• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-iterative Cauchy kernel-based maximum correntropy cubature Kalman filter for non-Gaussian systems

    2022-02-11 09:06:36AasthaDakRahulRadhakrishnan
    Control Theory and Technology 2022年4期

    Aastha Dak·Rahul Radhakrishnan

    Received:20 May 2022/Revised:15 August 2022/Accepted:22 August 2022/Published online:17 October 2022

    ?The Author(s),under exclusive licence to South China University of Technology and Academy of Mathematics and Systems Science,Chinese Academy of Sciences 2022

    Abstract This article addresses the nonlinear state estimation problem where the conventional Gaussian assumption is completely relaxed.Here,the uncertainties in process and measurements are assumed non-Gaussian,such that the maximum correntropy criterion(MCC)is chosen to replace the conventional minimum mean square error criterion.Furthermore,the MCC is realized using Gaussian as well as Cauchy kernels by defining an appropriate cost function.Simulation results demonstrate the superior estimation accuracy of the developed estimators for two nonlinear estimation problems.

    Keywords Maximum correntropy criterion·Cubature Kalman filter·Non-Gaussian noise·Cauchy kernel·Gaussian kernel

    1 Introduction

    Nonlinear state estimation has great significance in signal processing,target tracking,information fusion,cooperative navigation,etc.,as most of the real-life problems are inherently nonlinear in nature[1–3].This nonlinear nature restricts the practitioners from obtaining an optimal solution, even after assuming that the uncertainties follow a Gaussian density.Hence,only sub-optimal solutions are available.Among suchsub-optimalsolutions,theextendedKalmanfilter(EKF)was the main estimator that practitioners relied on for many decades. However, the disadvantages of EKF such as poor estimation accuracy in the presence of high initial uncertainty and nonlinearity of models urged the practitioners to develop a new family of estimators.They were the unscented Kalman filter(UKF),cubature Kalman filter(CKF),cubature quadrature Kalman filter(CQKF),new sigma point Kalman filter (NSKF), etc. [4–7]. All these algorithms differ in the way they approximate the Gaussian prior and posterior with a set of deterministic points and weights.In many applications such as target tracking, power systems, etc., the Gaussian assumption for uncertainties is violated by significant outliers [8–10]. Under such conditions, the above-mentioned estimators result in poor estimation accuracy and may even fail to provide an estimate.

    To handle non-Gaussian uncertainties, estimation algorithms, such as the particle filter (PF) [11] and Gaussian sum filter[12],are often preferred.However,they are associated with high computational load,especially in the case of PF.Moreover,in the presence of large non-Gaussian uncertainties,the estimation performance of Gaussian sum filters tends to degrade. Hence, an estimation algorithm that can effectively handle non-Gaussian uncertainties with moderate computational cost is the need of the hour. Recently, considerable attention has been paid to estimation algorithms developed based on the correntropy criterion starting from the correntropy Kalman filter for linear systems [13,14].However,it had the disadvantage of not considering the propagation of error covariance matrix [15,16]. To overcome this limitation, a maximum correntropy Kalman filter was derived, which used a fixed-point iterative method to limit the effect of non-Gaussian noise with a slight increase in computational cost[17,18].

    Extension of this formulation based on maximum correntropy criterion (MCC) for nonlinear systems was reported in[19,20].However,the limitation of these algorithms was that they involve certain matrix inversion that could become singular in the presence of large non-Gaussian uncertainties[21,22].This numerical instability in the algorithm was overcome by the maximum correntropy unscented Kalman filter (MCUKF) formulation by reporting a series of algorithms like MCUKF-constant, MCUKF-adaptive, and the information filter [9]. However, the above-mentioned algorithms considered non-Gaussian uncertainties only in the noise associated with the measurements. While coming to non-Gaussian uncertainties in both process and measurement models,very few algorithms are available even for the linear systems[23,24].For nonlinear systems,algorithms available are iterative in nature resulting in increased computational cost[25].According to the best of the authors’knowledge,non-iterative state estimation algorithms for both nonlinear and non-Gaussian systems are not addressed in the literature.

    In this work,a non-iterative estimation algorithm is proposed that can address the problem of nonlinear estimation where both the process and measurement uncertainties are assumed non-Gaussian.This is achieved by embedding the MCC based on Gaussian as well as Cauchy kernel functions in the traditional CKF.Recently,the Cauchy kernel has been reported in the literature as an alternative to the Gaussian kernel for achieving better estimation accuracy in the presenceoflargemulti-dimensionalnon-Gaussiannoise[26–28].Moreover,the Cauchy kernel is reported to give stable estimation performance for a larger range of kernel bandwidth in comparison to the Gaussian kernel[26].The developed estimation algorithms based on Gaussian and Cauchy kernels are termed as MCG?CKF and MCC?CKF,respectively.

