• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust TDOA/FDOA estimation from emitter signals for hybrid localization using UAVs

    2022-02-15 03:47:50YubingWangXiaolongLiangJiaqiangZhangBaoxiangRenKeJin
    Defence Technology 2022年1期

    Yu-bing Wang ,Xiao-long Liang ,Jia-qiang Zhang ,Bao-xiang Ren ,Ke Jin

    a Air Traffic Control and Navigation College,Air Force Engineering University,Xi’an,China

    b Shaanxi Key Laboratory of Meta-synthesis for Electronic &Information System,Xi’an,China

    c National Digital Switching System Engineering and Technological Research Center,Zhengzhou,China

    Keywords:TDOA FDOA Parameter estimation Doppler ambiguity Hybrid localization

    ABSTRACT This paper considers the time difference of arrival (TDOA) and frequency difference of arrival (FDOA)estimation problem for joint localization using unmanned aerial vehicles (UAVs),involving range migration (RM) and Doppler ambiguity within observation interval.A robust estimation method based on interpolation and resampling is proposed.Specifically,the interpolation artificially increases the pulse repetition frequency (PRF).After that,the resampling eliminates the coupling between range frequency and slow time.Finally,a coherent integration step based on inverse discrete Fourier transform (IDFT) is used to achieve parameter estimation and suppress the grating lobes caused by interpolation.The proposed method could be efficiently implemented by fast Fourier transform(FFT),inverse FFT(IFFT)and non-uniform FFT(NUFFT)without parameter searching procedures.Numerical experiments indicate that the proposed method has nearly optimal anti-noise performance but much lower computational complexity than the maximum likelihood estimator,which makes it more competitive in practical applications.

    1.Introduction

    Cooperative localization using UAVs has been widely used in military applications,such as radar reconnaissance [1].There are several kinds of measurements can be used in passive localization,including time-difference-of-arrival (TDOA) [2],angle-of-arrival(AOA) [3],received signal strength (RSS) [4],etc.When the radar and the UAV sensors are relatively moving,it is efficient to apply frequency-difference-of-arrival (FDOA) to enhance the estimation performance.The combination of different measurements can improve the localization accuracy,and therefore the TDOA/FDOA hybrid localization has drawn great attention in both theoretical analysis and practical trail[5].

    The essential parameters in TDOA/FDOA localization are time differences and frequency differences,respectively.These parameters can be estimated by processing the emitter signals received by spatial distributed sensors.Especially in non-cooperative scenarios,even though there are no prior knowledge of the signals and noises,the localization of radar can be realized by calculating TDOA/FDOA[6].Thus,the estimation performance and anti-noise performance of TDOA/FDOA have significant influence on localization accuracy.

    For TDOA/FDOA estimation,two challenges gradually appear with the development of radar and localization technology.The first one is that the signal processing object changes from single pulse to pulse train.The second one is that existing estimation algorithms fails to achieve a good compromise between computational complexity and anti-noise performance.

    For TDOA/FDOA estimation using a single pulse,the most representative methods are the cross ambiguity function (CAF)[7]and its variants [8-10].These methods achieve estimation by performing parameter searching,which inevitably leads to high computational complexity and is not unacceptable in practical applications.In this case,several Fourier transform-based and iteration-based methods are proposed in Refs.[11-13]to speed up the implementation of parameter searching procedures.However,when the received radar signal becomes pulse train,TDOA/FDOA will change with movement of sensors.During the long-term reconnaissance,range migration (RM) will appear which spreads the signal energy across multiple time and Doppler cells.Consequently,conventional single-pulse-based methods will suffer serious performance loss and even no longer works [14].

    Obviously,using pulse train helps to improve the estimation accuracy.In recent years,estimation algorithms based on longterm coherent integration technique have been developed rapidly[15-19].The well-known maximum likelihood estimator (MLE)enjoys the optimal performance in estimation accuracy and antinoise character under Gaussian noise environment [20-22].This method integrates the signal energy by parameter searching and phase compensation.Therefore,the computational complexity is also daunting.Inspired by the processing method in synthetic aperture radar,an estimation method based on Keystone transform(KT) is proposed in Ref.[14].Without knowing the motion parameters,KT could eliminate the RM by rescaling the slow time for each range frequency [23].Nevertheless,when Doppler ambiguity happens,fold factor searching will inevitably increase its complexity.In Ref.[6],Liu et al.proposed an efficient estimation method based on frequency symmetric autocorrelation function(FSAF)and scaled Fourier transformation(SFT),namely FSAF-SFT.In this method,the RM is corrected by SFT and the implantation could be achieved via fast Fourier transform(FFT)and inverse FFT(IFFT).Unfortunately,the FSAF operation will introduce interference between signal and noise,which sacrifices about 6 dB anti-noise performance to obtain efficiency [16,24].After that,the frequency reversing transform (FRT) and SFT,i.e.,FRT-SFT,is proposed in Ref.[25].Different from FSAF,the FRT defined a frequency correlation function with constant delay.Consequently,it has inferior performance under low signal-to-noise (SNR) environment.

    In this paper,we focus on TDOA/FDOA estimation using pulse train for radar localization.A novel method based on interpolation and resampling is proposed.The method achieves coherent integration of multiple pulses,which compensates for the time-varying of TDOA and Doppler ambiguity of FDOA during the observation interval.The advantage is that it has nearly optimal estimation performance in white Gaussian noise environment,but it can be efficiently implemented via non-uniform FFT (NUFFT) [26].

