• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of semi-tensor product-based kernel function for SVM nonlinear classification

    2022-02-11 09:06:32ShengliXueLijunZhangZeyuZhu
    Control Theory and Technology 2022年4期

    Shengli Xue·Lijun Zhang·Zeyu Zhu

    Received:7 June 2022/Revised:4 August 2022/Accepted:16 September 2022/Published online:28 November 2022

    ?The Author(s),under exclusive licence to South China University of Technology and Academy of Mathematics and Systems Science,Chinese Academy of Sciences 2022,corrected publication 2022

    Abstract The kernel function method in support vector machine(SVM)is an excellent tool for nonlinear classification.How to design a kernel function is difficult for an SVM nonlinear classification problem,even for the polynomial kernel function.In this paper,we propose a new kind of polynomial kernel functions,called semi-tensor product kernel(STP-kernel),for an SVM nonlinear classification problem by semi-tensor product of matrix(STP)theory.We have shown the existence of the STP-kernel function and verified that it is just a polynomial kernel. In addition, we have shown the existence of the reproducing kernel Hilbert space(RKHS)associated with the STP-kernel function.Compared to the existing methods,it is much easier to construct the nonlinear feature mapping for an SVM nonlinear classification problem via an STP operator.

    Keywords SVM·Semi-tensor product·STP-kernel·Nonlinear classification·Reproducing kernel Hilbert space(RKHS)

    1 Introduction

    Binary classification has made a basic and crucial impact in pattern recognition and machine learning field.Support vector machine(SVM)was proposed in the late 1990s in[1]and has been successfully applied in many fields[2–9].Given a data set, the classical linear SVM model uses a hyperplane to divide the data points into two classes,while maximizing the margin between the two classes and minimizing the misclassification of data points. Accordingly, nonlinear SVM model borrows the idea of linear classification model to first transform the nonlinear classification problem into a linear separable problem by a feature mapping[10],and then design a linear hyperplane to separate two sets of the mapped points in the feature space using the linear classification technique.How to design nonlinear kernel functions in SVM classification problem is a key point.A proper kernel function can largely reduce the computation cost and simplify the nonlinear classification problem to a linear counterpart in a higher dimensional feature space. The polynomial kernel and the Gaussian kernel,etc.,are widely applied to nonlinear classification problems.So far,there have ever been no common and useful methods for constructing the kernel functions,even polynomial kernel functions.Therefore,we attempt to design an algorithm for the SVM polynomial kernel function based on semi-tensor product of matrices theory.

    The semi-tensor product(STP)of matrices,proposed by Cheng in[11],is a generalization of the conventional matrix product and well defined for arbitrary two finite-dimensional matrices.STP has been applied to control theory[12],image compression[13],game theory[14]and logic reasoning[15].Recently,Cheng[16]used STP technique to transform multivariable polynomial into a linear structure form similar to single variable polynomial [16]. As a result, any homogeneous polynomial can be expressed as a power function under the frame of STP.That is,in the higher dimension space generated by STP operator,the homogeneous polynomial is of linear-like form(Refer to[16]for details).

    Motivated by STP representation of multivariable polynomial in [16], in this paper, we propose a new kind of polynomial kernel functions, denoted by the STP-kernel,for nonlinear SVM model via a semi-tensor product. The proposed STP-kernel technique can produce the well-known polynomial kernel.Based on that,we study the existence of the STP-kernel and show the STP-kernel is also a Mercer’s kernel.Then,the reproducing kernel Hilbert space(RKHS)associated with the STP-kernel is investigated, and some interesting properties are obtained.Numerical examples are taken to illustrate the effectiveness and efficiency of the proposed STP-kernel function.

    The rest of the paper is organized as follows.In Sect.2,we introduce some preliminary knowledge about semi-tensor product and SVM-based binary classification.In Sect.3,we define the STP-kernel function and show that it is a Mercer’s kernel.In Sect.4,we show that STP-kernel is a generalization of polynomial kernel.RKHS associated with STP-kernel is investigated in Sect.5.Section 6 concludes the paper.

