst with bright flash by joule heating [42].This phenomenon is accompanied by phase transitions of the wire material and water,non-ideal plasma formation and generation of strong shock waves and light radiation fluxes[43].The ultra-hot explosion products scatter out rapidly along with shockwave,and then cools down in medium to form nanoparticles [44].Thus,the whole process of electric wire explosion consists of two general processes:joule heating process and explosion process in nano-or microseconds [45].Besides,when the energy input is much higher than the wire sublimation energy,the explosion products break down to form strong plasma tunnel during explosion process[42,43],which also influences on the formation of nanoparticles.

    Note that physical techniques provide 8% of all nanoparticles production [46].Above those techniques,electric wire explosion has been regarded as the most promising method for nanopowder production [47],and particularly for those with high batch size requested in biomedical applications[48,49].This method has been used to synthesize various nanoparticles including metal nanoparticles [42,50,51],metal compound nanoparticles [52,53],composite nanomaterials [54] and multiple carbon nanomaterials.Y?lmaz et al.[51] prepared Co nanoparticles by exploding cobalt wire in nitrogen.Krishnan et al.[52] synthesized one dimensional CuO nanoparticles by electric explosion of copper wire in distilled water.Safronov et al.[48] prepared iron oxides nanopowder for biophysical applications using iron wire explosion in air.Tanaka et al.[53] recovered tungsten carbide nanoparticles by electric explosion of tungsten wire in liquid paraffin.Gao et al.[54] produced Fe/FeO/graphene nanocomposite using electric explosion of iron wire in graphene oxide suspension.Graphite stick was used to prepare graphene materials by electric wire explosion method in distilled water [45].Furthermore,electric wire explosion can be also applied to prepare nanofluids and colloid featuring high stability [55,56].However,the synthesis of FeO(OH) nanoparticle has been rarely reported through electric wire explosion.

    In this work,we demonstrate a one-step route to prepare FeO(OH) nanoparticles via electric iron wire explosion in distilled water as oxygen-poor medium.

    2.Experimental procedure

    For the recovery of as-prepared samples,a stainless-steel electric explosion chamber with inner diameter of 100 mm and depth of 80 mm (see Fig.1) was utilized for the experiments.Two pure iron electrodes with diameter of 5 mm wrapped with insulation blocks were located on top of the chamber lid.Before the assembly of chamber,400 ml distilled water was poured into the chamber as the electric explosion medium.Then,iron wire (99.95% pure,0.2 mm in diameter and 100 mm long) was fixed to the two electrodes and immersed into distilled water during the fix of lid.Subsequently,the electrodes were connected to a 10-μF capacitor with charging voltage in range of 5-15 kV for pulsed discharge.After the pulsed discharge,the dark suspension was collected,separated and dried using a vacuum freeze dryer for further characterization.

    Fig.1. Diagram of electric explosion experiment using iron wire.1 -stainless steel chamber,2 -lid,3 -insulation blocks,4 -iron electrodes,5 -iron wire,6 -distilled water.

    X-ray diffraction patterns were collected by X pert pro MPD using Cu Kα with k=0.15406 nm with working voltage and current at 40 kV and 200 mA,respectively.The corresponding scanning step size 2θ was 0.0330.Sample morphologies were analyzed using field emission scanning electron microscopy(FE-SEM,Hitachi S-4800) at 10 kV accelerating voltage and high resolution transmission electron microscopy (TEM,FEI Tecnai G2 F20 S-Twin) at 200 kV accelerating voltage.The elemental composition and chemical bonding states of as-prepared samples were probed by Xray photoelectron spectroscopy (XPS) analysis on a Thermo ESCALAB 250 Xi spectrometer using monochromatic AlK(1486.6 eV)Xray sources.The curve fitting of XPS spectra was carried out using Shirley background correlation with Gaussian-Lorentzian peak shape.

    3.Results and discussion

    Experimental conditions of electric explosion of iron wires are listed in Table 1,including the condition of charging voltages with corresponding stored energy.Corresponding formed phases of recovered samples are also listed in Table 1 based on the multiple characterization results.