    The remainder of this paper is organized as follows.The signal model is established in Section 2.Section 3 derives the principle of the proposed method in detail.Efficient implementation and computational complexity are analyzed in Section 4.Numerical experiments are carried out in Section 5.Finally,Section 6 concludes our work.

    2.Signal model

    Before deriving the proposed method,some hypotheses and constraints are listed below.

    (a) There is no synchronization error between the two UAVs.

    (b) Each UAV can obtain its own location accurately.

    (c) The proposed method is not suitable for frequency agile radar.

    (d) Only the white Gaussian noise is considered and no other interference is received by the receivers.

    Fig.1. Localization scenario of two UAVs against one target.

    Without loss of generality,we assume that a coherent radar transmits linear frequency modulated (LFM) pulse trains,which could be expressed as

    where t is the time,Tis the pulse duration,kis the chirp rate of LFM signal,and fdenotes the carrier frequency.

    The batch architecture of the transmitted signal is shown in Fig.2.

    Fig.2. Batches architecture of the radar signal.

    In the applications of joint localization with two UAVs,the radar parameters could be obtained via electronic reconnaissance.When receiving synchronously,the received based band signals of UAV1 and UAV2 are delay versions of the transmitted signals,i.e.,

    Let UAV1 be the reference station,the received pulse trains could also be processed by the batch architecture,as shown in Fig.3.

    Fig.3. Batches architecture of the received signal.

    3.Proposed TDOA and FDOA estimation method

    3.1.Demodulation

    where fis the range frequency variable and B=kTis the bandwidth of the radar signal.

    Multiplying S(f,t)by the conjugate of S(f,t)yields

    where n(f,t)denotes the interference terms.

    In (5),the linear frequency modulation is successfully eliminated.It is clear that the cross-correlation operation in (4)and (5)eliminates signal modulation through conjugate multiplication,which does not depend on radar parameters.Therefore,the demodulation method can also be applied to other common radar signals,such as nonlinear LFM signal,phase-coded signal,and so on.However,this process cannot be used to frequency agile radar,as the time-varying carrier frequency produces random phase,which will affect coherent integration[25].

    Performing inverse FT (IFT) with respect to f,we get

    From (6) it is easy to find that,the sinc function reflects the position of envelope and the exponential term represents the Doppler frequency.Obviously,ΔR(t)=R(t)-R(t)is of interest to us because it contains information about the TDOA and FDOA.The geometry relationships of localization are as follows:

    Within the observation time,the UAVs move to new positions whose coordinates are

    Thus,the new distance between the target and UAVs are as follows:

    During the reconnaissance and positioning interval,the highorder terms could be neglected.Thus we have

    denotes the initial range difference (IRD) and radial velocity difference(RVD) respectively.

    The TDOA and FDOA could be derived from IRD and RVD,i.e.,

    Insert (10) into(6) and (5) yields

    In the following part,we will focus on the estimation of TDOA and FDOA.

    3.2.FDOA ambiguity and interpolation

    3.2.1.Doppler ambiguity

    As shown in(13),the signal envelope changes linearly with the slow time.When the offset exceeds the range sampling resolution Δr=c/f,the RM could not be ignored,where fis the sampling rate.The RM effect disperses the signal energy over several range bins and will lead to incorrect estimation of IRD and thus TDOA.From(14),we could also find that the coupling between fand tis the essential cause of envelope migration.

    Moreover,as the RVD increases,frequency ambiguity will also appear,i.e.,|fv/c|>f/2.In this case,the RVD should be expressed as [28].

    where vis the blind speed,nis the fold factor,vis the ambiguous velocity,and mod(·)denotes the remainder function.

    The derivation is performed in the range frequency-slow time domain.Insert(15) into (14) gives

    The discrete form of (16) in slow time can be written as

    As the FDOA is constant along the slow time,conventional methods usually perform discrete Fourier transform (DFT) along the slow time to estimate the parameter,i.e.,

    where k=0,1,…,M-1 represents the discrete Doppler frequency.

    where ρ is an integer indicating the ambiguity number.

    Consequently,the Doppler peak should be located at

    Fig.4 simulates the estimation result using DFT method.The parameters are f=3 GHz,B=30MHz,T=10μs,f=36MHz,M=500,f=500Hz,R=3km,v=90m/s.The TDOA is R/c=10μs and the FDOA is -fv/c=-900Hz.The digital FDOA is -(n+f)=-1.8.The result of demodulation and DFT are shown in Fig.4(a) and (b),respectively.

    As shown in Fig.4(a),the signal envelope migrates linearly with the slow time and the offset is 90 m.Therefore,the TDOA could not be accurately estimated.The DFT result is given in Fig.4(b)and the digital FDOA values are around 2-(n+f)=0.2,which is caused by ambiguity.Therefore,conventional DFT-based method no longer works in estimating TDOA and FDOA.

    As analyzed above,the migrating TDOA and the folded FDOA are caused by the coupling term and ambiguity,respectively.Firstly,we focus on the ambiguity problem.

    3.2.2.Interpolation

    The essential reason for frequency ambiguity is the insufficient sampling rate of slow time.Thus,a simple method to solve ambiguity is to increase the sampling rate,which,however,is dependent on the radar’s PRF and cannot be changed casually.In this paper,we introduce the interpolation method into slow time.

