• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bipartite consensus for nonlinear time-delay multiagent systems via time-varying gain control method

    2022-02-11 09:07:04HaiouZhaoYananQiYanjieChangXianfuZhang
    Control Theory and Technology 2022年4期

    Haiou Zhao·Yanan Qi·Yanjie Chang·Xianfu Zhang

    Received:21 January 2022/Revised:16 May 2022/Accepted:8 June 2022/Published online:13 October 2022

    ?The Author(s),under exclusive licence to South China University of Technology and Academy of Mathematics and Systems Science,Chinese Academy of Sciences 2022

    Abstract The bipartite consensus problem is addressed for a class of nonlinear time-delay multiagent systems in this paper.Therein,the uncertain nonlinear dynamics of all agents satisfy a Lipschitz growth condition with unknown constants,and part of the state information cannot be measured.In this case,a time-varying gain compensator is constructed,which only utilizes the output information of the follower and its neighbors.Subsequently,a distributed output feedback control protocol is proposed on the basis of the compensator.According to Lyapunov stability theory,it is proved that the bipartite consensus can be guaranteed by means of the designed control protocol.Different from the existing literature,this paper studies the leader–follower consensus problem under a weaker connectivity condition,i.e.,the signed directed graph is structurally balanced and contains a directed spanning tree.Two simulation examples are carried out to show the feasibility of the proposed control strategy.

    Keywords Multiagent systems·Time-delay·Bipartite consensus·Time-varying gain·Output feedback

    1 Introduction

    Cooperative control of multiagent systems has attracted the attention of many scholars in the past few decades due to its broad application backgrounds,such as sensor networks,unmanned air vehicles,and industrial processes[1–3].Consensus control is a fundamental problem with high popularity in cooperative control [4]. It includes leaderless consensus and leader–follower consensus.One of the essential tasks of the leader–following consensus is to design distributed control protocols based on neighborhood information,such that the states of the followers track the states of the leader.Owing to the strong robustness and less communication requirements of distributed consensus protocols, many excellent strategies have been proposed from different perspectives for consensus control of multiagent systems. Single-integrator multiagent systems were studied in [5,6], multiagent systems for double integrator were investigated in [7,8], and high-order multiagent systems were considered in[9,10].

    However,the above work only considers the cooperative relationship between agents, which implies that the entries in the adjacency matrix of the communication topology are nonnegative.In practical systems,cooperation and competition among agents may exist simultaneously.Based on this,the concept of the signed graph is proposed,where the positive and negative entries of its adjacency matrix represent the cooperation and competition interactions among agents,respectively.In addition,consensus control based on a signed topology is called bipartite consensus control.Bipartite consensus is that the agent converges to the corresponding value with the same module but for different signs. In [11], for the first-order multiagent systems, the bipartite consensus problem was introduced and studied for the first time. A time-delayed impulsive control strategy was proposed for second-order multiagent systems with switched topology to solve the bipartite consensus problem in [12]. In [13],the research of bipartite consensus was further extended to high-order multiagent systems.For general linear multiagent systems, state feedback and output feedback control were designed to achieve bipartite consensus in[14].

    The time-varying gain control is an efficient method for handling leader–follower consensus problems in nonlinear multiagent systems. The prescribed finite-time consensus problem was handled by utilizing time-varying gain control methods for a class of uncertain second-order multiagent systems in [15]. For feedforward nonlinear multiagent systems,the leader–following consensus problem was solved by designing output feedback controllers with a time-varying gain in [16]. In [17], using the time-varying gain control approach,the leader–follower consensus problem of nonlinear multiagent systems was transformed into the construction of a time-varying function. For a class of nonlinear timedelay multiagent systems,the consensus problem was solved by designing a time-varying gain in[18].A time-varying gain control technique is used to handle the influence of unknown constants and realize the consensus of multiagent systems in[19].For feedforward nonlinear time-delay multiagent systems, a static low-gain controller and a time-varying gain method were proposed in[20],which showed that the latter improved the convergence speed and transient performance of the distributed consensus protocol.As one of the sources of destroying system stability and reducing system performance, time-delay often appears in practical systems [21].Many works considered the existence of time-delays in nonlinear multiagent systems[5,18,20,22,23].However,as far as we know,little attention has been focused on using the timevarying gain control method to solve the bipartite consensus problem of nonlinear time-delay multiagent systems.

    In this paper, the bipartite consensus of nonlinear timedelay multiagent systems is addressed using the time-varying gain control method. Compared with the existing results,the contributions of this paper can be summarized as follows. First, with the help of the time-varying gain method,a bipartite consensus protocol is constructed for a class of uncertain nonlinear multiagent systems, which satisfy a Lipschitz growth condition with unknown constants. Specially, the time-varying gain effectively handles the effects of unknown constants. Second, different from the work in[17–20],where only cooperative interaction exists,this paper considers a more realistic situation, that is, some agents in the investigated graph may cooperate, while others may compete. Third, it is worth noting that the proposed control strategy shows great advantages in energy saving and flexible implementation. Specifically, since only the output information of the follower and its neighbors is utilized,the developed protocol economizes the communication bandwidth compared with[17].