    XRD patterns showed the presence of multiple phases of recovered samples,including Fe,FeO,FeO,α-FeO(OH),γ-FeO(OH)(see Fig.2),which are also listed in Table 2.The XRD results imply that the increase of charging voltage is conducive to the formationof iron-based compounds.When the charging voltage is 5 kV with Eof 125 J,the sample consists of iron and FeO formed from the chemical reaction between ultra-hot iron and water during cooling down process[57].When charging voltage is higher(10 kV with Eof 500 J),the recovered samples contains 5 different phases,such as Fe,FeO,Fe3O4,α-FeO(OH) and γ-FeO(OH).The further increase of charging voltage (15 kV with Eof 1125 J) leads to the only two FeO(OH)phases in the recovered sample.Moreover,the contents of above phases were estimated using adiabatic approximation method and listed in Table 2.These results suggest that phase contents are influenced by experimental conditions.The increase of charging voltage decease the content of iron phase from 43.2%to 0%and increase the iron-based compounds content in the recovered samples.These results are in accordance approximately with the previous studies [54,58].

    Table 1 Experimental conditions of electric wire explosion experiments with the phases of corresponding recovered samples.a

    Fig.2. XRD patterns of the samples recovered at different charging voltages.

    Table 2 Phase contents of Nos.1-3 samples recovered from electric explosion experiments.

    Typical SEM image(Fig.3)showed the presence of 10-300 nm spherical nanoparticles with smooth surface in the recovered samples,in which the spherical morphology is induced by the shape of liquid droplets during cooling down process[42,52,57,59].Fig.4 presents typical TEM and high resolution TEM (HRTEM) images of the recovered samples,further confirming their spherical morphology in size of 10-300 nm.In addition,HRTEM images reveal the lattice distances of recovered nanoparticles confirming phases identified by XRD,indicating that higher charging voltage leads to more phases of iron-based compound in recovered samples.In No.1 sample(Fig.4b),the measured lattice distance values are 0.202 and 0.215 nm corresponding to Fe and FeO phases.In No.2 sample (Fig.4d),measured lattice distance values are 0.202,0.253,0.169,0.296,0.270 and 0.330 nm,respectively,indicating the presence of Fe,FeO,α-FeO(OH)and γ-FeO(OH).Fig.4f reveals the lattice distance values of 0.250,0.330 and 0.340 nm,suggesting the presence of α-FeO(OH) and γ-FeO(OH) in No.3 sample.Furthermore,TEM results indicate the nano-twin defect in formed nanoparticles,which is due to the fast non-equilibrium quenching nature of the whole process [55,59].These nano-defects are also reported in the previous investigation on electric wire explosion in a liquid medium [52,59].

    Fig.5 presents the XPS spectra of Nos.1-3 samples.Fig.5a,c and 5e show the O1s spectra of each sample,revealing two bands appearing at 530.1 eV and 531.5 eV,assigned to Oand OH[60-63],respectively.Furthermore,the intensities of two O1s bands indicate that the increase of charging voltage is conducive to the formation of OH,especially when the charging voltage is 15 kV.With respect to the Fe2p spectra of Nos.1-3 samples (see Fig.5b,d and 5f),the bands assigned to Fe(719.8 eV),Fe(710.7 and 723.4 eV),Fe(712.7 and 725.5 eV) [60-62,64,65] are observed.When the charging voltage is 5 kV,the Fe2p spectrum presents Feband and Feband,indicating the presence of iron and FeO in No.1 sample.When the charging voltage is higher(10 kV),the Fe2p spectrum indicates the presence of Feband and Feband,suggesting the presence of multiple iron oxides phases in No.2 sample.The further increase of charging voltage (15 kV)leads to only Feband in the Fe2p spectrum of No.3 sample.Besides,mole ratio contents of above ions were calculated based on these XPS data(see Table 3).The moles ratio of OH,Oand Fein No.3 sample is close to 1:1:1,showing the presence of FeO(OH).The phase content results are in agreement with XRD results,approximately,considering the semi-quantitative estimation of XPS characterization and the non-uniform distribution of the components in the samples.

    Fig.3. Typical SEM image and higher-magnification SEM image of sample No.3.

    Fig.4. Regular and high resolution TEM images of sample No.1 ((a) and (b),respectively),sample No.2 ((c) and (d),respectively) and sample No.3 ((e) and (f),respectively).