    Assume the interpolation rate is I,the interpolated signal could be written as

    Eq.(21)means that we artificially add(I-1)zeros between two sampling data of S(f,m).In this way,the sampling rate has been increased to I·f.The MI-point DFT of S(f,m)can be expressed as

    Thus,we have

    The difference between (24) and (20) lies in the scope of measurable FDOA.As the sampling rate is increased to I·f,the scope is accordingly extended by I times.Since the FDOA is usually non-cooperative,the interpolation rate could be determined according to the interested scope.

    Fig.4. Migrations of TDOA and FDOA.

    Fig.5. Working principle of interpolation.

    One may find that,the interpolation will not bring more information about the signal and the result is only a periodic duplicate of(20).However,this step allows us to observe the unambiguous Doppler peak at least.

    This example gives the estimation result using interpolation method.The parameters are the same with those in Example 1.The interpolation rate is I=6.The result is shown in Fig.5.

    In Fig.5(a),we could see I spectrum lines caused by interpolation,and the scope of digital FDOA is also extended by I times.The true unambiguous spectrum line is marked by ρ=0.Its detailed result is given in Fig.5(b).

    From Example 2,we may conclude two problems unsolved.

    (a) The interpolation process just duplicates the spectrum lines and the true one is not recognized.

    In subsection 3.3,we focus on eliminating the coupling term.The recognition method is given in the following subsection 3.4.

    3.3.Resampling

    where Γ(·)is the resampling operation and performs the variable substitution,which is defined as

    Consequently,Eq.(25) can be written as

    The Doppler peaks are now located at

    Fig.6 gives the results of resampling.The parameters are the same with those in Example 2.

    It can be seen from Fig.6(a) and (b),after resampling only the spectrum line of ρ=0 is corrected into straight.The digital FDOA is-1.8,which is consistent with the theoretical value.As shown in Fig.6(c)and(d),the lines corresponding to ρ≠0are oblique,which means the coupling still exists.

    3.4.Parameter estimation

    As analyzed in subsection 3.2,the interpolation process duplicates the result of DFT.Therefore,we could see I-1 false spectrum lines.However,the resampling result provides us a simple method to recognize the true spectrum line.As shown in(28)and Fig.6(a),only the true spectrum line is straight while the false ones are not.Thus,we just need a method to detect the straight line.

    Fig.6. Working principle of resampling.

    For the envelope,only the true spectrum line is aligned.For the phase in a certain Doppler frequency cell,its value is

    where

    Finally,the TDOA and FDOA could be estimated as

    Fig.7. Recognition and parameter estimation.

    Fig.7 gives the IDFT results of Example 3.The parameters are the same with those in Example 2.

    It is obvious in Fig.7 that,only the true spectrum line is concentrated as a sharp peak while the false ones cannot be well integrated.In this way,the recognition process is achieved and the parameters are estimated.

    3.5.Summary of algorithm flow

    As shown in Fig.8,the detailed implementation of the proposed algorithm is summarized as follows.

    Step 1:Perform batching and fast time FFT for the signals of UAV1 and UAV2 to obtain S(f,t)and S(f,t).

    Step 2:Multiply S(f,t)by the conjugate of S(f,t)to obtain S(f,t).

    Fig.8. Flowchart of the proposed method.

    4.Efficient implementation and complexity analysis

    4.1.Efficient implementation

    In our proposed algorithm,the resampling step is usually achieved by interpolation[30,31],which,of course,is time consuming and will introduce much numerical errors.Combining the slow time FFT and resampling,we present an efficient and more accurate implementation based on NUFFT.

    The slow time FFT and resampling can be combined as

    where I(·)is the modified Bessel function of the first kind with zero order,L is length of Kaiser-Bessel window,and α is factor slightly smaller than π(2 -1/u).In this paper,we choose α=π(2-1/u)-0.01 and L=6.

    Inserting (36) into(35) yields

    By(39),the NUFFT could be efficiently achieved via standard FFT and have much higher accuracy than interpolation.3.

    4.2.Computational complexity

    In this section,the computational complexity of the proposed method is analyzed in detail.The representative MLE,FSAF-SFT,FRT-SFT,and CAF methods are selected for comparisons.Denote the number of pulses,fast time samples,searching TDOA,and searching FDOA by M,N,Nand N,respectively.The DFT,IDFT,and NUFFT are efficiently implemented by FFT and IFFT.

    For MLE,it achieves parameter estimation by performing 2D brute-force searching,phase compensation and IFFT.Hence,its computational complexity is in the order of O(NMNlogN).

    For FSAF-SFT,its main procedures include the FSAF(O(3NMlogN)),the Chirp-Z based SFT along the slow time(O(3NMlogM)),and IFFT of the range frequency(O(NMlogN)).Thus,the overall computational complexity isabout O(3NMlogM +4NMlogN).

    For FRT-SFT,it completes parameter estimation via fast time FFT(O(NMlogN)),FRT operation(O(MN)),Chirp-Z transform[32,33]based SFT along the slow time (O(3NMlogM)),and range frequency IFFT (O(NMlogN)).Therefore,the total burden is about O(2NMlogN+3NMlogM).

    As for CAF,it could be achieved via FFT.For each searching TDOA,a IMN-point FFT is required with the computational cost O(IMNlogIMN).Thus,the total computational complexity is in the order of O(IMNNlogIMN).