    2 Preliminaries

    In this section, we introduce some preliminary knowledge about semi-tensor product and SVM-based nonlinear binary classification. For the symbols and notions of semi-tensor product in this paper,refer to[16].

    2.1 Semi-tensor product

    Definition1 [16]LetA∈Mm×n,B∈Mp×qandt=n∨pbe the least common multiple ofnandp.Then,the left STP ofAandB,denoted byA×B,is defined as

    where ?is the Kronecker product.

    Proposition 1[16]Let x∈Rm and y∈Rn be two column vectors.Then,x×y is well defined.Moreover,

    x×y=x?y.

    is always well defined.

    From Proposition 2, STP can be regarded as an operator from a lower dimensional space to a higher dimensional space.

    Definition 2Letx∈Rnbe a column vector,2 ≤k∈N+.Then,the STP operator×kis defined as follows:

    Remark 1

    (1) It is easy to verify that ×k(ax) =a2×k(x), for allx∈Rn,a∈R,that is to say,the STP operator×kis a nonlinear operator.

    (2) In the following text,we will sometimes useφ(x)=xkto represent×k(x)=xk.

    By Proposition 2,letx=(x1,···,xn)T,it is easy to see that the components ofxkform a set ofkth degree homogeneous polynomials, denoted by, and define= R as zero-degree polynomials,i.e.,constants.Letf(x) ∈there exists a matrixF∈M1×nksuch that

    Notexkis not a basis ofue to containing some redundant elements.That is,matrixFin(3)is not unique.

    A basis of,called the natural basis and denoted byis defined as

    where 0 ≤d1≤d2≤···≤dn≤k,d j∈N.

    Proposition 3[16]The cardinality(size)of Nkn is

    Next, we introduce how to represent the coefficient of a homogeneous polynomials inby a natural basisand vice versa.

    Define matricesTB(n,k) ∈Ms×t,TN(n,k) ∈Mt×s,we have the following result(for details,please refer to[16,pp.440–441]):

    Proposition 4[16]

    2.Assume p(x) ∈is a kth degree homogeneous polynomial,and p(x)=Fxk=Sx(k),then

    Example 1[16]Letn=2 andk=3.

    2. Assumef(x) =(1,2,1,1,?1,?1,?2,?1)x3.Using(6),we have

    f(x)=(1,2,?2,?1)x(3).

    2.2 SVM-based nonlinear binary classification

    Given a data set of two classes as follows[17]:

    The nonlinear classification task could be done by an SVM model with a kernel function[10],which is obtained by the following optimization model:

    Fig. 1 The hyperplane f(x) = wTψ(x)+b of SVM in the feature space

    2.3 Positive definite kernel and RKHS

    Definition 3 LetXbe an abstract set.We say thatK:X×X→R is symmetric whenK(x,t)=K(t,x)for allx,t∈X.

    For the kernelKdefined onX×X,x∈X, we denote byKxthe function

    Then, the following theorem describes the conditions for RKHS.

    (1)for all x∈X,Kx∈HK,

    (3)for all f∈HK and x∈X,f(x)=〈Kx,f〉HK.

    By Theorem 1,the Hilbert spaceHKis said to be aRKHS.The kernelKis said to bereproducing kernel.Property(3)in Theorem 1 is referred to as thereproducing propertyof the reproducing kernel.

    Lemma 1[19]A RKHS of functions on X is characterized by its kernel K on X×X,then it is equivalent that K is a reproducing kernel and that K is a positive definite kernel.

    Remark 2[20]Commonly,a positive definite kernel is calledMercer kernelor reproducing kernel.

    From (8) and (9), we note that the kernel technique is a key point to solve the nonlinear classification problem, the choice of kernel function will determine whether a hyperplane separating the data in the feature space exists.So far,some widely used kernel functions are Gaussian(RBF)kernel and quadratic(2nd order polynomial)kernel,etc.