    Discharge current and resistive voltage waveforms were recorded during pulsed discharge(see Fig.6),showing the time-resolved phase transitions of the iron wire during pulsed discharge (e.g.melt,vaporization,plasma formation,etc.) [42,51,54].The first current peaks appearing in all current waveforms are observed at 0-8 μs,indicating the joule heating process,in which iron wire starts to melt and vaporized with the rapid increase of temperature and pressure.During the ascending stage of current waveforms(6-8 μs),the corresponding voltage waveforms increase dramatically due to the sharp resistance increase of the iron wire induced by its intense vaporization.Note that,at charging voltage of 15 kV,a second current peak which is stronger and wider comes up as the rapid drop of discharge voltage,indicating the arc-discharge (second discharge) with strong plasma tunnel [42,51,54].Under this condition,the excessive energy input enhances the activity of explosion products and induces the formation of Fe,OH,O·OH,etc,which are conducive to the formation of pure FeO(OH).

    Essentially,the energy input is the critical influence of experimental condition on the formed phases in the samples can be also analyzed in terms of energy.The charging voltage,only alternate condition in this investigation,affects stored energy(E)and pulsed discharge behavior.Thus,Eis in range of 125-1125 J based on the following equation:

    where C is the capacitance and U is the charging voltage.Discharge energy during the joule heating and during explosion processes can be calculated by

    where tand tare the beginning and end of the corresponding process,and i and uare recorded discharge current and resistive voltage,respectively.Above calculation results are listed in Table 1.Moreover,the iron wire is with average mass of 0.025 g and sublimation energy(E)of 186.6 J(sublimation energy of iron is 7480 J/g [42]).

    Note that the energy input of No.1 experiment (5 kV) is 71.2 J(E+E),less than E,suggesting the presence of large amount of iron droplets in the explosion products.Under oxygen-poor medium,such as distilled water,partial iron droplets and vapors react with HO to form FeO nanoparticles.With respect to No.2 experiment (charging voltage of 10 kV),the energy input is higher(142.7 J) (E+E),implying higher activity of explosion products.With the energy input after explosion,the ultra-hot iron droplets and vapors react with HO to form more iron-based compound nanoparticles.When the charging voltage is 15 kV,Eof No.3 experiment is greater than E.The strong overheat effect leads to the formation of highly active iron atoms.Furthermore,Evalue of No.3 experiment is 398.6 J,indicating the formation of strong plasma tunnel during explosion consisting of multiple ions with higher activity,such as Fe,·OH and OH,etc.This situation is conducive to the formation of FeO(OH).Thus,the excessive energy input induced the synthesis of pure FeO(OH) in No.3 sample.Furthermore,the huge energy input (E) of strong plasma tunnel leads to ionization of HO to form plenty of hydroxyl ions for the synthesis of FeO(OH).In addition,the strong plasma tunnel leads to higher ambient temperatures,which is similar to the conditions of hydrothermal synthesis methods to synthesize oxyhydroxides,inhibiting formation of iron oxides favoring FeO(OH) in No.3 sample.

    Fig.5. O1s and Fe2p XPS spectra of sample No.1 ((a) and (b),respectively),of sample No.2 ((c) and (d),respectively) and of sample No.3 ((e) and (f),respectively).

    Table 3 Phases contents obtained using XPS data of three different samples.

    Thus,based on the above results,the formation mechanism of FeO(OH) using electric wire explosion can be proposed.During electric explosion process,the iron wire melted and vaporized to form ultra-hot iron droplets and vapors with high temperature and pressure,leading to the subsequent explosion with chemical reaction to form iron-based compounds.When the charging voltage is high enough(15 kV),the explosion products formed during pulsed discharge breaks down and induce a strong arc-discharge.Consequently,the excessive energy input during this process generate more ·OH and OH,etc,and further enhance the activity of production.Under this condition,the as-prepared sample is pure FeO(OH).At low charging voltages(5 kV and 10 kV),the majority of energy input is injected into iron wire before explosion.Then,the formed iron droplets and vapor burst into distilled water and generates shock wave with no arc-discharge.Consequently,the lower activity of explosion products reacts with HO molecules during cooling down process,leading to formation of mixed multiple iron-based nanoparticles,such as Fe and FeO nanoparticles(5 kV)and FeO,FeOand FeO(OH)nanoparticles(10 kV).Our study also indicates that the energy input,delicately adjusted by charging voltage,is the critical factor to form FeO(OH) in distilled water medium.Moreover,the increase of energy input enhance the activity of explosion product,leading to higher compound content and higher oxygen degree of recovered samples.

    Fig.6. Typical discharge current and resistive voltage waveforms of Nos.1-3 samples.