    The main procedures of the proposed method include fast time FFT(O(2NMlogN)),interpolation (ignored),NUFFT-based resampling (O(uNIMloguIM)) and range frequency IFFT.So,the overall computational complexity is in the order of O(uIMNloguIM).

    The computational complexities of the above methods are listed in Table 1.Under the assumption of M=N=Nτ,Nν=IM,I=6,and u=2,Fig.9 visually shows the computational cost.The time cost when M=500 is also given.Compared with MLE and CAF,the proposed avoids parameter searching and can be efficiently implemented via NUFFT.Thus,a much lower burden is suffered.Compared with FASF-SFT and FRT-SFT,the proposed method has much superior anti-noise performance,which will be evaluated in subsection 5.2.

    Table 1 Computational complexity evaluation.

    Fig.9. Computational complexity of different methods.

    5.Numerical experiments

    In this section,several numerical experiments are conducted to investigate the effectiveness of the proposed method.

    5.1.Estimation performance

    In this part,the parameter estimation performance of the aforementioned methods is compared in a relatively low signal-tonoise ratio(SNR)environment.Simulation conditions are the same with those of Example 1.In addition,received signals obtained by the two UAVs are contaminated by the zero-mean white Gaussian noise and the SNRs are both-10dB.For fair comparison,the scope of FDOA and TDOA are set to be the same.However,the TDOA scope of FRT-SFT method will be shrunk to half due to the frequencyreversing operation.The estimation results are presented in Fig.10.

    Fig.10(a) shows the demodulation result of (13).The cluttered image shows that the signal is submerged in noise.Fig.10(b)gives the estimation result of CAF.It is obvious that the CAF,which adopts the narrowband signal model and ignores the range migration,cannot obtain the TDOA and FDOA.The constant delay defined FRTSFT method loses much signal energy when performing correlation operation.Hence,it no longer works in low SNR cases,as shown in Fig.10(c).The FASF-SFT method presented in Fig.10(d)seems to be able to achieve parameter estimation.Unfortunately,the coarse resolution and inaccurate result reveals its inferior performance.Fig.10(e) gives the result of MLE,which achieve the optimal performance under white Gaussian noise through 2D brute-force searching.Taking the MLE as a benchmark,the proposed method also achieves satisfactory estimation performance,as shown in Fig.10(f).Moreover,the resolution of the proposed method is much better than that of FASF-SFT,which also corresponds to higher estimation accuracy.

    5.2.Anti-noise performance

    The anti-noise performance of the above methods is investigated in this part.Similar to subsection 5.1,the SNRs for both UAV signals are the same,which change from-20dB to 10 dB with 1 dB interval.For each SNR value,500 times independent Monte Carlo trials are performed.Other simulation parameters are the same with Example 1.The root mean square errors (RMSEs) are used to evaluate the performance of TDOA and FDOA estimations.Fig.11 plots the performance curves.

    From the comparison results in Fig.11(a) and (b),we can find that the proposed method has almost optimal anti-noise performance.However,the computational complexity is much lower than that of MLE.The SNR threshold of FASF-SFT is about 4 dB higher than the proposed method.The reason is the bilinear autocorrelation of range frequency introduces interference between signal and noise.Therefore,this method will lose its estimation ability under low SNR conditions.In addition,the estimation accuracy of FASF-SFT is inferior due to the coarse FDOA resolution,which is consistent with the result in Fig.10(d).The CAF uses a narrowband model and ignores the migration.Hence,the signal energy will spread over several TDOA and FDOA resolution bins.From the curves we could find,it suffers more performance loss and inaccurate estimation results.As to the FRT-SFT,the frequency reversing transform employs the autocorrelation with constant delay,which accumulates much less signal energy than FSAF-SFT [19].Consequently,it has the worst performance.

    Overall,based on the analysis above,we may easily conclude that the proposed method could achieve nearly optimal estimation performance with much lower computational cost,and outperforms the other representative methods.

    6.Conclusions

    This paper studies the problem of TDOA/FDOA estimation using UAVs in passive cooperative localization application.A robust parameter estimation method based on interpolation and resampling is proposed.The method introduces the coherent integration framework of active radar for multiple pulses and solves the problem of TDOA time-varying and Doppler ambiguity.Under the constraints of no synchronization error,accurate UAV location,and white Gaussian noise environment,nearly optimal estimation accuracy and anti-noise performance are obtained.Besides,an efficient implementation based on non-uniform fast Fourier transform is derived to decrease the computational complexity.The highlights of the proposed method include the followings.

    (a) The slow time interpolation is performed to extend the Doppler scope.In this way,the unambiguous Doppler frequency can be observed.

    (b) The resampling operation is introduced to eliminate the coupling between range frequency and slow time.

    (c) The IDFT of different range frequency bins is performed to coherently integrate the signal energy and suppress the grating lobes caused by interpolation.

    Fig.10. Estimation performance of different methods.

    Fig.11. Anti-noise performance comparison.

    (d) Compared with MLE,the proposed method can be fast implemented via complex multiplications,FFT and IFFT,which is beneficial to practical applications.

    The above constraints will inevitably degrade parameter estimation performance and localization accuracy.Therefore,future works might consider passive localization when UAV location errors or synchronization errors occur.Correspondingly,signal model and coherent integration method should be re-derived.The expected performance will also be compared with peer methods.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    The authors would like to acknowledge National Natural Science Foundation of China (Grant No.xxxxxx).