    2 Cubature Kalman filter(CKF)

    Let us consider a nonlinear process and measurement model described in the discrete-time domain as

    wherex∈Rnrepresents anndimensional state vector andy∈Rmrepresents themdimensional measurement vector.Here,f(·)andh(·)are known nonlinear functions representing process and measurement dynamics,respectively.

    In the nonlinear Bayesian framework, integrals encountered are intractable in nature.Hence,a numerical approximationmethodhastobeadoptedforgeneratingasub-optimal solution.In CKF,this is achieved using the spherical radial cubature rule where the integral is decoupled into spherical and radial components[5].Then,these components are numerically approximated using the spherical cubature and Gauss quadrature rules,respectively.Let the intractable integral be expressed as

    To express this integral in the spherical coordinate system,the transformationx=Sr Z+μis considered,whereSis the Cholesky decomposition ofPwith‖Z‖ = 1.Then,Eq.(2)becomes

    Here,[u]iis the set of cubature points lying at the intersection points oftheunithyper-sphe√reandthecoordinateaxes.After achangeinvariablel=r/Eq.(3)becomes

    It is to be noted in Eq.(2)that the integral is assumed to be of the formf(x)×Gaussian density.Even though,in nonlinear state estimation,the densities encountered are non-Gaussian, they are still approximated as Gaussian. Hence,the spherical radial rule for the numerical approximation of integrals and the corresponding filtering framework provides an estimate with reasonable accuracy.However,this estimation accuracy can deteriorate in the presence of non-Gaussian uncertainties in the process as well as in the measurements[9,17]. This calls for a more robust CKF-based estimation framework that can effectively handle non-Gaussian uncertainties.To achieve this,the maximum correntropy criterion is used to reformulate the conventional CKF estimation framework.

    3 Maximum correntropy criterion

    Correntropy is a similarity measure of two random variablesXandY,defined as

    wherekσ(·)usually denotes a Gaussian kernel function and E[·]is the expectation operator.If only a finite number of data pointsNare available,then the sample estimator is given as

    It is positive and bounded,and reaches its maximum if and only ifX=Y, thus leading to the maximum correntropy criterion (MCC). Correntropy can also be expressed as the weighted sum of all even order moments of(xi?yi)by taking the Taylor series expansion of the Gaussian kernel function given as

    As an alternative to the Gaussian kernel,the Cauchy kernel could be used to define MCC for the development of estimators.The Cauchy kernel is defined as

    Here,δis a positive scalar representing the Cauchy kernel bandwidth.Similar to the Gaussian kernel,it can be shown that the Cauchy kernel also incorporates the higher order moments[29]given as

    4 Derivation of Gaussian kernel-based maximum correntropy CKF(MCG–CKF)

    To derive the MCC-based estimation algorithm for non-Gaussian systems,we consider a cost function

    To guarantee the convergence of algorithm to a corresponding conventional state estimator(when the kernel bandwidthσbecomes infinity), the values for weights in Eq.(5) are taken asα=2σ2andβ=?2σ2.Then,Eq.(6)becomes

    Sinceis related toxi,Eq.(9)represents a fixed-point equation that can be solved using the fixed-point iteration algorithm consideringxiequal to ?xi|i?1in.However,as mentioned in[17,20]and[9],a single iteration is sufficient for achieving satisfactory estimation performance.Adopting the same approach leads to the modification of Eq.(9)as

    where

    5 Derivation of Cauchy kernel-based maximum correntropy CKF(MCC–CKF)

    To improve the performance in presence of large multidimensional noise,a nonlinear state estimator based on MCC and statistical linearization is developed based on the Cauchy kernel function.The corresponding cost function is defined as

    Here also,is related toxi, and hence, Eq.(13) is a fixed-point equation that is to be solved using fixed-point iteration algorithm by assumingxiequal to ?xi|i?1.Using the same justification that was adopted in the Gaussian kernel case that only a single iteration is required, the expression for posterior mean is obtained as

    Theorem 1As the kernel bandwidth δ tends to infinity,the Cauchy kernel-based MC estimator reduces to the standard nonlinear state estimation algorithm.

    ProofAs the time update is the same for the developed algorithms with respect to the standard nonlinear state estimators,the prior mean and covariance are unchanged. Hence, the focus shall be on the posterior mean and covariance. This implies that the Kalman gain equation has to be revisited.Whenδ→∞

    Substituting Ri,Eq.(16)andin,we have

    Since the expression ofis similar to the Kalman gain of standard nonlinear state estimator,posterior mean is also the same.From Eq.(15),the posterior covariancePi|ibecomes

    Remark 1When the probability of occurrence of abnormal noise is very high,a smaller value ofδprovides better estimation accuracy.When the probability is less,a larger value ofδis preferred.

    Remark 2The range ofδfor which robust and accurate estimation performance can be achieved is higher when compared to that ofσ. This means that more flexibility is associated with the choice ofδ,without hampering the estimation accuracy.

    Remark 3The proposed algorithm can fail only if the scalar termsandendtoinfinity.Thiscanoccurintwoconditions:a)when sensor measurements are devoid of noise,and b)the assumed model is far off from the actual system.However, the sensor measurements are always noise corrupted,and for accurate state estimation,the assumed process model should resemble the dynamics of the actual system.