    Here,we give two examples of kernel functions as follows.

    We knowK(x,y) = 〈x,y〉is the well-known homogeneous polynomial kernel.

    Example 3(Non-homogeneous polynomial kernel)LetX?Rn,a> 0,d∈N+,the non-homogeneous polynomial kernel is

    Leta= 0,it is simplified as a homogeneous polynomial kernel.

    3 STP representation of polynomial kernel function

    In this section, we claim that a polynomial kernel can be expressed as a form of semi-tensor product of a matrix. In fact,Cheng in[11]proposed that a multivariable polynomial can be expressed as a linear structure form similar to a single variable polynomial, which motivates us to construct STPbased polynomial kernel with linear structure in the higher dimension space.Here,we will use an example to verify our idea. For example, we assume the following homogeneous polynomialψ(x)is a nonlinear separable function in a given data space.

    Its corresponding STP representation can be written as

    whereA=(1,1,0,?2,0,0,0,?1)is a row vector,andx3is

    We note that(13),a nonlinear function in R2,is converted into a linear formψ(x) =Ax3in R8.In other words,from the perspective of SVM nonlinear binary classification, the STP operator ×3in Definition 2 can transform a nonlinear classifier(13)in the data space R2into a linear classifier(14)in a high dimension of feature space R8.

    Motivated by the above example, we proceed to investigate the following common known example in SVM classification theory[1].

    Figure 2 shows us how a nonlinear classification problem in R2is transformed into a linear classification problem in R3by a feature mapping as follows:

    Then, the corresponding kernel function with respect toψ(·)is written as follows:

    Now,we define a feature mappingφ(x)∈R4by the STP operator as follows:

    and the corresponding kernel function is written as

    We note that (17) is identical to (20), i.e.,K(x,y) =K′(x,y).It implies semi-tensor product(18)can also specify the feature mapping(15)and construct a new kind of kernel function. One can also see that the feature mapping is not unique for a given kernel function. However, in practice, it is not easy to construct the feature mapping for a nonlinear classification problem.So far,even for the polynomial kernel,how to construct the feature mappingψorφof the kernelK(x,y)is unknown.Clearly STP provides a new approach to constructing the polynomial kernel function from the data space.In the sequel,we will investigate how STP generates a polynomial kernel function in theory.

    4 STP-kernel generates polynomial kernel

    In this section, we show that the nonlinear function based on STP is just a kernel function in SVM theory,called STPkernel.

    Next,we will give the definition and criteria of the STPkernel.

    Theorem 2STP-kernel

    K(x,y)=〈φ(x),φ(y)〉Rnk

    is apositivedefinitekernel,aMercer kernel,andalsoareproducing kernel.ProofBy Definition 4, we know that the kernel matrixKassociated with kernelKis symmetric,and it is easy to verify that

    soKis positively definite. It follows that STP-kernelK(x,y)=〈φ(x),φ(y)〉Rnkis a positive definite kernel.By Remark 2,we know thatKis a Mercer kernel,also a reproducing kernel. ■

    Next,we show that STP-kernel is a polynomial kernel.To begin with,we first introduce a lemma to support our result.

    Lemma 2[21]For any positive integer m and any nonnegative integer n,the multinomial formula describes how a sum with m terms expands when raised to an arbitrary power n:

    Proposition 5A STP-kernel generates a polynomial kernel,i.e.,

    ProofWe only need to show

    By Lemma 2 and (22), the right hand side of (24) can be written as

    Let

    By rearranging every item in(25),we have

    According to the definition of homogeneous polynomial kernel(11),the conclusion is drawn. ■

    SoK(x,y)=〈x2,y2〉R4is a positive definite kernel.

    It is natural we can generalize Proposition 5 to the nonhomogeneous kernel case.