    美女内射精品一级片tv| 又粗又硬又长又爽又黄的视频 | 久久久成人免费电影| 久久久久性生活片| 偷拍熟女少妇极品色| 国产精品国产高清国产av| 中文字幕精品亚洲无线码一区| 99国产极品粉嫩在线观看| 成熟少妇高潮喷水视频| 国产蜜桃级精品一区二区三区| 18+在线观看网站| 日韩强制内射视频| 久久久久久久久久久免费av| 精品人妻熟女av久视频| 丰满人妻一区二区三区视频av| 久久久久国产网址| 乱码一卡2卡4卡精品| 欧美zozozo另类| 爱豆传媒免费全集在线观看| 日本黄色视频三级网站网址| 国产欧美日韩精品一区二区| 美女内射精品一级片tv| 在线观看美女被高潮喷水网站| 97人妻精品一区二区三区麻豆| 人人妻人人澡人人爽人人夜夜 | 国产精品嫩草影院av在线观看| a级毛片免费高清观看在线播放| 午夜免费男女啪啪视频观看| 国产精品久久久久久精品电影小说 | 一区二区三区高清视频在线| 亚洲性久久影院| 亚洲人成网站在线观看播放| 国产伦在线观看视频一区| 99久久成人亚洲精品观看| 天天躁日日操中文字幕| 亚洲国产色片| 99热全是精品| 国产亚洲av片在线观看秒播厂 | av福利片在线观看| 日本黄大片高清| 日本五十路高清| 最新中文字幕久久久久| 一级二级三级毛片免费看| 春色校园在线视频观看| 成人鲁丝片一二三区免费| 成人一区二区视频在线观看| 伊人久久精品亚洲午夜| 国产免费一级a男人的天堂| 欧美bdsm另类| 亚洲成人精品中文字幕电影| av天堂中文字幕网| 寂寞人妻少妇视频99o| 男女下面进入的视频免费午夜| 国产亚洲91精品色在线| 日韩av在线大香蕉| 一进一出抽搐动态| 乱码一卡2卡4卡精品| 欧美人与善性xxx| 亚洲成人久久性| 久久精品国产亚洲av香蕉五月| 欧美性感艳星| 国产精华一区二区三区| 老司机福利观看| 成人欧美大片| 中文亚洲av片在线观看爽| 男女下面进入的视频免费午夜| 99在线人妻在线中文字幕| 91久久精品国产一区二区成人| 秋霞在线观看毛片| 亚洲av电影不卡..在线观看| 亚洲人成网站高清观看| 国产伦在线观看视频一区| 少妇的逼水好多| 亚洲国产精品合色在线| 在线观看av片永久免费下载| 精品国产三级普通话版| 国产极品天堂在线| 乱码一卡2卡4卡精品| 一本精品99久久精品77| 99热这里只有是精品在线观看| 麻豆成人午夜福利视频| 夜夜夜夜夜久久久久| 精品久久久噜噜| 欧美极品一区二区三区四区| 老司机福利观看| 精品久久久久久久久久免费视频| 久久久久久久亚洲中文字幕| 中文字幕人妻熟人妻熟丝袜美| 成年av动漫网址| 99久国产av精品| 精品99又大又爽又粗少妇毛片| 国产乱人偷精品视频| 尤物成人国产欧美一区二区三区| av黄色大香蕉| 桃色一区二区三区在线观看| 一区二区三区免费毛片| 亚洲av熟女| 日日撸夜夜添| 两个人的视频大全免费| av福利片在线观看| 欧美日本视频| 蜜桃久久精品国产亚洲av| 亚洲av一区综合| 久久亚洲精品不卡| 成人亚洲欧美一区二区av| 三级毛片av免费| 精品一区二区三区视频在线| 国产黄色视频一区二区在线观看 | 男女啪啪激烈高潮av片| 黄色配什么色好看| 国产毛片a区久久久久| 欧美+日韩+精品| 成人永久免费在线观看视频| 欧美高清性xxxxhd video| 色哟哟·www| 国产精品无大码| 国产成人午夜福利电影在线观看| 国产综合懂色| 久久久久性生活片| 亚洲高清免费不卡视频| 国产一区二区在线av高清观看| 哪里可以看免费的av片| 亚洲一级一片aⅴ在线观看| 男的添女的下面高潮视频| 黄色日韩在线| 特级一级黄色大片| 欧美最黄视频在线播放免费| 国产淫片久久久久久久久| 美女cb高潮喷水在线观看| 亚洲av第一区精品v没综合| or卡值多少钱| 国产精品,欧美在线| 亚洲国产欧美在线一区| 国产精品国产三级国产av玫瑰| 成人国产麻豆网| 男女做爰动态图高潮gif福利片| 精品久久久久久久久亚洲| 男女下面进入的视频免费午夜| www.