    6 Algorithm for MCC–CKF

    7 Computational complexity

    Since the real-time implementation of the estimation algorithm is of utmost importance,the computational complexity of the proposed MCC?CKF is analyzed.The unit of computational complexity is usually measured in terms of floating point operations or flops.An addition,subtraction,multiplication, or division of two floating point numbers defines a flop.In Table 1,the computational complexity of each equation is given according to its numbering in Sect.6.Hence,it can be concluded that the total computational complexity of MCC?CKF is 14n3+16n2m+8n2+6nm+10nm2+3m2+5m+4n+4O(n3)+3O(m3)+2nO(f(·))+2nO(h(·)).Similarly,the computational complexity of MCG?CKF is analyzed and found to be two flop counts more than that of MCC?CKF.This is due to the extra flop counts required for the computation ofLGi.Furthermore,it can also be inferred that this is comparable with the computational complexity of the conventional CKF, which is 10n3+9n2+10nm+4n2m+6nm2+m2+m+2O(n3)+2nO(f(·))+2nO(h(·)).Now,with respect to the iterative MCC algorithms,the proposed algorithms have less computational complexity.This is because,for iterative algorithms,the computational complexity of corresponding equations will become a function of the number of iterations[17].However,for more clarity,the relative run-time of the algorithms is given in Table 6.

    Table 1 Computational complexity of MCC ?CKF

    8 Simulations and results

    To demonstrate the estimation accuracy of proposed algorithms MCG?CKF and MCC?CKF in comparison to the existing CKF, two nonlinear estimation problems are considered. The first problem is a 2D target tracking problem,whereas the second one is the popular Lorenz system.

    8.1 Modeling of non-Gaussian noise

    In this work,non-Gaussian uncertainties are modeled as glint noise. Glint noise is often mentioned in the radar target tracking literature where the measurement noise often shows non-Gaussian behavior because of the random wandering of the measured target position[10].It has a heavy-tailed non-Gaussian density with frequent outliers and has statistical

    Fig.1 Glint noise

    Fig.2 RMSE in position

    Fig.3 RMSE in velocity

    characteristics that are significantly different from that of the white Gaussian noise.

    An illustration for the same is given in Fig.1,where the plot indicates long-tailed behavior.The data in the tail region are known as outliers or glint spikes. Here, glint noise is modeledusingaweightedmixtureofGaussiandensities[30].It is represented asf(x)=(1 ??)fg1(x)+?fg2(x),where?is the glint probability andfg1(x) ~N(0,γ21),fg2(x) ~N(0,γ22)withγ1/=γ2.

    8.2 2D target tracking

    A two-dimensional constant velocity target tracking problem is considered where the states to be estimated are the positionand velocity of the target.The measurements are range and azimuth angle obtained from a radar. The process model is represented as

    Table 2 ARMSE values in position and velocity

    wherexi= [ξi˙ξi ηi˙ηi]Tis the system state.(ξi,ηi)denotes the position and(˙ξi, ˙ηi) denotes the velocity of target inxandydirections, respectively. Here,qiis the glint noise modeled as 0.6Nμ,diag{0.04,0.04}+0.4Nμ,diag{4,4}withμ= [0 0]Tand the sampling periodTis taken as 0.1s.The nonlinear measurement model is represented as

    whereriis the measurement noise modeled as

    Fig.4 RMSE in x1

    Fig.5 RMSE in x2

    Fig.6 RMSE in x3

    Table 3 Gaussian and Cauchy kernel bandwidth analysis on estimation accuracy

    Table 4 ARMSE values in states x1,x2,and x3

    To evaluate the performance of the developed estimators, root-mean-square error (RMSE) in resultant position and velocity is computed over 100 independent Monte Carlo runs where the simulation period lasted for 250 time steps.The RMSE in resultant position and velocity is evaluated and plotted in Figs. 2 and 3. From these figures, it can be inferred that the developed algorithms performed with superior estimation accuracy when subjected to glint noise in the process and measurements.At the same time,the estimation accuracy of the traditional CKF deteriorated significantly.Furthermore, it shall be noted that MCC?CKF performed with slightly higher estimation accuracy when compared to the MCG?CKF.From Fig.2,it shall be noted that the CKF incurred nearly five times more error than the developed MCC?CKF. This can be explained more precisely by calculating the average RMSE(ARMSE),that is the average of RMSE value over the time horizon. Table 2 shows the calculated ARMSE values and it can be observed that Cauchy kernel-based MC estimators incurred less estimation error than the Gaussian kernel-based MC estimator.All the simulations were carried out by taking Cauchy kernel bandwidth asδ= 100 and Gaussian kernel bandwidth asσ= 5,such that the best estimation accuracy can be achieved.