    The remainder of this paper is organized as follows.Section 2 describes the preliminary knowledge and problem description. Section 3 introduces the design of the control protocol.Two simulation examples are presented in Sect.4 to prove the effectiveness of the control strategy. The conclusion and future outlook are drawn in Sect.5.

    2 Preliminaries and problem formulation

    2.1 Topology theory

    If there is a directed path{(k,k1),(k1,k2),...,(kl,i)}?Ebetweeniandk, the agentiis reachable from the agentk.Gis said to be strongly connected if there are directed paths for any two agents. The signed topologyGis called structurally balanced,if there are two subsetsVp,p= 1,2 that satisfyV=V1∪V2,V1∩V2= ?,aik≥0 for alli,k∈Vp(p= 1,2),andaik≤0 fori∈Vp,k∈Vqwithp/=q(p,q=1,2).

    An augmented signed topology ˉG={G∪0∪ES(i,0)} is employed to describe the communication between a leader numbered 0 andNfollowers indexed by 1,2,...,N,where ES(i,0) denotes a set of edges connecting leader 0 and followeri. A pinning matrix is defined asB=diag{b1,b2,...,bN},wherebi=1 if the agentican acquire the information of the leader andbi=0 otherwise.An augmented matrix is represented as ˉL=L+B.

    Assumption 1The signed topologyGis structurally balanced and contains a directed spanning tree.

    Lemma 1[24]Define the gauge transformation set Q:={diag{σ1,σ2,...,σN}∈ {±1},i∈V}.If the signed topology G is structurally balanced,there must be a matrix Q∈Q satisfying the entries of QAQ are nonnegative,i.e.,Define a matrix as.

    2.2 System formulation

    ConsiderN+ 1 agents given in the topology theory. The agenti,i=0,1,...,Nare modeled as

    wherexi,k(t) ∈R,ui(t) ∈R andyi(t) ∈R are the state,input, and output of theith agent, respectively,u0(t) = 0,i,k(t) = [xi,1(t),xi,2(t),...,xi,k(t)]T,i,k(t?d(t)) =[xi,1(t?d(t)),xi,2(t?d(t)),...,xi,k(t?d(t))]T,the timedelayd(t) satisfies 0 ≤d(t) ≤d?and its derivative ˙d(t)satisfies ˙d(t) ≤≤1, in whichd?andare known constants,only the output is measured,andfk(·) : R+×Rk×Rk→R is an uncertain continuous function satisfies the following Lipschitz condition.

    Assumption 2For any(t, ˉxi,k, ˉxi,k,d) ∈R+× Rk× Rk,k=1,2,...,n,the following condition holds:

    whereγ j1 andγ j2 are unknown nonnegative constants,xi,k,d=xi,k(t?d(t))andi,k,d=i,k(t?d(t)).

    Lemma 2[22]For functions f≥0,g≥0,the following inequality holds:

    Remark 1Assumption 1 and signed topology theory are the basic assumptions for realizing bipartite consensus[24,25].Assumption 2 shows that nonlinear functions satisfy a Lipschitz condition with unknown constants. The nonlinear function satisfies the same form for each follower, which is a crucial assumption to realize the consensus.Compared with[18]and[19],the assumptions in this paper are further relaxed. Many practical projects can be modeled as system(1), such as chemical reactor systems [19] and pendulum systems[24].

    3 Output feedback controller design

    In this section, the bipartite consensus problem for system(1)is studied. For theith agent, the output consensus error is defined as

    Sinceonlythesystemoutputismeasurable,acompensator for agentican be modeled as

    one obtains

    The output feedback controllers are designed as

    whereδk,k= 1,2,...,nare the parameters to be selected later.

    ηi,k=xi,k?σi x0,k?ξi,k,k=1,2,...,n,

    and one obtains

    From(6)and(7),one has

    Remark 2The compensator (2) only uses the output information of followers and their neighbors. Therefore, the computational burden of the algorithm is reduced. The distributed output feedback controllers(4)only call the corresponding compensator.The controllers reduce information transmissionandsavecommunicationbandwidth.Theconditions imposed on nonlinear terms are further relaxed,and the dynamic gain controller proposed in[18]cannot effectively address the consensus problem of system (1). To solve the influence of unknown constantsγ j1andγ j2,j=1,2,...,n,the time-varying gain with the logarithmic form is constructed.Moreover,the controller has a simple structure that can easily be implemented in practice.