色视频.com| 国产私拍福利视频在线观看| 亚洲精品色激情综合| 免费看a级黄色片| 日韩精品青青久久久久久| 看片在线看免费视频| 国内精品久久久久精免费| 欧美高清性xxxxhd video| 男人狂女人下面高潮的视频| 亚洲在线自拍视频| 色综合色国产| 人妻制服诱惑在线中文字幕| 天天躁夜夜躁狠狠久久av| 深夜a级毛片| 亚洲成人久久性| 中文字幕av成人在线电影| 亚洲美女视频黄频| 爱豆传媒免费全集在线观看| 最后的刺客免费高清国语| 99riav亚洲国产免费| 国产成人a∨麻豆精品| 校园人妻丝袜中文字幕| 国产老妇女一区| 久久亚洲国产成人精品v| 国产精品蜜桃在线观看 | 精品久久国产蜜桃| 熟女电影av网| 夫妻性生交免费视频一级片| 大香蕉久久网| 成人欧美大片| 中文在线观看免费www的网站| 欧美一级a爱片免费观看看| 亚洲天堂国产精品一区在线| 久久国内精品自在自线图片| 在线观看美女被高潮喷水网站| 欧美性猛交╳xxx乱大交人| 99久久无色码亚洲精品果冻| 国产成人a∨麻豆精品| 深夜精品福利| 欧美日本亚洲视频在线播放| 2021天堂中文幕一二区在线观| 91aial.com中文字幕在线观看| 国产白丝娇喘喷水9色精品| 在线播放无遮挡| 国产精品国产高清国产av| 少妇熟女aⅴ在线视频| 不卡视频在线观看欧美| 亚洲av成人精品一区久久| 午夜激情欧美在线| 免费大片18禁| 精品久久久久久久久av| 91aial.com中文字幕在线观看| 国产成人精品久久久久久| 国产精品一区二区在线观看99 | 亚洲av成人精品一区久久| 成人二区视频| 禁无遮挡网站| 中文精品一卡2卡3卡4更新| 国产精品福利在线免费观看| 成人毛片a级毛片在线播放| 国产在线男女| 可以在线观看毛片的网站| 欧美高清性xxxxhd video| 青春草国产在线视频 | 岛国在线免费视频观看| 一个人免费在线观看电影| 97在线视频观看| 天堂√8在线中文| 色吧在线观看| 高清日韩中文字幕在线| 久久这里只有精品中国| 久久人人精品亚洲av| 波多野结衣高清无吗| 99久久久亚洲精品蜜臀av| 亚洲无线观看免费| 久久久欧美国产精品| 天堂网av新在线| 精品久久久噜噜| 99精品在免费线老司机午夜| 中出人妻视频一区二区| 国产黄色视频一区二区在线观看 | 美女黄网站色视频| 免费看a级黄色片| 中文字幕av成人在线电影| 日本免费一区二区三区高清不卡| 日本-黄色视频高清免费观看| 亚洲国产高清在线一区二区三| 亚洲成人av在线免费| 伦理电影大哥的女人| 欧美最黄视频在线播放免费| 精品久久久久久久久久久久久| 内地一区二区视频在线| 午夜久久久久精精品| 国产亚洲精品av在线| 精品少妇黑人巨大在线播放 | 一个人看的www免费观看视频| 乱人视频在线观看| 一本久久精品| 精品日产1卡2卡| 国产午夜精品论理片| 亚洲精品成人久久久久久| 嫩草影院入口| 蜜桃久久精品国产亚洲av| 国产伦一二天堂av在线观看| 人人妻人人澡欧美一区二区| 久久精品影院6| 噜噜噜噜噜久久久久久91| 精品久久国产蜜桃| 舔av片在线| 精品免费久久久久久久清纯| 日韩欧美精品免费久久| 精品日产1卡2卡| 亚洲欧美日韩东京热| 久久国产乱子免费精品| 乱人视频在线观看| 一进一出抽搐动态| 欧美最黄视频在线播放免费| 天堂中文最新版在线下载 | 国产亚洲精品久久久久久毛片| 最好的美女福利视频网| 波多野结衣高清作品| 69av精品久久久久久| 一级毛片我不卡| 禁无遮挡网站| 99久国产av精品| a级一级毛片免费在线观看| 三级经典国产精品| 欧美区成人在线视频| 亚洲成人久久性| 村上凉子中文字幕在线| 久久99精品国语久久久| 欧美又色又爽又黄视频| 高清午夜精品一区二区三区 | 免费观看人在逋| 91久久精品国产一区二区成人| 人妻系列 视频| 麻豆成人av视频| 日产精品乱码卡一卡2卡三| 少妇裸体淫交视频免费看高清| 人妻系列 视频| 搞女人的毛片| 男女下面进入的视频免费午夜| 亚洲国产欧洲综合997久久,| 日韩 亚洲 欧美在线| 亚洲无线观看免费| 深夜a级毛片| 天美传媒精品一区二区| 日韩一区二区三区影片| 一级黄色大片毛片| 国产精品爽爽va在线观看网站| 99久久人妻综合| 亚洲欧美精品自产自拍| 亚洲最大成人av| 中文字幕免费在线视频6| 插逼视频在线观看| 91久久精品国产一区二区三区| 欧美极品一区二区三区四区| 我的老师免费观看完整版| 卡戴珊不雅视频在线播放| 成熟少妇高潮喷水视频| 三级国产精品欧美在线观看| 69人妻影院| 亚洲欧美日韩高清在线视频| 免费观看a级毛片全部| 日本欧美国产在线视频| 在线国产一区二区在线| 欧美日韩精品成人综合77777| 国产亚洲av嫩草精品影院| 18+在线观看网站| 精品一区二区免费观看| av女优亚洲男人天堂| 美女被艹到高潮喷水动态| 国产亚洲5aaaaa淫片| 69av精品久久久久久| 