    The effect on the estimation accuracy of developed filters according to their kernel bandwidth values is given in Table 3.Here,ARMSE is evaluated by varying the kernel bandwidth from unity to the largest possible value that the computing platform (MATLAB 2020a) can generate. As mentioned in Table 2,it can be observed that the least errors were incurred bythedevelopedalgorithms for kernel bandwidthvaluesσ=5 andδ= 100.Moreover,the convergence of the proposed algorithms to the conventional CKF is evident from Table 3.Whenσandδvalues assumed the largest possible value,i.e.,theoretically infinity,the ARMSE values of the proposed algorithms coincided with the ARMSE values of CKF.

    Table 6 Relative run-time

    8.3 Lorenz system

    We consider the discrete-time Lorenz system which is one of the benchmark problems in nonlinear dynamics.The process and measurement equation is given by

    The initial truth value of state is taken asx0=[?0.2 ?0.3 ?0.5]Tand the sampling interval is taken asΔt= 0.01s. The initial posterior estimate is assumed as ?x0|0= [1.35 ?3 6]Twith initial error covarianceP0|0= 0.35I3.Figures4,5 and 6 show the RMSE in states for 100 Monte Carlo runs obtained by CKF, MCG?CKF and MCC?CKF.It can be observed that for the third state,no significant improvement has been achieved.However,for the other two states, the RMSE of the proposed filters is considerably less compared to the CKF.This illustrates the deterioration of estimation accuracy in the CKF when subjected to glint noise.

    The same inference could be obtained from the ARMSE values given in Table 4,forσ=4 andδ=100.To demonstrate the effect of kernel bandwidth on accuracy, ARMSEfor variousσandδvalues is given in Table 5.From the table,it can be inferred that satisfactory estimation performance for MCG?CKF is obtained whenσ= 3,4 and 5. However, in the case of MCC?CKF, the range of values forδcan be varied from 70 to 200 without losing estimation accuracy. Moreover, when the bandwidth tends toward infinity,ARMSE values coincide with that of the conventional CKF.This again proves the convergence of proposed algorithms to the CKF,as mentioned in Theorem 1.

    Table 5 Gaussian and Cauchy kernel bandwidth analysis on estimation accuracy

    The relative run-time of the algorithms is computed and tabulated in Table 6.From this table,it can be observed that in comparison to the CKF,MCG?CKF and MCC?CKF have an increased run-time of 23%and 27%,respectively.Hence,it can be inferred that the proposed algorithms have almost similar run time.

    9 Conclusion

    In this work,new nonlinear estimation algorithms are developed to handle non-Gaussian noise in the process as well as in measurements,named MCG?CKF and MCC?CKF.It was developed by proposing the maximum correntropy criterion(MCC)as an alternative to minimum mean square error,by defining an appropriate cost function in terms of Gaussian and Cauchy kernel functions. From the simulation results,it can be inferred that the developed algorithms performed with improved estimation accuracy when compared to the conventional CKF, with MCC?CKF giving better estimation accuracy than MCG?CKF.Hence,it can be concluded that with proper choice of kernel bandwidth, the proposed algorithms can be a suitable alternative to the conventional CKF,when subjected to non-Gaussian uncertainties in both process and measurement models.

    Funding This research was funded by SVNIT Surat Project No.2020-21/seed money/30.