    Theorem 1Under a signed topology G,consider the multiagent system satisfying Assumptions1and2.The distributed output feedback controllers(4)are constructed such that the bipartite consensus of system(1)is achieved.

    ProofAccording to Lemmas 2 and 3 in [18] and Theorems 1–3 in [26],is a Hurwitz matrix by selecting appropriate vectorsmandδ. Therefore, there must be two positive constantsμandι0, positive definite matrixP=diag{P1,P2,...,PN},Pi∈R2n×2n,i= 1,2,...,Nsatisfying

    Choose a candidate Lyapunov function asV1=ΨTPΨ,its derivative along(11)is

    Based on Assumption 2,one obtains

    whereξi,k,d=ξi,k(t?d(t)),andηi,k,d=ηi,k(t?d(t)).

    Based on the definitions ofi,k, ˉηi,k,i,kandi,k,it can be further obtained that

    It follows from(14)and Lemma 2 that:

    whereρ1is a positive constant.Therefore,one obtains

    Choose a candidate function as

    where?is a positive constant. Then, its time derivative is calculated as

    Based on the discussions above, a function designed asV=V1+V2.The derivative ofVsatisfies

    Therefore, there exists a positive constantκand a finite timet1satisfyingμln(t+d?+e)?ˉγ ω>κ,t∈[t1,+∞)and

    whereχ=min{κ,?}.

    Based on(19),one obtains

    V(t)≤V(t1)e?χ(t?t1),

    which means thatV1=ΨTPΨ≤V(t1)e?χ(t?t1)ont∈[t1,+∞).

    Then,one has

    Fort∈[t1,+∞),the following inequality holds:

    The proof of Theorem 1 is completed. ■

    ThroughtheaboveanalysisandcombinedwithL’Hopital’s rule,although the time-varying gain lnk(t+d?+e)tends to infinity when timettends to infinity,ξi,kandηi,kconverge to 0.It further shows that the bipartite consensus of system(1)is completed.In addition

    Remark 3The study of multiagent systems with cooperative andantagonisticinteractionsisofnotonlytheoreticalbutalso practical importance.Examples of bilateral monopoly structures, two-party political systems, and social networks are practical applications of bipartite consensus. Conventional consensus can be regarded as a particular case of bipartite consensus. The control strategy proposed in this paper can also be applied to the conventional consensus,expanding the scope of application.

    4 Simulation examples

    To illustrate the feasibility of the proposed control strategy,two simulation examples are given.

    4.1 Example I

    It follows from[18]that the two-stage chemical reactors with delayed recycle streams as agents can be modeled as

    Fig.1 Topology of augmented graph ˉG

    wherexi,1andxi,2are compositions,θi,1andθi,2denote the reactor residence times,βi,1andβi,1are reaction constants,ri,1andri,2denote the recycle flow rates,νi,1andνi,2are reactor volumes,αi,2is the feed rate,w1(·)andw2(·)denote the nonlinear functions describing the system uncertainties and external disturbances, andd(t) = 0.6+0.2 sintwithd?= 0.8 and ˉd= 0.2. The topology is provided in Fig.1.Takeθi,1=θi,2= 10,βi,1= 0.02,βi,2= 0.05,ri,1=ri,2 = 0.2,νi,1=νi,2= 0.8,αi,2= 0.8,w1(·) =0.03xi,1,w2(·) = 0.25xi,2,d. It is clear that system (21)satisfies Assumption 2. Choose vectors asm= [2,1]T,δ=[14,3]T.

    Then, the compensator for followeri,i= 1,2,3,4 are designed as follows:

    Based on the compensator (22), construct the controller for followeri,i=1,2,3,4 as

    Without loss of generality,the initial conditions of agents are chosen randomly. The initial values are selected asxT0= [?0.5,1],xT1= [?0.3,12],xT2= [?0.6,?15],xT3= [0.4,?5],xT4= [?0.2,10],ξT1= [?0.4,0.1],ξT2= [0.1,?0.2],ξT3= [0.1,0.3],ξT4= [?0.2,0.1] ont∈[?0.8,0].

    Figures2, 3, 4 show the simulation results of Example I. The output trajectories and reference signal are depicted in Fig.2. The trajectoriesxi,2and control inputsui,i=0,1,...,4aredepictedinFigs.3and4,respectively.According to the results in Figs.2,3,4,the control strategy proposed in this paper enables system(21)to achieve bipartite consensus,which is consistent with Theorem 1.

    In contrast to the simulation example in [18], the timevarying gain controller with a logarithmic function proposed in this paper has a lower gain,and the response of the controller does not undergo abrupt changes. In addition, the control strategy proposed in this paper can simultaneously solve the conventional consensus problem of the simulation example in[18]and deal with the bipartite consensus problem.