    Moreover,in this study,the production suspension of No.3 experiment after 20 times pulsed discharge of iron wires was dried using vacuum frozen drier and measured to be 0.341 g.The results show that the yield of FeO(OH) nanoparticles is approximately 68.2% due to the mass loss during recovery and other sample treatment processes.Thus,it can be a potential industrial production process to produce FeO(OH)nanoparticles,once the system is equipped with necessary mechanical and automatic facilities,such as PLC controller,automatic wire supply roll,etc.

    4.Conclusion

    In our study,we demonstrated an approach to produce FeO(OH)nanoparticles by electric explosion of iron wire at 15 kV charging voltage.Furthermore,high energy input during strong arcdischarge is the critical factor to form pure FeO(OH) nanoparticles via electric explosion of iron wire.Moreover,changing charging voltage is an efficient way to enhance energy input and induce arcdischarge.The increase of energy input adjusted by charging voltage increases the iron-based compound content of recovered samples.At charging voltage of 15 kV,the energy input is high enough to form pure FeO(OH) nanopowder.

    This research was supported by National Natural Science Foundation of China (Grant No.11702283).

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    成人无遮挡网站| 七月丁香在线播放| xxx大片免费视频| 婷婷色av中文字幕| 一级毛片电影观看| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久久久电影| 极品少妇高潮喷水抽搐| 麻豆精品久久久久久蜜桃| 午夜福利影视在线免费观看| 97在线视频观看| 亚洲综合色惰| 国产亚洲5aaaaa淫片| 交换朋友夫妻互换小说| 看免费成人av毛片| 国产精品一二三区在线看| 男女边吃奶边做爰视频| 亚洲成色77777| 日本黄色片子视频| 国产精品一区www在线观看| 美女国产视频在线观看| 欧美+日韩+精品| 国产成人aa在线观看| 国产亚洲精品久久久com| 美女国产视频在线观看| 国产精品秋霞免费鲁丝片| 中文欧美无线码| 亚洲精品乱码久久久久久按摩| 九九在线视频观看精品| 亚洲国产精品999| 少妇的逼水好多| 国产深夜福利视频在线观看| 欧美性感艳星| 肉色欧美久久久久久久蜜桃| 亚洲丝袜综合中文字幕| 一级毛片我不卡| 