    ProofThe proof isthe same as Proposition 5 ifwedefinex′=(√,xT)T∈RnandK′(x′,y′)=K(x,y).Leta=0,the homogeneous STP-kernel is obtained. ■

    then

    SoK(x,y)=〈φ(x),φ(y)〉R9is a positive definite kernel.

    5 Reproducing Kernel Hilbert space of STP-kernel

    In previous sections, we have shown STP-kernel is a reproducing kernel which determines a unique RKHS. In this section, we will investigate the structure properties of RKHS associated with homogeneous STP-kernel (nonhomogeneous STP-kernel can be done similarly).

    We have already constructed STP-kernelK(x,y) =〈φ(x),φ(y)〉Rnkusing the feature mappingφ:x→xk,which maps everyndimensional data pointx∈Rnintonkdimensional feature space Rnk. Next, we show how we specify the RKHS of the STP-kernel. Let us describe it as follows.

    For clarity, we will introduce some notations (Refer to the proof of Theorem 1 in[19]for details).Here we briefly introduce three Hilbert spacesHd,HKandH■:

    HK:RKHS of homogeneous polynomial kernel;

    Hd:Hilbert space of homogeneous polynomials;

    H■:the RKHS of STP-kernel,

    relations among which are explored more detailed in the sequel.

    LetHKbe the completion ofH0with the associated norm.If the kernel ofHKis a homogeneous polynomial kernel with feature mapping

    then,forx,t∈X,we have

    From Theorem 1,it concludes thatK(·,·)is a Mercer kernel,also a reproducing kernel.We can makeHdan inner product space by taking

    forf,g∈Hd,f= Σwαxα,g= Σvαxα. This inner product,called the Weyl inner product,satisfies

    |f(x)|≤‖f‖w‖x‖d,

    where‖f‖wdenotes the norm induced by〈·〉W,and‖x‖is Euclid norm ofx∈Rn+1.

    Then,we have the following result aboutHKandHd.

    Proposition 7[19]Both HK and Hd are isomorphic as function spaces and inner product spaces,denoted by HK~=Hd.

    Considering STP-kernel together with the above two kernels,we have the following theorem.

    ProofWe only need to address two issues as follows:

    1. They have the same generator setH0.

    2. They have the same inner product though their expressions are different.

    By Proposition 7,we have thatHKHdas RHKS,the remaining task for us is to verifyH■has the same generator setH0and inner product asHKandHd.The former can be seen by(23),the later can be seen obviously by Proposition 5. Relations amongH■,HKandHdcan be seen from the commutative diagram(Fig.3).

    By the commutative diagram (Fig. 3), we have the following equations. Three pairs of equations in sides of the tetrahedron:

    Three pairs of equations in underside of the tetrahedron:

    Fig.3 Commutative diagram

    whereτ1→σ1→μ1→τ1is clockwise, whileτ2→μ2→σ2→τ2is anticlockwise.

    Letx=(x1,x2,···,xn)T∈X?Rnand

    Then,linear mappingsσ1,σ2;τ1,τ2;μ1,μ2are defined as follows:

    The proof of Theorem 3 shows us an algorithm for finding RKHSH,so the following result is trivial.

    Proposition 8His the RKHS associated with STP-kernel,and it is a proper subspace ofRnk.

    ProofIt can be induced directly from Theorem 3. ■

    Next,we take an example to make clear the equivalence ofH,HKandHd.

    Example 6Forn=d= 2,x=(x1,x2)T,then the feature mappings ofH,HKandHdare written as follows:

    Then, by (32)–(34), transformations amongHK,Hd,H■are written as follows:

    6 Conclusion

    In this paper,the STP-kernel is first put forward for the SVMbased nonlinear classification.The proposed STP-kernel can produce the well-known polynomial kernel.Certain theoretical properties are studied,including the solution existence,reproducing properties of the STP-kernel. Particularly, we investigate relations between the STP-kernel and the polynomial kernel in theory.Numerical examples are conducted to investigate the effectiveness and efficiency of the proposed STP-kernel model.