    Fig.2 The responses of yi,i =0,1,2,3,4

    Fig.3 The responses of xi,2,i =0,1,2,3,4

    4.2 Example II

    Consider a multiagent system composed of a leader and four followers,and the dynamics can be described as

    whereγ11,γ21andγ22are unknown positive constant, andd(t) = 0.6 + 0.2 sintwithd?= 0.8 and ˉd= 0.2.The topology is provided in Fig.1. It can be noted that its dynamics satisfy Assumption 2 withf1(t,i,1,i,1,d) =γ11 sinxi,1,f2(t,i,2,i,2,d) = ?γ11sinxi,1?γ21xi,2,andf3(t, ˉxi,3, ˉxi,3,d) = ?γ11sinxi,1?γ21xi,2+γ22xi,2,d.Choose vectors asm=[0.85,0.4,0.1]Tandδ=[23.5,18,11.5]T.

    Fig.4 The responses of ui,i =0,1,2,3,4

    Then, the compensator for followeri,i= 1,2,3,4 are designed as follows:

    Based on the compensator (24), construct the controller for followeri,i=1,2,3,4 as

    TheinitialvaluesareselectedasxT0=[1,0.55,0.4],xT1=[0.5,0.1,0.5],xT2= [0.3,0.7,0.7],xT3= [1.6,0.1,0.3],xT4= [0.8,1.2,1],ξT1= [2,0.5,0.2],ξT2= [1.5,0.5,1.1],ξT3=[0.7,1,0.4],ξT4=[1,0.3,0.8]ont∈[?0.8,0].

    Figures5,6,7,8showthesimulationresultsofExampleII.In Fig.5,the time responses of the output and reference signal are presented.The trajectoriesxi,2andxi,3,i=0,1,2,3,4 are shown in Figs.6 and 7,respectively.Profiles of the control signals are described in Fig.8.In the light of Figs.5,6,7,8,it can be concluded that the control strategy proposed in this paper achieves the bipartite consensus of system(23).

    5 Conclusions

    Fig.5 The responses of yi,i =0,1,2,3,4

    Fig.6 The responses of xi,2,i =0,1,2,3,4

    Fig.7 The responses of xi,3,i =0,1,2,3,4

    Fig.8 The responses of ui,i =0,1,2,3,4

    In this paper,the bipartite consensus problem has been solved for a class of nonlinear time-delay multiagent systems in directedcommunicationnetworks withcooperativeandcompetitive interactions. According to the output information of each agent, we have designed a time-varying compensator to estimate the tracking error between the follower and the leader.Then,based on the adjacency matrix of a signed directed graph, a consensus protocol has been designed to guarantee that all agents achieve consensus with the same value but opposite sign. Finally, two simulation examples have been provided to show the effectiveness of the control strategy. A possible future work is to extend the algorithm to nonlinear time-delay multiagent systems with faults or attacks.