日韩中文字幕视频在线看片 | 欧美一区二区亚洲| 美女主播在线视频| 老司机影院毛片| 日本欧美视频一区| 国产 精品1| 日韩强制内射视频| 日本午夜av视频| 国产精品久久久久久久电影| 熟女电影av网| 国产av精品麻豆| 黄色日韩在线| 九九在线视频观看精品| 成年美女黄网站色视频大全免费 | 99热国产这里只有精品6| 黄色一级大片看看| 日本-黄色视频高清免费观看| 久久久午夜欧美精品| 久久久久久伊人网av| 国产精品国产三级国产av玫瑰| 亚洲丝袜综合中文字幕| 香蕉精品网在线| 美女xxoo啪啪120秒动态图| 蜜臀久久99精品久久宅男| 夫妻性生交免费视频一级片| 又爽又黄a免费视频| 少妇人妻精品综合一区二区| 国产 精品1| 最后的刺客免费高清国语| 国产免费一区二区三区四区乱码| 亚洲欧美清纯卡通| 男人和女人高潮做爰伦理| 久久久色成人| 国产亚洲精品久久久com| 18禁在线无遮挡免费观看视频| 美女福利国产在线 | 搡老乐熟女国产| 激情 狠狠 欧美| 少妇人妻一区二区三区视频| 看十八女毛片水多多多| 亚洲图色成人| 一本久久精品| 五月玫瑰六月丁香| 日本与韩国留学比较| 国产成人freesex在线| 如何舔出高潮| 最后的刺客免费高清国语| 欧美成人a在线观看| 卡戴珊不雅视频在线播放| 久久久久久久精品精品| 国产免费视频播放在线视频| 亚洲精品色激情综合| .国产精品久久| 你懂的网址亚洲精品在线观看| 国产精品久久久久久久电影| 国产毛片在线视频| 国产免费又黄又爽又色| 久久久久网色| 人人妻人人添人人爽欧美一区卜 | 你懂的网址亚洲精品在线观看| 联通29元200g的流量卡| 久久久久久久久久久丰满| 日本黄色片子视频| 国产精品99久久99久久久不卡 | 我要看黄色一级片免费的| 校园人妻丝袜中文字幕| 亚洲精品久久午夜乱码| 国产视频首页在线观看| 午夜免费鲁丝| 国产欧美另类精品又又久久亚洲欧美| 国产爱豆传媒在线观看| 日本黄大片高清| 日韩av不卡免费在线播放| 亚洲精品视频女| 26uuu在线亚洲综合色| 搡女人真爽免费视频火全软件| 亚洲av.av天堂| 夫妻午夜视频| 亚州av有码| 精品久久久久久电影网| 日本色播在线视频| 纵有疾风起免费观看全集完整版| 欧美精品一区二区大全| 亚洲av中文av极速乱| 日本黄色日本黄色录像| 免费看光身美女| 欧美最新免费一区二区三区| 永久网站在线| 亚洲精品乱码久久久久久按摩| 欧美亚洲 丝袜 人妻 在线| 精品久久久久久久久亚洲| 少妇丰满av| 美女国产视频在线观看| 久久久国产一区二区| 亚洲av成人精品一二三区| 国产有黄有色有爽视频| 午夜视频国产福利| 午夜视频国产福利| 国产91av在线免费观看| 久久久色成人| 久久精品国产亚洲网站| 欧美丝袜亚洲另类| 丝瓜视频免费看黄片| 中文字幕精品免费在线观看视频 | 日韩三级伦理在线观看| 日韩精品有码人妻一区| 一级片'在线观看视频| 深爱激情五月婷婷| 嫩草影院入口| 亚洲国产色片| 嘟嘟电影网在线观看| 日本欧美视频一区| 国产在线视频一区二区| 久久久久久久久久久免费av| 久久久久久久久久人人人人人人| 成人免费观看视频高清| 久久久欧美国产精品| 国产一区有黄有色的免费视频| 三级国产精品片| 丝袜脚勾引网站| 美女cb高潮喷水在线观看| 插阴视频在线观看视频| 日韩欧美精品免费久久| 美女内射精品一级片tv| 六月丁香七月| 91精品伊人久久大香线蕉| 久久 成人 亚洲| 欧美zozozo另类| 国产成人a∨麻豆精品| 18禁在线无遮挡免费观看视频| 2021少妇久久久久久久久久久| 国产精品久久久久久av不卡| 国产免费一区二区三区四区乱码| 国产 精品1| 干丝袜人妻中文字幕| 99久久人妻综合| 91精品国产九色| 狠狠精品人妻久久久久久综合| 九九爱精品视频在线观看| 免费人成在线观看视频色| 99re6热这里在线精品视频| 免费观看av网站的网址| 国产精品偷伦视频观看了| 18禁裸乳无遮挡动漫免费视频| 久久影院123| 下体分泌物呈黄色| 亚洲精品国产av成人精品| 黄色视频在线播放观看不卡| 超碰97精品在线观看| 