久久久精品大字幕| 日产精品乱码卡一卡2卡三| 亚洲aⅴ乱码一区二区在线播放| 色尼玛亚洲综合影院| 国产高潮美女av| 超碰av人人做人人爽久久| 亚洲第一电影网av| 久久久久久九九精品二区国产| 欧美性感艳星| 午夜爱爱视频在线播放| 免费一级毛片在线播放高清视频| 亚洲欧美精品专区久久| 成人无遮挡网站| 国产久久久一区二区三区| 熟妇人妻久久中文字幕3abv| 丰满的人妻完整版| 青青草视频在线视频观看| 国产精品伦人一区二区| 欧美日韩综合久久久久久| 国产精品爽爽va在线观看网站| 成年av动漫网址| 天堂中文最新版在线下载 | 99在线视频只有这里精品首页| 午夜免费男女啪啪视频观看| 婷婷六月久久综合丁香| 美女 人体艺术 gogo| 国产午夜精品论理片| 99热网站在线观看| 国产日本99.免费观看| 亚洲经典国产精华液单| 男女做爰动态图高潮gif福利片| 国产黄色视频一区二区在线观看 | 中文资源天堂在线| 国产精品,欧美在线| 色视频www国产| 中文亚洲av片在线观看爽| 免费观看人在逋| 老女人水多毛片| 日本五十路高清| 六月丁香七月| 可以在线观看毛片的网站| 婷婷色综合大香蕉| 午夜激情欧美在线| 亚洲色图av天堂| 综合色av麻豆| 黄色欧美视频在线观看| 欧美bdsm另类| 亚洲人与动物交配视频| 99视频精品全部免费 在线| 国产精品1区2区在线观看.| 热99在线观看视频| 国产淫片久久久久久久久| 黄色一级大片看看| a级毛片免费高清观看在线播放| 国产又黄又爽又无遮挡在线| 2021天堂中文幕一二区在线观| 99riav亚洲国产免费| 搞女人的毛片| 99热只有精品国产| 国产精品伦人一区二区| 1000部很黄的大片| 18禁在线无遮挡免费观看视频| 日韩欧美在线乱码| 免费电影在线观看免费观看| 青春草国产在线视频 | 亚洲一级一片aⅴ在线观看| 亚洲欧美精品综合久久99| 国产三级中文精品| 日韩av在线大香蕉| 看片在线看免费视频| 成人三级黄色视频| 一本一本综合久久| 久久久久国产网址| 亚洲精品国产成人久久av| 久久人妻av系列| 久久亚洲精品不卡| 秋霞在线观看毛片| 大香蕉久久网| 国产成人精品婷婷| 婷婷色av中文字幕| 亚洲第一区二区三区不卡| 天美传媒精品一区二区| 免费观看精品视频网站| 少妇被粗大猛烈的视频| 可以在线观看的亚洲视频| 变态另类成人亚洲欧美熟女| 最近视频中文字幕2019在线8| 国产色爽女视频免费观看| 国产一区二区三区av在线 | 亚洲中文字幕日韩| 岛国在线免费视频观看| 小蜜桃在线观看免费完整版高清| 日日撸夜夜添| 国产精品蜜桃在线观看 | 美女xxoo啪啪120秒动态图| 国产成人a区在线观看| 国产伦精品一区二区三区视频9| 婷婷色av中文字幕| 亚洲精品亚洲一区二区| 国内精品宾馆在线| 白带黄色成豆腐渣| 有码 亚洲区| 国产精品麻豆人妻色哟哟久久 | 中文字幕人妻熟人妻熟丝袜美| 精华霜和精华液先用哪个| 桃色一区二区三区在线观看| 12—13女人毛片做爰片一| 99九九线精品视频在线观看视频| 最近最新中文字幕大全电影3| 亚洲成人精品中文字幕电影| 国产淫片久久久久久久久| 成人一区二区视频在线观看| 色噜噜av男人的天堂激情| 国产亚洲av嫩草精品影院| 不卡视频在线观看欧美| av又黄又爽大尺度在线免费看 | av卡一久久| 91精品一卡2卡3卡4卡| 亚洲欧洲国产日韩| 亚洲最大成人手机在线| 人妻制服诱惑在线中文字幕| 丰满乱子伦码专区| 中文在线观看免费www的网站| 国产免费男女视频| 乱码一卡2卡4卡精品| 欧美日本亚洲视频在线播放| 国产黄色视频一区二区在线观看 | 中文资源天堂在线| 美女国产视频在线观看| 婷婷色av中文字幕| 男人舔奶头视频| 日韩高清综合在线| 91精品一卡2卡3卡4卡| 男女边吃奶边做爰视频| 午夜精品一区二区三区免费看| 久久精品国产清高在天天线| 99久久人妻综合| 日韩欧美一区二区三区在线观看| 国产精品久久电影中文字幕| 久久精品人妻少妇| 男人的好看免费观看在线视频| 国产探花极品一区二区| 国产精品三级大全| 亚洲天堂国产精品一区在线| 精品不卡国产一区二区三区| 26uuu在线亚洲综合色| 在现免费观看毛片| 免费无遮挡裸体视频| 黄色视频,在线免费观看| 联通29元200g的流量卡| 国产精品一及| 久久久国产成人精品二区| 天天躁夜夜躁狠狠久久av| 国产淫片久久久久久久久| 