    久久精品影院6| 久久久久国内视频| 婷婷丁香在线五月| 欧美人与性动交α欧美软件| 波多野结衣av一区二区av| 91成年电影在线观看| 国产黄色免费在线视频| 成人三级做爰电影| 超碰成人久久| 欧美在线黄色| 嫩草影院精品99| 久99久视频精品免费| 成人18禁高潮啪啪吃奶动态图| 日韩精品中文字幕看吧| 久久久国产欧美日韩av| 18禁美女被吸乳视频| 亚洲成a人片在线一区二区| 麻豆一二三区av精品| 老汉色∧v一级毛片| 国产三级在线视频| 亚洲性夜色夜夜综合| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲色图综合在线观看| 国产精品综合久久久久久久免费 | 精品电影一区二区在线| 日韩欧美三级三区| 欧美日韩视频精品一区| 精品第一国产精品| 在线观看免费视频日本深夜| 88av欧美| 大香蕉久久成人网| 久久久久久久久免费视频了| 丝袜在线中文字幕| 黄片小视频在线播放| 久久精品成人免费网站| xxx96com| 国产高清视频在线播放一区| 国产精品日韩av在线免费观看 | 日韩大尺度精品在线看网址 | 免费高清视频大片| 人人妻人人澡人人看| 国产精品电影一区二区三区| 亚洲av成人不卡在线观看播放网| 99精国产麻豆久久婷婷| 国产成人欧美在线观看| 亚洲午夜精品一区,二区,三区| 国产xxxxx性猛交| 日本免费a在线| 免费不卡黄色视频| 老司机亚洲免费影院| 久久国产乱子伦精品免费另类| 亚洲性夜色夜夜综合| 99久久精品国产亚洲精品| 男男h啪啪无遮挡| 纯流量卡能插随身wifi吗| 亚洲熟妇熟女久久| 人人妻人人澡人人看| 丝袜美足系列| 国产成人系列免费观看| 在线看a的网站| 如日韩欧美国产精品一区二区三区| 国产成人一区二区三区免费视频网站| 午夜成年电影在线免费观看| 精品久久久久久电影网| 欧美大码av| 欧美日韩av久久| 国产野战对白在线观看| 国产午夜精品久久久久久| a级毛片在线看网站| 操美女的视频在线观看| 精品久久久久久久久久免费视频 | 亚洲全国av大片| 婷婷六月久久综合丁香| 欧美在线黄色| 国产精品免费一区二区三区在线| 亚洲精品美女久久久久99蜜臀| 国产一区二区激情短视频| 丝袜美腿诱惑在线| 校园春色视频在线观看| 亚洲中文字幕日韩| 久久香蕉国产精品| 18禁黄网站禁片午夜丰满| 美女福利国产在线| 日本欧美视频一区| 亚洲人成电影观看| 一级毛片高清免费大全| 精品一区二区三卡| 香蕉国产在线看| 高潮久久久久久久久久久不卡| 亚洲精品国产区一区二| 黄色女人牲交| 在线看a的网站| 欧美日韩福利视频一区二区| 熟女少妇亚洲综合色aaa.| 日日摸夜夜添夜夜添小说| 亚洲欧美精品综合一区二区三区| 村上凉子中文字幕在线| 天堂√8在线中文| 在线观看午夜福利视频| 精品欧美一区二区三区在线| 在线观看免费高清a一片| 亚洲伊人色综图| 国产有黄有色有爽视频| 欧美一级毛片孕妇| 97人妻天天添夜夜摸| 日韩欧美一区二区三区在线观看| 欧美人与性动交α欧美精品济南到| 看片在线看免费视频| 97碰自拍视频| 电影成人av| 中文字幕最新亚洲高清| 热re99久久精品国产66热6| 久久久水蜜桃国产精品网| 欧美日韩福利视频一区二区| 岛国在线观看网站| 99精品欧美一区二区三区四区| 波多野结衣一区麻豆| 日韩大尺度精品在线看网址 | 天堂√8在线中文| 99久久国产精品久久久| 欧美日韩av久久| 黄片小视频在线播放| av福利片在线| 欧美不卡视频在线免费观看 | 亚洲在线自拍视频| av中文乱码字幕在线| 国产伦人伦偷精品视频| 国产亚洲欧美精品永久| 在线观看66精品国产| 深夜精品福利| 成年女人毛片免费观看观看9| 九色亚洲精品在线播放| 天堂√8在线中文| 很黄的视频免费| 不卡av一区二区三区| 午夜福利一区二区在线看| 国产精华一区二区三区| 午夜福利影视在线免费观看| 亚洲av美国av| 女人被狂操c到高潮| 亚洲av五月六月丁香网| 色综合站精品国产| 性欧美人与动物交配| 水蜜桃什么品种好| 亚洲,欧美精品.