    日本精品一区二区三区蜜桃| 欧美日韩亚洲综合一区二区三区_| 久热这里只有精品99| 亚洲第一青青草原| 国产精品一区二区三区四区久久 | 久久99一区二区三区| 精品久久久久久久毛片微露脸| 亚洲精品粉嫩美女一区| 成人三级黄色视频| 久久婷婷成人综合色麻豆| 午夜两性在线视频| 看黄色毛片网站| netflix在线观看网站| 精品欧美一区二区三区在线| 日本vs欧美在线观看视频| 欧美人与性动交α欧美精品济南到| 最近最新免费中文字幕在线| 99riav亚洲国产免费| av超薄肉色丝袜交足视频| 精品福利永久在线观看| av超薄肉色丝袜交足视频| 国产伦人伦偷精品视频| 久久久久久久午夜电影 | 美女扒开内裤让男人捅视频| 亚洲欧美激情综合另类| 久久精品成人免费网站| 久久中文字幕人妻熟女| 88av欧美| 精品久久久久久,| 成人特级黄色片久久久久久久| 亚洲欧洲精品一区二区精品久久久| 日本撒尿小便嘘嘘汇集6| 香蕉国产在线看| 久久精品91无色码中文字幕| 亚洲激情在线av| 99国产极品粉嫩在线观看| 久久精品91蜜桃| 老汉色∧v一级毛片| 亚洲成人免费av在线播放| 国产真人三级小视频在线观看| 国产免费av片在线观看野外av| av欧美777| 久久精品aⅴ一区二区三区四区| 亚洲精品一二三| 黄色视频不卡| 啦啦啦 在线观看视频| 欧美黄色片欧美黄色片| 国产一区二区在线av高清观看| 欧美日韩中文字幕国产精品一区二区三区 | 日韩欧美一区视频在线观看| 中文字幕人妻丝袜一区二区| 大陆偷拍与自拍| 丝袜人妻中文字幕| 中亚洲国语对白在线视频| 在线观看66精品国产| 亚洲av成人一区二区三| 韩国av一区二区三区四区| 中文字幕最新亚洲高清| 国产97色在线日韩免费| 91大片在线观看| 熟女少妇亚洲综合色aaa.| 成人亚洲精品av一区二区 | 少妇 在线观看| 嫩草影视91久久| 午夜福利欧美成人| 国产蜜桃级精品一区二区三区| 国产三级在线视频| 国产野战对白在线观看| 99国产精品免费福利视频| 国产成人精品久久二区二区91| 亚洲人成电影免费在线| 久久久久精品国产欧美久久久| 亚洲av成人一区二区三| 欧美国产精品va在线观看不卡| 午夜91福利影院| 亚洲欧美一区二区三区久久| 免费日韩欧美在线观看| 97人妻天天添夜夜摸| 亚洲三区欧美一区| 欧美日韩黄片免| 亚洲人成网站在线播放欧美日韩| 成人av一区二区三区在线看| 久久狼人影院| 在线天堂中文资源库| 一级,二级,三级黄色视频| 成人18禁在线播放| 欧美亚洲日本最大视频资源| 嫩草影院精品99| 亚洲一区高清亚洲精品| 侵犯人妻中文字幕一二三四区| 一进一出好大好爽视频| 一进一出抽搐动态| 日韩国内少妇激情av| 巨乳人妻的诱惑在线观看| 人成视频在线观看免费观看| svipshipincom国产片| 久久国产精品影院| 国产一区二区在线av高清观看| 热99re8久久精品国产| netflix在线观看网站| 久久国产乱子伦精品免费另类| 日本免费a在线| 狂野欧美激情性xxxx| 免费日韩欧美在线观看| 99精品欧美一区二区三区四区| 中文欧美无线码| 丁香六月欧美| 亚洲第一av免费看| 日韩大码丰满熟妇| 中文字幕高清在线视频| 久热爱精品视频在线9| 久久婷婷成人综合色麻豆| 亚洲精品国产区一区二| 国产精品一区二区精品视频观看| 色哟哟哟哟哟哟| 亚洲成人免费av在线播放| 国产又色又爽无遮挡免费看| 黄片小视频在线播放| 啦啦啦 在线观看视频| 日本a在线网址| 精品福利永久在线观看| 国产成人影院久久av| 男人的好看免费观看在线视频 | 成在线人永久免费视频| 午夜精品久久久久久毛片777| 久久人人爽av亚洲精品天堂| 好男人电影高清在线观看| 嫩草影院精品99| 老司机福利观看| 久热爱精品视频在线9| 国产成年人精品一区二区 | 国产亚洲精品第一综合不卡| av超薄肉色丝袜交足视频| 人人澡人人妻人| 悠悠久久av| 午夜福利在线免费观看网站| 精品午夜福利视频在线观看一区| 悠悠久久av| 国产精品自产拍在线观看55亚洲| 欧美一级毛片孕妇| 女同久久另类99精品国产91| 免费高清在线观看日韩| 级片在线观看| 97碰自拍视频| 日韩高清综合在线| 黄色怎么调成土黄色| 婷婷精品国产亚洲av在线| 亚洲国产精品一区二区三区在线| 色尼玛亚洲综合影院| 亚洲精品中文字幕在线视频| 国内毛片毛片毛片毛片毛片| 中文字幕最新亚洲高清| 涩涩av久久男人的天堂| 青草久久国产| 欧美性长视频在线观看| 中文字幕人妻丝袜一区二区| 中文字幕色久视频| 亚洲成人久久性| 成在线人永久免费视频| 欧美大码av| 亚洲专区中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 我的亚洲天堂| 日本欧美视频一区| 久99久视频精品免费| 一本综合久久免费| 亚洲,欧美精品.