成人美女网站在线观看视频| 欧美人与善性xxx| 免费看不卡的av| 日韩国内少妇激情av| 免费观看av网站的网址| 国产真实伦视频高清在线观看| 18禁裸乳无遮挡动漫免费视频| 国产综合精华液| av不卡在线播放| 欧美成人午夜免费资源| 97超碰精品成人国产| 熟女电影av网| 男女下面进入的视频免费午夜| 男女边吃奶边做爰视频| 亚洲四区av| 91在线精品国自产拍蜜月| 嫩草影院新地址| 久久久精品94久久精品| 精品午夜福利在线看| 777米奇影视久久| 久久久久精品久久久久真实原创| 国产精品成人在线| 在线观看免费日韩欧美大片 | 日韩成人av中文字幕在线观看| 夜夜骑夜夜射夜夜干| 欧美成人午夜免费资源| 亚洲性久久影院| 亚洲av国产av综合av卡| 亚洲国产欧美在线一区| 男男h啪啪无遮挡| 欧美丝袜亚洲另类| 国产高清三级在线| 三级经典国产精品| 国产一区二区三区av在线| 欧美精品国产亚洲| 亚洲av福利一区| 亚洲天堂av无毛| 蜜臀久久99精品久久宅男| 永久免费av网站大全| 国产免费福利视频在线观看| 国产高潮美女av| freevideosex欧美| 看非洲黑人一级黄片| 久久久久视频综合| 在线观看国产h片| 亚洲欧美日韩卡通动漫| 春色校园在线视频观看| 欧美精品亚洲一区二区| 久久久久久久大尺度免费视频| 老女人水多毛片| 小蜜桃在线观看免费完整版高清| 久久女婷五月综合色啪小说| 国内少妇人妻偷人精品xxx网站| 777米奇影视久久| 嫩草影院新地址| 下体分泌物呈黄色| 久久精品国产a三级三级三级| 精品人妻一区二区三区麻豆| 秋霞伦理黄片| 久久精品熟女亚洲av麻豆精品| 成人免费观看视频高清| 亚洲欧美精品自产自拍| 亚洲精品,欧美精品| 亚洲精品国产色婷婷电影| 亚洲国产精品成人久久小说| av在线老鸭窝| 人体艺术视频欧美日本| 亚洲熟女精品中文字幕| 精品久久久久久久久av| 日本一二三区视频观看| 内地一区二区视频在线| 美女脱内裤让男人舔精品视频| 国产精品成人在线| 一级a做视频免费观看| 亚洲,一卡二卡三卡| 建设人人有责人人尽责人人享有的 | 国产成人精品婷婷| 国产免费视频播放在线视频| 欧美成人精品欧美一级黄| 国产在线男女| 日韩欧美 国产精品| 我的女老师完整版在线观看| 嫩草影院新地址| 99热这里只有是精品在线观看| 国产色婷婷99| av.在线天堂| 色婷婷av一区二区三区视频| 在线观看免费高清a一片| 国产精品一二三区在线看| 人妻系列 视频| av在线老鸭窝| 久久婷婷青草| 伦精品一区二区三区| 国产白丝娇喘喷水9色精品| 欧美最新免费一区二区三区| 国产亚洲5aaaaa淫片| 观看av在线不卡| 日韩大片免费观看网站| 91久久精品国产一区二区三区| 在线观看免费高清a一片| 天堂俺去俺来也www色官网| 秋霞伦理黄片| 亚洲精品亚洲一区二区| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久成人av| 啦啦啦在线观看免费高清www| 亚洲欧美日韩卡通动漫| 欧美极品一区二区三区四区| 日本黄色日本黄色录像| av免费观看日本| 天堂8中文在线网| 精品人妻熟女av久视频| 免费看日本二区| 亚洲国产成人一精品久久久| 秋霞伦理黄片| 欧美区成人在线视频| 91aial.com中文字幕在线观看| 亚洲精品色激情综合| 在线观看免费高清a一片| 免费在线观看成人毛片| 丝袜喷水一区| 精品酒店卫生间| 只有这里有精品99| 国产精品免费大片| 免费观看无遮挡的男女| 秋霞在线观看毛片| 夜夜爽夜夜爽视频| 女性生殖器流出的白浆| 日本av免费视频播放| 男女国产视频网站| 国产老妇伦熟女老妇高清| 新久久久久国产一级毛片| 九草在线视频观看| 日本午夜av视频| 久久综合国产亚洲精品| 99热这里只有是精品在线观看| a级一级毛片免费在线观看| 精品国产露脸久久av麻豆| 亚州av有码| 久久久久网色| 小蜜桃在线观看免费完整版高清| 免费高清在线观看视频在线观看| 成人漫画全彩无遮挡| 久久久久久久国产电影| 色网站视频免费| 国产成人精品婷婷| 国产精品99久久99久久久不卡 | 狂野欧美白嫩少妇大欣赏| 亚洲国产精品国产精品| h日本视频在线播放| 久久久久久久久大av| 一二三四中文在线观看免费高清| 亚洲精品第二区| 日韩一区二区视频免费看| 亚洲精品自拍成人| 激情 狠狠 欧美| 成年免费大片在线观看| 日韩,欧美,国产一区二区三区| 深夜a级毛片| 一区二区三区四区激情视频| 国产久久久一区二区三区| 成人亚洲欧美一区二区av| 99热网站在线观看| 亚洲av免费高清在线观看| 国产欧美日韩精品一区二区| 日韩av在线免费看完整版不卡| 亚洲av男天堂| 国产精品女同一区二区软件| 嫩草影院入口| 麻豆精品久久久久久蜜桃| 精品亚洲成a人片在线观看 | 九色成人免费人妻av| 中文字幕制服av| 99国产精品免费福利视频| 亚洲精品视频女| 亚洲国产欧美人成| 亚洲成人手机| 狠狠精品人妻久久久久久综合| 成人午夜精彩视频在线观看| 日本av免费视频播放| 天堂8中文在线网| 如何舔出高潮| 国产男女超爽视频在线观看| 精品午夜福利在线看| 亚洲精品成人av观看孕妇| 99国产精品免费福利视频| 亚洲伊人久久精品综合| 国产人妻一区二区三区在| 91狼人影院| 亚洲av成人精品一二三区| 在线 av 中文字幕| 另类亚洲欧美激情| 精品国产乱码久久久久久小说| 精品久久久久久久末码| 一级爰片在线观看| av在线观看视频网站免费| 卡戴珊不雅视频在线播放| 99热全是精品| kizo精华| 国产女主播在线喷水免费视频网站| 国产精品人妻久久久影院| 能在线免费看毛片的网站| 国产在线一区二区三区精| 欧美日韩综合久久久久久| 国产精品国产三级国产av玫瑰| 亚洲精品国产av成人精品| 国产日韩欧美在线精品| 欧美精品一区二区大全| 97在线视频观看| 国产视频内射| 国产在线视频一区二区| 少妇丰满av| videossex国产| 秋霞伦理黄片| 中文欧美无线码| 国模一区二区三区四区视频| 涩涩av久久男人的天堂| 国产高潮美女av| 免费大片18禁| 国产乱人偷精品视频| 亚洲激情五月婷婷啪啪| 91在线精品国自产拍蜜月| 午夜精品国产一区二区电影| 人体艺术视频欧美日本| 久久ye,这里只有精品| 久久精品国产亚洲av天美| 国产爱豆传媒在线观看| 免费观看性生交大片5| 国产一区有黄有色的免费视频| 免费高清在线观看视频在线观看| 国产成人a∨麻豆精品| 亚洲丝袜综合中文字幕| av免费观看日本| 下体分泌物呈黄色| 久久鲁丝午夜福利片| av国产免费在线观看| 最近的中文字幕免费完整| 久久亚洲国产成人精品v| 成人国产麻豆网| 欧美xxxx性猛交bbbb| 久久久久久久久久久免费av| 有码 亚洲区| 国产91av在线免费观看| 精品熟女少妇av免费看| 多毛熟女@视频| 欧美成人午夜免费资源| 91午夜精品亚洲一区二区三区| 美女内射精品一级片tv| 另类亚洲欧美激情| 久久久成人免费电影| 久久久久性生活片| 欧美xxⅹ黑人| 视频中文字幕在线观看| 欧美97在线视频| 欧美bdsm另类| 国产精品99久久99久久久不卡 | 国产一区二区三区综合在线观看 | 欧美精品人与动牲交sv欧美| 亚洲aⅴ乱码一区二区在线播放| 精品99又大又爽又粗少妇毛片| 少妇高潮的动态图| 精品久久久久久电影网| 精品久久久精品久久久| 一级毛片aaaaaa免费看小| 国产乱人视频| 能在线免费看毛片的网站| 老女人水多毛片| 91午夜精品亚洲一区二区三区| 免费观看无遮挡的男女| 国产欧美日韩精品一区二区| 一区二区av电影网| 人妻系列 视频| 中文字幕av成人在线电影| 王馨瑶露胸无遮挡在线观看| kizo精华| 中文精品一卡2卡3卡4更新| 极品教师在线视频| 亚洲av国产av综合av卡| 国语对白做爰xxxⅹ性视频网站| 久久av网站| 中文精品一卡2卡3卡4更新| 蜜桃久久精品国产亚洲av| 2022亚洲国产成人精品| 热99国产精品久久久久久7| 亚洲在久久综合| 国产亚洲午夜精品一区二区久久| 中文天堂在线官网| 日韩av免费高清视频| 91精品国产九色| 午夜福利在线观看免费完整高清在| 成人漫画全彩无遮挡| 新久久久久国产一级毛片| 汤姆久久久久久久影院中文字幕| 