| 亚洲人成电影免费在线| 欧美不卡视频在线免费观看 | 日韩高清综合在线| 国产成人精品久久二区二区免费| 久久精品aⅴ一区二区三区四区| 久久九九热精品免费| 久久青草综合色| 日本五十路高清| 国产成人精品无人区| 久久影院123| 嫩草影视91久久| 亚洲av第一区精品v没综合| 在线播放国产精品三级| 婷婷精品国产亚洲av在线| 人成视频在线观看免费观看| 可以在线观看毛片的网站| 国产三级在线视频| 如日韩欧美国产精品一区二区三区| 9191精品国产免费久久| 亚洲第一青青草原| www国产在线视频色| 亚洲专区国产一区二区| 成在线人永久免费视频| 久久影院123| 亚洲av成人不卡在线观看播放网| 18禁裸乳无遮挡免费网站照片 | 精品无人区乱码1区二区| 日韩精品中文字幕看吧| 欧美黑人欧美精品刺激| 成人三级做爰电影| 日韩精品青青久久久久久| 欧美成人性av电影在线观看| 日日夜夜操网爽| 久久久国产欧美日韩av| 99精品久久久久人妻精品| 免费在线观看视频国产中文字幕亚洲| 国产av一区二区精品久久| 69精品国产乱码久久久| 变态另类成人亚洲欧美熟女 | 国产成人一区二区三区免费视频网站| 久久国产精品影院| 欧美激情高清一区二区三区| 人妻丰满熟妇av一区二区三区| 国产野战对白在线观看| 99香蕉大伊视频| 欧美人与性动交α欧美软件| 女生性感内裤真人,穿戴方法视频| 99久久综合精品五月天人人| 天天躁夜夜躁狠狠躁躁| 1024视频免费在线观看| 午夜福利影视在线免费观看| 亚洲精品粉嫩美女一区| 成人18禁在线播放| 欧美av亚洲av综合av国产av| 99香蕉大伊视频| 日韩精品中文字幕看吧| 日韩视频一区二区在线观看| 50天的宝宝边吃奶边哭怎么回事| 欧美黑人精品巨大| 国产区一区二久久| 三上悠亚av全集在线观看| 亚洲aⅴ乱码一区二区在线播放 | 一级,二级,三级黄色视频| 中文字幕av电影在线播放| 国产xxxxx性猛交| 国产熟女午夜一区二区三区| 国产精品免费视频内射| 日韩欧美免费精品| 在线观看免费高清a一片| 欧美黑人精品巨大| 国产单亲对白刺激| 亚洲av成人不卡在线观看播放网| 久久午夜亚洲精品久久| av免费在线观看网站| 亚洲中文av在线| 校园春色视频在线观看| 涩涩av久久男人的天堂| 精品熟女少妇八av免费久了| 又紧又爽又黄一区二区| 性色av乱码一区二区三区2| 黄色怎么调成土黄色| 国产一区在线观看成人免费| 99久久精品国产亚洲精品| 夜夜看夜夜爽夜夜摸 | 国产成人免费无遮挡视频| 啦啦啦免费观看视频1| 如日韩欧美国产精品一区二区三区| 国产精品久久久久成人av| 日本精品一区二区三区蜜桃| 国产精品永久免费网站| 在线观看一区二区三区激情| 国产成人一区二区三区免费视频网站| 色哟哟哟哟哟哟| 人成视频在线观看免费观看| 一个人免费在线观看的高清视频| 50天的宝宝边吃奶边哭怎么回事| 久久天堂一区二区三区四区| 国产激情久久老熟女| 纯流量卡能插随身wifi吗| 亚洲国产欧美一区二区综合| 久久精品国产综合久久久| 国产91精品成人一区二区三区| 97超级碰碰碰精品色视频在线观看| 久久香蕉精品热| 天堂中文最新版在线下载| 亚洲 欧美一区二区三区| 一a级毛片在线观看| 国产精品秋霞免费鲁丝片| 午夜两性在线视频| 亚洲aⅴ乱码一区二区在线播放 | 欧美一区二区精品小视频在线| 国产成人啪精品午夜网站| 欧美亚洲日本最大视频资源| 在线观看免费视频网站a站| 国产一区二区三区综合在线观看| 麻豆av在线久日| 可以免费在线观看a视频的电影网站| 久久 成人 亚洲| 亚洲三区欧美一区| avwww免费| 日日干狠狠操夜夜爽| 别揉我奶头~嗯~啊~动态视频| 男女高潮啪啪啪动态图| 亚洲国产精品合色在线| 国产xxxxx性猛交| 777久久人妻少妇嫩草av网站| 久久精品亚洲熟妇少妇任你| 欧美日韩瑟瑟在线播放| 国产无遮挡羞羞视频在线观看| 久久国产乱子伦精品免费另类| 男女床上黄色一级片免费看| 99国产综合亚洲精品| 久久久久久久久中文| 国产激情欧美一区二区| a级毛片在线看网站| 十八禁人妻一区二区| 日韩欧美在线二视频| www日本在线高清视频| 伊人久久大香线蕉亚洲五| 国产一区在线观看成人免费| 悠悠久久av| 久久精品影院6| 免费不卡黄色视频| 不卡av一区二区三区| 妹子高潮喷水视频| 亚洲中文av在线| 女人精品久久久久毛片| 亚洲专区字幕在线| 国产xxxxx性猛交| 成人手机av| 麻豆一二三区av精品| av天堂在线播放| 极品教师在线免费播放| 女人被狂操c到高潮| 手机成人av网站| 巨乳人妻的诱惑在线观看| 高清黄色对白视频在线免费看| av网站在线播放免费| 国产精品一区二区精品视频观看| 久久狼人影院| 老鸭窝网址在线观看| 午夜久久久在线观看| 水蜜桃什么品种好| 日本 av在线| 一个人观看的视频www高清免费观看 | 18禁观看日本| 19禁男女啪啪无遮挡网站| 欧美日韩视频精品一区| 国产av一区在线观看免费| 一边摸一边做爽爽视频免费| 另类亚洲欧美激情| 亚洲五月天丁香| 久久人妻av系列| 又紧又爽又黄一区二区| 91字幕亚洲| 啦啦啦 在线观看视频| 欧美日韩福利视频一区二区| 在线观看免费高清a一片| 纯流量卡能插随身wifi吗| 国产精品日韩av在线免费观看 | 丝袜人妻中文字幕| 精品午夜福利视频在线观看一区| 好看av亚洲va欧美ⅴa在| 91字幕亚洲| 五月开心婷婷网| 亚洲一卡2卡3卡4卡5卡精品中文| 久久影院123| 夜夜看夜夜爽夜夜摸 | 欧美成人性av电影在线观看| 国产成人欧美在线观看| 欧美 亚洲 国产 日韩一| 精品人妻在线不人妻| 国产精品偷伦视频观看了| 久久影院123| 亚洲三区欧美一区| 国产高清激情床上av| 亚洲一区二区三区欧美精品| 欧美一级毛片孕妇| 美女国产高潮福利片在线看| 精品人妻在线不人妻| a在线观看视频网站| 日日夜夜操网爽| 欧美+亚洲+日韩+国产| 俄罗斯特黄特色一大片| 99久久精品国产亚洲精品| 国产亚洲精品一区二区www| 久久久国产欧美日韩av| 少妇裸体淫交视频免费看高清 | 国产精品av久久久久免费| 97超级碰碰碰精品色视频在线观看| 日韩免费高清中文字幕av| 久久国产乱子伦精品免费另类| 国内毛片毛片毛片毛片毛片| 欧美成人免费av一区二区三区| 精品福利观看| 99热只有精品国产| 99香蕉大伊视频| 美国免费a级毛片| 日韩 欧美 亚洲 中文字幕| 免费搜索国产男女视频| 成人18禁高潮啪啪吃奶动态图| 不卡一级毛片| videosex国产| 大码成人一级视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲,欧美精品.| 在线观看日韩欧美| 国产伦一二天堂av在线观看| 亚洲片人在线观看| 欧美日韩视频精品一区| 亚洲国产欧美网| 在线观看一区二区三区| 亚洲国产欧美一区二区综合| 国产精品一区二区在线不卡| 午夜视频精品福利| videosex国产| 老司机福利观看| 久久精品91蜜桃| 黑丝袜美女国产一区| 91麻豆av在线| 又紧又爽又黄一区二区| 亚洲精品美女久久av网站| av片东京热男人的天堂| 欧美性长视频在线观看| 日本 av在线| 99在线视频只有这里精品首页| 一级毛片高清免费大全| 巨乳人妻的诱惑在线观看| 嫁个100分男人电影在线观看| 99精品在免费线老司机午夜| 欧美日本亚洲视频在线播放| 老鸭窝网址在线观看| 亚洲 欧美一区二区三区| 亚洲自拍偷在线| 国产精品久久久久久人妻精品电影| 国产精品一区二区在线不卡| 天天躁夜夜躁狠狠躁躁| 午夜亚洲福利在线播放| 精品第一国产精品| 欧美日本亚洲视频在线播放| 一区二区三区精品91| 无限看片的www在线观看| 精品国产美女av久久久久小说| 别揉我奶头~嗯~啊~动态视频| 日韩免费高清中文字幕av| 亚洲第一青青草原| 桃色一区二区三区在线观看| 久热爱精品视频在线9| 露出奶头的视频| 天堂影院成人在线观看| 18禁观看日本| 母亲3免费完整高清在线观看| 黄色怎么调成土黄色| 啪啪无遮挡十八禁网站| 日本一区二区免费在线视频| 欧美日韩国产mv在线观看视频| 一进一出好大好爽视频| 国产欧美日韩综合在线一区二区| 在线十欧美十亚洲十日本专区| 欧美黄色片欧美黄色片| 欧美日韩一级在线毛片| 亚洲色图av天堂| 五月开心婷婷网| 亚洲第一欧美日韩一区二区三区| 妹子高潮喷水视频| 欧美日韩亚洲综合一区二区三区_| 多毛熟女@视频| 久久婷婷成人综合色麻豆| 狠狠狠狠99中文字幕| 午夜免费鲁丝| 午夜福利欧美成人| 欧美人与性动交α欧美精品济南到| 欧美乱色亚洲激情| 国产一区二区在线av高清观看| 午夜久久久在线观看| 12—13女人毛片做爰片一| 亚洲国产精品一区二区三区在线| 啦啦啦在线免费观看视频4| 国产野战对白在线观看| 国产精华一区二区三区| 午夜福利影视在线免费观看| 亚洲男人天堂网一区| 自拍欧美九色日韩亚洲蝌蚪91| 女人被躁到高潮嗷嗷叫费观| 久久天躁狠狠躁夜夜2o2o| 久久久久久久久中文| 中文字幕人妻丝袜一区二区| 久久久国产成人精品二区 | 电影成人av| 亚洲av片天天在线观看| 欧美午夜高清在线| bbb黄色大片| 久久香蕉精品热| 久久人妻福利社区极品人妻图片| 久久热在线av| 免费少妇av软件| 国产精品美女特级片免费视频播放器 | 欧美日韩乱码在线| 