| 国产成人av教育| 老司机深夜福利视频在线观看| 国产欧美日韩一区二区三| 亚洲人成电影免费在线| 国产精品1区2区在线观看.| 亚洲成av片中文字幕在线观看| 黄色片一级片一级黄色片| 无限看片的www在线观看| 男女下面进入的视频免费午夜 | 亚洲视频免费观看视频| 日本vs欧美在线观看视频| 亚洲熟女毛片儿| 欧美老熟妇乱子伦牲交| 首页视频小说图片口味搜索| 妹子高潮喷水视频| 高清黄色对白视频在线免费看| 久久人人爽av亚洲精品天堂| 国产一区在线观看成人免费| 99热国产这里只有精品6| 无限看片的www在线观看| 欧美午夜高清在线| 老司机午夜福利在线观看视频| 亚洲av五月六月丁香网| 亚洲精品中文字幕在线视频| 日韩免费高清中文字幕av| 亚洲精品在线美女| 久久精品91蜜桃| 亚洲视频免费观看视频| 国产色视频综合| 亚洲在线自拍视频| 老司机亚洲免费影院| 久久久国产欧美日韩av| 亚洲九九香蕉| 中文字幕另类日韩欧美亚洲嫩草| 交换朋友夫妻互换小说| 成人18禁在线播放| 一级毛片高清免费大全| 免费在线观看影片大全网站| 亚洲成人精品中文字幕电影 | 夜夜爽天天搞| 如日韩欧美国产精品一区二区三区| 色尼玛亚洲综合影院| 色婷婷久久久亚洲欧美| 韩国精品一区二区三区| 日韩欧美一区二区三区在线观看| 交换朋友夫妻互换小说| 一级片'在线观看视频| 岛国在线观看网站| 亚洲国产看品久久| 18禁美女被吸乳视频| 国产亚洲欧美精品永久| 超碰成人久久| 日韩 欧美 亚洲 中文字幕| 大型av网站在线播放| 久久久久国产一级毛片高清牌| 女性被躁到高潮视频| 精品国产一区二区三区四区第35| 亚洲国产精品一区二区三区在线| 中出人妻视频一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 一a级毛片在线观看| 国产成年人精品一区二区 | 久久久久国产精品人妻aⅴ院| 无遮挡黄片免费观看| 亚洲第一青青草原| 两性夫妻黄色片| 怎么达到女性高潮| 免费观看精品视频网站| 757午夜福利合集在线观看| 欧美+亚洲+日韩+国产| 岛国视频午夜一区免费看| 午夜福利在线免费观看网站| 久9热在线精品视频| 欧洲精品卡2卡3卡4卡5卡区| 91九色精品人成在线观看| 午夜两性在线视频| 成人av一区二区三区在线看| 久久久水蜜桃国产精品网| 母亲3免费完整高清在线观看| 别揉我奶头~嗯~啊~动态视频| 精品第一国产精品| 激情视频va一区二区三区| 亚洲成av片中文字幕在线观看| 视频在线观看一区二区三区| 免费久久久久久久精品成人欧美视频| 亚洲专区字幕在线| 美女大奶头视频| 性色av乱码一区二区三区2| 性欧美人与动物交配| 久久精品亚洲精品国产色婷小说| 亚洲美女黄片视频| 久久人妻熟女aⅴ| 国产精品久久电影中文字幕| 亚洲欧美精品综合一区二区三区| 国产欧美日韩一区二区三| 两性夫妻黄色片| 精品卡一卡二卡四卡免费| 国产高清激情床上av| 日本wwww免费看| 夜夜看夜夜爽夜夜摸 | 国产99久久九九免费精品| 久久精品aⅴ一区二区三区四区| 日韩一卡2卡3卡4卡2021年| 亚洲熟女毛片儿| 日日干狠狠操夜夜爽| 亚洲 欧美一区二区三区| 久久亚洲精品不卡| 精品久久蜜臀av无| 最好的美女福利视频网| 国产欧美日韩一区二区精品| 亚洲精品在线美女| 日韩av在线大香蕉| 又黄又爽又免费观看的视频| 亚洲九九香蕉| 午夜日韩欧美国产| 五月开心婷婷网| 黑人欧美特级aaaaaa片| 国产av一区二区精品久久| av片东京热男人的天堂| 国产深夜福利视频在线观看| 男人操女人黄网站| 久久精品91蜜桃| 免费搜索国产男女视频| a级毛片黄视频| 久久中文字幕人妻熟女| 国产1区2区3区精品| 91麻豆精品激情在线观看国产 | 久久中文看片网| 人妻久久中文字幕网| 波多野结衣高清无吗| 欧美乱妇无乱码| 欧美日韩精品网址| 中文字幕另类日韩欧美亚洲嫩草| 91九色精品人成在线观看| 国产精品九九99| 最近最新中文字幕大全电影3 | 在线十欧美十亚洲十日本专区| 黄色视频不卡| 国产激情欧美一区二区| 中文字幕人妻丝袜一区二区| 