    AcknowledgementsWe thank Prof. Daizhan Cheng for giving some valuablesuggestions,andalsotheanonymousreviewersfortheirhelpful comments.

    成人特级黄色片久久久久久久| 男人舔女人的私密视频| 中文字幕最新亚洲高清| 久久久国产成人精品二区| 女警被强在线播放| 亚洲精华国产精华精| 午夜福利在线观看吧| 日本 欧美在线| 视频在线观看一区二区三区| 国产精品精品国产色婷婷| 长腿黑丝高跟| 久久中文看片网| 2021天堂中文幕一二区在线观 | 男女下面进入的视频免费午夜 | 亚洲熟妇熟女久久| 91麻豆精品激情在线观看国产| 日韩成人在线观看一区二区三区| 亚洲国产精品sss在线观看| 人人妻,人人澡人人爽秒播| 亚洲色图av天堂| 两性午夜刺激爽爽歪歪视频在线观看 | 999久久久精品免费观看国产| 曰老女人黄片| 精品久久久久久久人妻蜜臀av| 欧美中文综合在线视频| 成人三级做爰电影| 亚洲一区高清亚洲精品| 不卡av一区二区三区| 日本三级黄在线观看| 日韩欧美在线二视频| 99久久综合精品五月天人人| 在线观看免费午夜福利视频| 欧美乱妇无乱码| 亚洲五月婷婷丁香| 亚洲aⅴ乱码一区二区在线播放 | 变态另类丝袜制服| 久久婷婷人人爽人人干人人爱| 久久人人精品亚洲av| 婷婷精品国产亚洲av在线| 欧美+亚洲+日韩+国产| 亚洲 国产 在线| 亚洲国产欧美日韩在线播放| 国产精品亚洲一级av第二区| 一边摸一边做爽爽视频免费| 日本黄色视频三级网站网址| 欧美成人午夜精品| 国产黄片美女视频| 免费无遮挡裸体视频| 两性午夜刺激爽爽歪歪视频在线观看 | a在线观看视频网站| 亚洲黑人精品在线| 免费看十八禁软件| 成年人黄色毛片网站| 桃红色精品国产亚洲av| 一本久久中文字幕| 俺也久久电影网| 免费看十八禁软件| 成人手机av| 久9热在线精品视频| 在线观看免费午夜福利视频| 99精品久久久久人妻精品| 亚洲成人久久爱视频| 国产视频内射| 久久精品国产99精品国产亚洲性色| 久久久久国产一级毛片高清牌| av片东京热男人的天堂| 国产成人一区二区三区免费视频网站| 可以在线观看的亚洲视频| 一进一出抽搐动态| 国产精品美女特级片免费视频播放器 | 亚洲第一欧美日韩一区二区三区| 99久久无色码亚洲精品果冻| 亚洲欧美一区二区三区黑人| cao死你这个sao货| 69av精品久久久久久| 叶爱在线成人免费视频播放| 女生性感内裤真人,穿戴方法视频| 国产精品免费一区二区三区在线| 日本 av在线| 国产精品,欧美在线| 国产精品二区激情视频| 欧美黄色片欧美黄色片| videosex国产| 久久久久久大精品| 国产亚洲精品久久久久5区| 一夜夜www| cao死你这个sao货| 亚洲成av人片免费观看| 久久久精品国产亚洲av高清涩受| av片东京热男人的天堂| 人妻久久中文字幕网| 老司机午夜十八禁免费视频| 亚洲成国产人片在线观看| 国产人伦9x9x在线观看| 啦啦啦观看免费观看视频高清| 精品第一国产精品| 人妻丰满熟妇av一区二区三区| 色播在线永久视频| 搞女人的毛片| 午夜激情av网站| 91字幕亚洲| 