日本三级黄在线观看| 午夜免费成人在线视频| 女人被躁到高潮嗷嗷叫费观| 亚洲国产精品一区二区三区在线| 久久久久久久久中文| 啦啦啦 在线观看视频| 国产精品永久免费网站| 天天影视国产精品| 亚洲成a人片在线一区二区| 久久久久亚洲av毛片大全| 久久香蕉激情| 身体一侧抽搐| 99riav亚洲国产免费| 亚洲欧美精品综合一区二区三区| 狠狠狠狠99中文字幕| 女人爽到高潮嗷嗷叫在线视频| 美女高潮到喷水免费观看| 精品久久久久久久久久免费视频 | www.www免费av| 亚洲一区中文字幕在线| 欧美日韩亚洲综合一区二区三区_| 精品高清国产在线一区| 亚洲精品美女久久久久99蜜臀| 国产av一区在线观看免费| 精品人妻在线不人妻| 亚洲avbb在线观看| 国产精品香港三级国产av潘金莲| 免费不卡黄色视频| 国产高清视频在线播放一区| 国产精品成人在线| 激情视频va一区二区三区| 在线观看午夜福利视频| 国产精品一区二区精品视频观看| 高清黄色对白视频在线免费看| 国产免费男女视频| 亚洲av日韩精品久久久久久密| 免费av中文字幕在线| 精品一区二区三卡| 女人精品久久久久毛片| 亚洲精品在线观看二区| 国产精品美女特级片免费视频播放器 | 满18在线观看网站| 热99国产精品久久久久久7| 黄色视频,在线免费观看| 麻豆一二三区av精品| 琪琪午夜伦伦电影理论片6080| 怎么达到女性高潮| 丰满的人妻完整版| 日本三级黄在线观看| 国产主播在线观看一区二区| 欧美另类亚洲清纯唯美| 国产成人系列免费观看| av片东京热男人的天堂| av天堂在线播放| 日本vs欧美在线观看视频| 免费在线观看影片大全网站| 18禁国产床啪视频网站| 精品久久蜜臀av无| 18禁观看日本| 久久性视频一级片| 亚洲精品一卡2卡三卡4卡5卡| а√天堂www在线а√下载| 亚洲专区字幕在线| 国产一区二区三区在线臀色熟女 | 不卡一级毛片| a在线观看视频网站| 国产精品国产高清国产av| 免费女性裸体啪啪无遮挡网站| av电影中文网址| 免费观看人在逋| 日韩免费高清中文字幕av| 免费高清在线观看日韩| 亚洲午夜理论影院| 久久久精品欧美日韩精品| 亚洲av成人一区二区三| 视频区欧美日本亚洲| 久久久久久久久中文| 大陆偷拍与自拍| 精品久久久精品久久久| 精品国产乱码久久久久久男人| 成人永久免费在线观看视频| 国产亚洲欧美在线一区二区| 日韩欧美在线二视频| 国产av一区二区精品久久| 国产高清国产精品国产三级| 黄片小视频在线播放| 黄色a级毛片大全视频| 十八禁网站免费在线| 国产精品野战在线观看 | 国产99久久九九免费精品| 久久精品影院6| 精品高清国产在线一区| 天天添夜夜摸| 一本综合久久免费| 国产av精品麻豆| 欧美 亚洲 国产 日韩一| 国产成人精品无人区| www日本在线高清视频| 久久99一区二区三区| 亚洲专区国产一区二区| 大香蕉久久成人网| 999精品在线视频| 久久九九热精品免费| 在线观看www视频免费| 国产欧美日韩一区二区精品| 日韩免费av在线播放| aaaaa片日本免费| 新久久久久国产一级毛片| 精品欧美一区二区三区在线| 国产精品香港三级国产av潘金莲| 国内久久婷婷六月综合欲色啪| 18禁国产床啪视频网站| 久久久久久久久免费视频了| 欧美日本中文国产一区发布| 国产激情欧美一区二区| 美女高潮到喷水免费观看| 欧美乱码精品一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 一边摸一边抽搐一进一出视频| 亚洲黑人精品在线| 亚洲熟女毛片儿| 久久午夜亚洲精品久久| 亚洲 国产 在线| 国产区一区二久久| 亚洲国产看品久久| 天堂影院成人在线观看| www.999成人在线观看| 男男h啪啪无遮挡| 精品久久久久久久毛片微露脸| 精品久久久精品久久久| 一个人观看的视频www高清免费观看 | 99久久99久久久精品蜜桃| 日韩欧美免费精品| 老司机在亚洲福利影院| 最近最新免费中文字幕在线| 在线观看www视频免费| 99热国产这里只有精品6| 久久久久亚洲av毛片大全| 精品欧美一区二区三区在线| 一区二区日韩欧美中文字幕| 久久影院123| 十八禁网站免费在线| 可以在线观看毛片的网站| 久久久水蜜桃国产精品网| 国产99久久九九免费精品| 淫秽高清视频在线观看| 国产免费男女视频| 国产成人精品久久二区二区91| 成年版毛片免费区| 日韩高清综合在线| 欧美日韩亚洲高清精品| 精品国产一区二区久久|