欧美日韩国产mv在线观看视频 | 我的女老师完整版在线观看| 建设人人有责人人尽责人人享有的 | 人妻 亚洲 视频| 免费播放大片免费观看视频在线观看| 97精品久久久久久久久久精品| 欧美区成人在线视频| 深爱激情五月婷婷| 一级毛片aaaaaa免费看小| 草草在线视频免费看| 欧美xxxx性猛交bbbb| 最近中文字幕2019免费版| 免费大片18禁| 成人午夜精彩视频在线观看| 丰满人妻一区二区三区视频av| 欧美 日韩 精品 国产| 亚洲真实伦在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲电影在线观看av| 国产精品久久久久久av不卡| 91狼人影院| 欧美国产精品一级二级三级 | 蜜桃亚洲精品一区二区三区| 亚洲av欧美aⅴ国产| 亚洲精品国产av成人精品| 伊人久久精品亚洲午夜| 国产精品三级大全| 新久久久久国产一级毛片| 精品国产乱码久久久久久小说| 免费在线观看成人毛片| 九草在线视频观看| 十分钟在线观看高清视频www | 亚洲av福利一区| 久久人人爽人人片av| 欧美+日韩+精品| 欧美另类一区| 国产 一区 欧美 日韩| 国产免费一级a男人的天堂| 午夜福利视频精品| 日韩国内少妇激情av| 中国国产av一级| h视频一区二区三区| 亚洲精品乱久久久久久| 久久精品国产鲁丝片午夜精品| 99热国产这里只有精品6| 一级av片app| 欧美亚洲 丝袜 人妻 在线| 精品人妻熟女av久视频| 成年美女黄网站色视频大全免费 | 欧美日韩综合久久久久久| av卡一久久| 亚洲av中文字字幕乱码综合| 26uuu在线亚洲综合色| 特大巨黑吊av在线直播| 纵有疾风起免费观看全集完整版| 亚洲,一卡二卡三卡| 少妇的逼水好多| 日日撸夜夜添| 啦啦啦啦在线视频资源| 永久免费av网站大全| 久久韩国三级中文字幕| 久久精品国产亚洲av涩爱| 国产国拍精品亚洲av在线观看| 国产91av在线免费观看| 欧美bdsm另类| 97精品久久久久久久久久精品| 免费av不卡在线播放| 免费观看无遮挡的男女| 人妻一区二区av| 国产高清国产精品国产三级 | 久久久久久久久大av| 99热这里只有精品一区| 欧美日韩在线观看h| 久久99热6这里只有精品| 午夜日本视频在线| 熟女人妻精品中文字幕| 纵有疾风起免费观看全集完整版| 久久久久久久精品精品| 国产午夜精品一二区理论片| 国国产精品蜜臀av免费| 在线观看免费视频网站a站| 欧美精品国产亚洲| 亚洲三级黄色毛片| 国产精品国产三级国产av玫瑰| 涩涩av久久男人的天堂| 日日撸夜夜添| 老师上课跳d突然被开到最大视频| 男女下面进入的视频免费午夜| 婷婷色av中文字幕| 国产极品天堂在线| 久久精品夜色国产| 交换朋友夫妻互换小说| 老司机影院成人| 在线天堂最新版资源| 六月丁香七月| 五月开心婷婷网| 久久6这里有精品| 国产一区二区三区综合在线观看 | 一边亲一边摸免费视频| 国产免费又黄又爽又色| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产精品国产精品| 国产伦精品一区二区三区视频9| 国产91av在线免费观看| 少妇丰满av| 丝瓜视频免费看黄片| 日本wwww免费看| 久久精品国产鲁丝片午夜精品| 久久久成人免费电影| av线在线观看网站| 亚洲欧美成人综合另类久久久| 亚洲精品乱码久久久v下载方式| 草草在线视频免费看| 亚洲av在线观看美女高潮| 精品久久久久久电影网| 亚洲图色成人| 亚洲伊人久久精品综合| 国产亚洲av片在线观看秒播厂| 亚洲国产精品专区欧美| 日日啪夜夜爽| 国产一区亚洲一区在线观看| 精品久久久噜噜| 男女边吃奶边做爰视频| 中国美白少妇内射xxxbb| 久久99热这里只频精品6学生| 成人免费观看视频高清| 一级毛片我不卡| 欧美精品人与动牲交sv欧美| 国产精品国产三级国产专区5o| 国产 一区精品| 欧美极品一区二区三区四区| 九九久久精品国产亚洲av麻豆| 在线观看人妻少妇| 2018国产大陆天天弄谢| 18+在线观看网站| 久久人人爽av亚洲精品天堂 | 国产精品欧美亚洲77777|