9色porny在线观看| 在线免费观看的www视频| 国产成人啪精品午夜网站| 国产野战对白在线观看| 国产亚洲欧美98| 黄色 视频免费看| 别揉我奶头~嗯~啊~动态视频| 国产乱人伦免费视频| 性色av乱码一区二区三区2| 国产成人免费无遮挡视频| 亚洲久久久国产精品| 国内久久婷婷六月综合欲色啪| 国产xxxxx性猛交| 亚洲人成伊人成综合网2020| 久久久久亚洲av毛片大全| 欧美日韩福利视频一区二区| 国产欧美日韩一区二区三区在线| 成人黄色视频免费在线看| 一边摸一边做爽爽视频免费| 麻豆av在线久日| 激情在线观看视频在线高清| 亚洲aⅴ乱码一区二区在线播放 | 一个人观看的视频www高清免费观看 | 久久人妻av系列| 午夜a级毛片| 国产成人欧美在线观看| 成人三级黄色视频| 久久久久久亚洲精品国产蜜桃av| 亚洲成人免费av在线播放| 精品久久久久久电影网| 99久久人妻综合| 欧美日韩福利视频一区二区| 亚洲 国产 在线| 男人操女人黄网站| 午夜视频精品福利| 99久久国产精品久久久| 91字幕亚洲| 别揉我奶头~嗯~啊~动态视频| 在线观看www视频免费| 久久久久国内视频| 亚洲人成网站在线播放欧美日韩| 黄片大片在线免费观看| 不卡一级毛片| 国产欧美日韩一区二区精品| 欧美一区二区精品小视频在线| 在线观看免费日韩欧美大片| 亚洲精品中文字幕在线视频| 欧美日韩一级在线毛片| 嫩草影视91久久| 99热国产这里只有精品6| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看黄色视频的| 女人被躁到高潮嗷嗷叫费观| 日韩有码中文字幕| 久久人人97超碰香蕉20202| 久9热在线精品视频| 老汉色∧v一级毛片| 如日韩欧美国产精品一区二区三区| 日本黄色视频三级网站网址| 欧美精品一区二区免费开放| 亚洲精品国产区一区二| 99精品久久久久人妻精品| 每晚都被弄得嗷嗷叫到高潮| 国产熟女午夜一区二区三区| 国产精品综合久久久久久久免费 | 欧美丝袜亚洲另类 | 老汉色av国产亚洲站长工具| 看免费av毛片| 久久精品人人爽人人爽视色| 女人爽到高潮嗷嗷叫在线视频| 亚洲狠狠婷婷综合久久图片| 可以在线观看毛片的网站| 国产一卡二卡三卡精品| 亚洲欧美日韩高清在线视频| 99国产精品免费福利视频| 亚洲欧美日韩高清在线视频| 国产亚洲欧美在线一区二区| 国产亚洲精品综合一区在线观看 | 久9热在线精品视频| 久久人妻熟女aⅴ| 自拍欧美九色日韩亚洲蝌蚪91| 又紧又爽又黄一区二区| 国产亚洲欧美在线一区二区| 欧洲精品卡2卡3卡4卡5卡区| 成人国产一区最新在线观看| 99riav亚洲国产免费| 国产熟女xx| 十八禁网站免费在线| av网站在线播放免费| 亚洲 国产 在线| 国产黄色免费在线视频| 香蕉久久夜色| 在线天堂中文资源库| 午夜成年电影在线免费观看| 女人高潮潮喷娇喘18禁视频| 欧美日韩视频精品一区| 色哟哟哟哟哟哟| 久99久视频精品免费| 伊人久久大香线蕉亚洲五| 精品无人区乱码1区二区| 人人妻,人人澡人人爽秒播| aaaaa片日本免费| 波多野结衣av一区二区av| 久久精品国产99精品国产亚洲性色 | 国产99久久九九免费精品| 五月开心婷婷网| 国产亚洲精品综合一区在线观看 | 9热在线视频观看99| a级毛片在线看网站| 少妇 在线观看| 午夜免费激情av| 黄色 视频免费看| 黄色片一级片一级黄色片| 婷婷精品国产亚洲av在线| 国产单亲对白刺激| 国产主播在线观看一区二区| 亚洲情色 制服丝袜| 黄色视频不卡| 国产成+人综合+亚洲专区| 免费女性裸体啪啪无遮挡网站| 热99国产精品久久久久久7| 久久久久久久久久久久大奶| 国产亚洲精品久久久久久毛片| 制服诱惑二区| 国产av在哪里看| 亚洲成国产人片在线观看| 一a级毛片在线观看| 正在播放国产对白刺激| 日韩三级视频一区二区三区| 最新美女视频免费是黄的| 精品乱码久久久久久99久播| 久久国产亚洲av麻豆专区| 俄罗斯特黄特色一大片| 午夜激情av网站| 又大又爽又粗| 18禁观看日本| 国产97色在线日韩免费| 国产高清激情床上av| 久久热在线av| 一个人免费在线观看的高清视频| 亚洲国产精品合色在线| 国产精品偷伦视频观看了| 国产欧美日韩一区二区三区在线| 久久久国产成人精品二区 | 日日夜夜操网爽| 国产精品自产拍在线观看55亚洲| 老熟妇乱子伦视频在线观看| 国产色视频综合| www.