国产老妇女一区| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久中文| АⅤ资源中文在线天堂| 欧美一级a爱片免费观看看| 国产精品,欧美在线| 成人二区视频| 人人妻人人澡欧美一区二区| 给我免费播放毛片高清在线观看| 国产白丝娇喘喷水9色精品| av在线天堂中文字幕| 看片在线看免费视频| 美女国产视频在线观看| 欧美丝袜亚洲另类| 一区二区三区高清视频在线| 免费观看的影片在线观看| 一个人看的www免费观看视频| av在线天堂中文字幕| 一级毛片aaaaaa免费看小| 久久精品夜夜夜夜夜久久蜜豆| 国产中年淑女户外野战色| 国产熟女欧美一区二区| 欧美在线一区亚洲| 一个人看视频在线观看www免费| 乱人视频在线观看| 久久精品国产亚洲av涩爱 | 精品久久久久久久人妻蜜臀av| 黑人高潮一二区| 国产成人精品一,二区 | 亚洲国产精品久久男人天堂| 亚洲欧美精品专区久久| 国产中年淑女户外野战色| 精品一区二区三区人妻视频| 亚洲精品久久国产高清桃花| 欧美不卡视频在线免费观看| 嫩草影院新地址| 97超碰精品成人国产| 成年女人永久免费观看视频| 成人美女网站在线观看视频| 日日撸夜夜添| 亚洲图色成人| 国产不卡一卡二| 蜜桃亚洲精品一区二区三区| av天堂在线播放| 最近2019中文字幕mv第一页| 成年女人看的毛片在线观看| 午夜福利在线观看吧| 岛国毛片在线播放| 搡老妇女老女人老熟妇| 特级一级黄色大片| 日日干狠狠操夜夜爽| 国产伦在线观看视频一区| 99九九线精品视频在线观看视频| 97超碰精品成人国产| 一级毛片久久久久久久久女| 两性午夜刺激爽爽歪歪视频在线观看| 99九九线精品视频在线观看视频| 熟妇人妻久久中文字幕3abv| 亚洲欧美日韩卡通动漫| 国产精品乱码一区二三区的特点| 日本av手机在线免费观看| 久久久久久久久久成人| a级毛片免费高清观看在线播放| 欧美变态另类bdsm刘玥| 亚洲精品粉嫩美女一区| 波多野结衣巨乳人妻| or卡值多少钱| 日韩在线高清观看一区二区三区| 色综合站精品国产| 国产伦精品一区二区三区四那| 哪里可以看免费的av片| 国产精品电影一区二区三区| 国产一区二区亚洲精品在线观看| 天堂网av新在线| 免费不卡的大黄色大毛片视频在线观看 | 看黄色毛片网站| 久久久精品94久久精品| 99久久精品一区二区三区| 九色成人免费人妻av| 午夜精品一区二区三区免费看| 91麻豆精品激情在线观看国产| 久久精品国产鲁丝片午夜精品| 久久99热这里只有精品18| 久久精品国产鲁丝片午夜精品| 国产精品免费一区二区三区在线| 国产av一区在线观看免费| 国产精品一及| 青春草视频在线免费观看| 国产av不卡久久| 小蜜桃在线观看免费完整版高清| 久久人人爽人人爽人人片va| 欧美潮喷喷水| 淫秽高清视频在线观看| 国产伦在线观看视频一区| 91在线精品国自产拍蜜月| 久久精品国产亚洲av涩爱 | 久久久久久久久久久丰满| 国产精品av视频在线免费观看| 亚洲久久久久久中文字幕| 在线观看一区二区三区| 亚洲精品456在线播放app| 日本色播在线视频| 男人狂女人下面高潮的视频| 欧美bdsm另类| 亚洲图色成人| 亚洲av.av天堂| 青春草视频在线免费观看| 欧美性猛交黑人性爽| 中国美白少妇内射xxxbb| 最近中文字幕高清免费大全6| 国语自产精品视频在线第100页| 成人无遮挡网站| 久久精品91蜜桃| 国产真实乱freesex| 成人毛片60女人毛片免费| 国产精品久久久久久精品电影小说 | or卡值多少钱| 亚洲性久久影院| 天美传媒精品一区二区| 久久久久久久久久久免费av| 精品久久久久久久末码| 熟女电影av网| 1024手机看黄色片| 91午夜精品亚洲一区二区三区| 在线免费观看不下载黄p国产| 国产精品久久久久久亚洲av鲁大| 久久精品国产亚洲网站| 亚洲欧美日韩无卡精品| 欧美成人免费av一区二区三区| 精品一区二区免费观看| 国产成人精品一,二区 | 免费人成在线观看视频色| 综合色av麻豆| 久久精品国产亚洲av涩爱 | 成人综合一区亚洲| 久久这里只有精品中国| 中文在线观看免费www的网站| 日韩中字成人| 国产日本99.免费观看| 国产三级在线视频| 欧美极品一区二区三区四区| 菩萨蛮人人尽说江南好唐韦庄 | 久久久国产成人免费| 人人妻人人澡欧美一区二区| 亚洲久久久久久中文字幕| 深夜精品福利| 中文资源天堂在线| 男女视频在线观看网站免费| 亚洲人成网站在线播放欧美日韩|