自偷自拍.com| 成人三级做爰电影| 国产精品免费一区二区三区在线| 在线观看免费高清a一片| 欧美日韩乱码在线| 女同久久另类99精品国产91| 国产欧美日韩综合在线一区二区| 亚洲成人免费av在线播放| 欧洲精品卡2卡3卡4卡5卡区| 老汉色av国产亚洲站长工具| 午夜福利影视在线免费观看| 亚洲黑人精品在线| 999精品在线视频| 老司机午夜十八禁免费视频| 国产一区在线观看成人免费| 黄片播放在线免费| 天天添夜夜摸| 国产精品免费视频内射| 久久国产亚洲av麻豆专区| 国产亚洲精品久久久久5区| 在线观看66精品国产| 一级作爱视频免费观看| 丁香欧美五月| 两个人看的免费小视频| videosex国产| 日韩精品中文字幕看吧| 国产精品成人在线| 男女午夜视频在线观看| 国产高清videossex| 日本黄色日本黄色录像| 国产免费男女视频| 黄片大片在线免费观看| 女人高潮潮喷娇喘18禁视频| 丰满人妻熟妇乱又伦精品不卡| 91精品三级在线观看| 欧美乱码精品一区二区三区| 在线观看午夜福利视频| 97碰自拍视频| 夫妻午夜视频| 五月开心婷婷网| 亚洲国产精品合色在线| 男人操女人黄网站| 国产成人系列免费观看| 精品第一国产精品| 久久中文字幕人妻熟女| 国产亚洲av高清不卡| 国产成人av教育| 男女下面进入的视频免费午夜 | 中文欧美无线码| 午夜免费成人在线视频| 日本三级黄在线观看| 亚洲精品粉嫩美女一区| 日韩精品中文字幕看吧| 99香蕉大伊视频| 在线观看一区二区三区激情| 久久人妻av系列| 国产精品自产拍在线观看55亚洲| 侵犯人妻中文字幕一二三四区| 国产精品美女特级片免费视频播放器 | 亚洲美女黄片视频| 久久影院123| 成在线人永久免费视频| 一边摸一边做爽爽视频免费| 免费不卡黄色视频| 亚洲视频免费观看视频| 咕卡用的链子| 99riav亚洲国产免费| 久久久久亚洲av毛片大全| 黑人猛操日本美女一级片| 久久久久久久午夜电影 | 真人一进一出gif抽搐免费| 天天躁狠狠躁夜夜躁狠狠躁| 久久午夜综合久久蜜桃| 亚洲九九香蕉| 动漫黄色视频在线观看| 亚洲一区高清亚洲精品| 88av欧美| 热99国产精品久久久久久7| 香蕉国产在线看| 丁香欧美五月| av国产精品久久久久影院| 高清黄色对白视频在线免费看| 悠悠久久av| 久久久国产一区二区| 黄色视频不卡| 老熟妇乱子伦视频在线观看| 国产极品粉嫩免费观看在线| 婷婷六月久久综合丁香| 99久久99久久久精品蜜桃| 国产黄色免费在线视频| 国产亚洲精品第一综合不卡| 黄片播放在线免费| 久久精品国产亚洲av高清一级| 老司机靠b影院| 精品欧美一区二区三区在线| 日本黄色日本黄色录像| 欧美不卡视频在线免费观看 | 亚洲成人精品中文字幕电影 | 久久精品aⅴ一区二区三区四区| 一级毛片女人18水好多| 免费人成视频x8x8入口观看| 三上悠亚av全集在线观看| 日韩欧美在线二视频| 国产精品爽爽va在线观看网站 | 男人的好看免费观看在线视频 | 黄色视频,在线免费观看| 亚洲第一欧美日韩一区二区三区| 亚洲久久久国产精品| 日韩国内少妇激情av| 如日韩欧美国产精品一区二区三区| 午夜精品国产一区二区电影| 亚洲avbb在线观看| 国产免费现黄频在线看| 女同久久另类99精品国产91| 亚洲人成伊人成综合网2020| 久久中文看片网| 免费在线观看视频国产中文字幕亚洲| 久久精品成人免费网站| 久久欧美精品欧美久久欧美| 91大片在线观看| 日本免费a在线| 欧美日韩福利视频一区二区| 极品人妻少妇av视频| 欧美精品啪啪一区二区三区| 午夜福利在线免费观看网站| 欧美乱色亚洲激情| 啪啪无遮挡十八禁网站| 女同久久另类99精品国产91| 后天国语完整版免费观看| 亚洲av成人不卡在线观看播放网| 久久草成人影院| 日韩欧美一区视频在线观看| svipshipincom国产片| 深夜精品福利| 久久青草综合色| 国产精品九九99| 欧美乱码精品一区二区三区| 交换朋友夫妻互换小说| 国产视频一区二区在线看| 久9热在线精品视频| 日本五十路高清| 欧美日韩亚洲国产一区二区在线观看| 亚洲激情在线av| 亚洲 欧美一区二区三区| 久久香蕉国产精品| 韩国av一区二区三区四区| 男女下面插进去视频免费观看| 欧美不卡视频在线免费观看 | 日韩人妻精品一区2区三区| 午夜91福利影院| 淫秽高清视频在线观看| 亚洲av片天天在线观看| 国产精品av久久久久免费| 99国产精品一区二区三区| 亚洲黑人精品在线| 又紧又爽又黄一区二区| 欧美乱妇无乱码| 91字幕亚洲| 成人国语在线视频| 亚洲片人在线观看|