午夜福利一区二区在线看| 女性生殖器流出的白浆| 国产伦人伦偷精品视频| 一个人观看的视频www高清免费观看 | 99riav亚洲国产免费| 99热6这里只有精品| 色av中文字幕| 亚洲欧美日韩高清在线视频| 中文资源天堂在线| 精品少妇一区二区三区视频日本电影| 成人特级黄色片久久久久久久| 欧美又色又爽又黄视频| 亚洲精品久久成人aⅴ小说| 88av欧美| 亚洲无线在线观看| 91av网站免费观看| 老鸭窝网址在线观看| www.www免费av| 香蕉国产在线看| 国产成人一区二区三区免费视频网站| 一卡2卡三卡四卡精品乱码亚洲| 精品国产乱子伦一区二区三区| 男人舔奶头视频| 亚洲av成人不卡在线观看播放网| 国产三级在线视频| 久久精品aⅴ一区二区三区四区| 亚洲激情在线av| 亚洲中文av在线| 午夜亚洲福利在线播放| 青草久久国产| 99热6这里只有精品| 伦理电影免费视频| 91九色精品人成在线观看| 老汉色∧v一级毛片| 久久欧美精品欧美久久欧美| 在线观看一区二区三区| 啦啦啦 在线观看视频| 叶爱在线成人免费视频播放| 两性夫妻黄色片| 狂野欧美激情性xxxx| 国产在线精品亚洲第一网站| 亚洲国产欧美网| 少妇 在线观看| 日韩欧美国产一区二区入口| 草草在线视频免费看| 亚洲av电影在线进入| 男人的好看免费观看在线视频 | 国产麻豆成人av免费视频| 国产成人啪精品午夜网站| 国产精品野战在线观看| 又紧又爽又黄一区二区| 亚洲 国产 在线| 亚洲,欧美精品.| 久久久精品欧美日韩精品| 18禁裸乳无遮挡免费网站照片 | 欧美 亚洲 国产 日韩一| 欧美亚洲日本最大视频资源| 亚洲国产精品999在线| 99精品欧美一区二区三区四区| 久久久久久久精品吃奶| 欧美日韩福利视频一区二区| svipshipincom国产片| 成人一区二区视频在线观看| 成人国产综合亚洲| 韩国精品一区二区三区| 欧美激情 高清一区二区三区| 午夜亚洲福利在线播放| bbb黄色大片| 级片在线观看| 又黄又粗又硬又大视频| 午夜视频精品福利| 亚洲,欧美精品.| 69av精品久久久久久| 午夜老司机福利片| 久久人妻av系列| 亚洲色图av天堂| 夜夜看夜夜爽夜夜摸| 嫩草影视91久久| 亚洲av美国av| 亚洲aⅴ乱码一区二区在线播放 | 国产麻豆成人av免费视频| 亚洲人成网站高清观看| 757午夜福利合集在线观看| 伊人久久大香线蕉亚洲五| 丰满的人妻完整版| 亚洲av第一区精品v没综合| 亚洲成人久久爱视频| 亚洲人成网站高清观看| 在线观看66精品国产| 中文字幕人成人乱码亚洲影| 天天添夜夜摸| 成年人黄色毛片网站| 久久午夜综合久久蜜桃| 国产精品乱码一区二三区的特点| 男人舔奶头视频| 亚洲熟妇熟女久久| 大香蕉久久成人网| 免费看日本二区| 亚洲一区二区三区不卡视频| 国产午夜福利久久久久久| 久久精品国产亚洲av香蕉五月| 国产黄色小视频在线观看| 人人妻人人澡人人看| 50天的宝宝边吃奶边哭怎么回事| 亚洲专区国产一区二区| www日本黄色视频网| 搡老妇女老女人老熟妇| 三级毛片av免费| 欧美最黄视频在线播放免费| 黄色成人免费大全| 日韩 欧美 亚洲 中文字幕| 中文字幕另类日韩欧美亚洲嫩草| av福利片在线| 美女扒开内裤让男人捅视频| 亚洲国产日韩欧美精品在线观看 | 国产精品久久久久久精品电影 | 欧美国产精品va在线观看不卡| 日韩欧美 国产精品| 国产91精品成人一区二区三区| 免费人成视频x8x8入口观看| x7x7x7水蜜桃| 黄色毛片三级朝国网站| 欧美成人午夜精品| 久久99热这里只有精品18| 人成视频在线观看免费观看| 欧美日韩亚洲国产一区二区在线观看| 久久久久免费精品人妻一区二区 | 国产精品一区二区三区四区久久 | 亚洲在线自拍视频| 日韩中文字幕欧美一区二区| 一区福利在线观看| 久久久久久大精品| 日本一区二区免费在线视频| 啦啦啦观看免费观看视频高清| 变态另类成人亚洲欧美熟女| 在线观看一区二区三区| 一夜夜www| 婷婷丁香在线五月| 国产免费男女视频| 国产野战对白在线观看| 90打野战视频偷拍视频| 日韩一卡2卡3卡4卡2021年| 看黄色毛片网站| 自线自在国产av| 变态另类丝袜制服| 99精品久久久久人妻精品| 欧美最黄视频在线播放免费| 色哟哟哟哟哟哟| 十八禁网站免费在线| 午夜精品在线福利| 精品久久久久久久久久久久久 | 久久精品aⅴ一区二区三区四区| 一级片免费观看大全| 久久久久国产一级毛片高清牌| 亚洲国产精品合色在线| 精品国产一区二区三区四区第35| 男女之事视频高清在线观看| 国产97色在线日韩免费| 亚洲国产日韩欧美精品在线观看 | 国产精品久久久人人做人人爽| 一本久久中文字幕| 天堂影院成人在线观看| 精品不卡国产一区二区三区| 久久中文看片网| 成年人黄色毛片网站| 中文字幕av电影在线播放| 成人特级黄色片久久久久久久| 亚洲男人天堂网一区| 制服诱惑二区| 国内精品久久久久精免费| 天天躁夜夜躁狠狠躁躁| 亚洲av日韩精品久久久久久密| 可以在线观看的亚洲视频| 久久精品国产综合久久久| 国产精品影院久久| 美女高潮喷水抽搐中文字幕| 麻豆av在线久日| 欧美另类亚洲清纯唯美| 一二三四在线观看免费中文在| 久热这里只有精品99| 久久精品国产亚洲av高清一级| 狂野欧美激情性xxxx| www日本在线高清视频| 婷婷六月久久综合丁香| 久久久久国内视频| 欧美黄色淫秽网站| 国产伦在线观看视频一区| 无遮挡黄片免费观看| 亚洲av熟女| 亚洲国产精品久久男人天堂| 久久香蕉精品热| 亚洲精品美女久久久久99蜜臀| 99久久国产精品久久久| 国产伦一二天堂av在线观看| 日韩 欧美 亚洲 中文字幕| 国产成人精品久久二区二区91| 一卡2卡三卡四卡精品乱码亚洲| 亚洲va日本ⅴa欧美va伊人久久| 国产蜜桃级精品一区二区三区| 国产成人影院久久av| 成人18禁高潮啪啪吃奶动态图| 久热爱精品视频在线9| 巨乳人妻的诱惑在线观看| 色综合站精品国产| 青草久久国产| 久久 成人 亚洲| 午夜影院日韩av| 男女之事视频高清在线观看| 精品午夜福利视频在线观看一区| 成年版毛片免费区| 国产一卡二卡三卡精品| 日日干狠狠操夜夜爽| 国产成人啪精品午夜网站| 亚洲电影在线观看av| 免费高清视频大片| 国内精品久久久久久久电影| 色婷婷久久久亚洲欧美| avwww免费| 91国产中文字幕| 男男h啪啪无遮挡| 在线观看一区二区三区| 桃红色精品国产亚洲av| 成人精品一区二区免费| 美女免费视频网站| 日韩大码丰满熟妇| 怎么达到女性高潮| 国产男靠女视频免费网站| cao死你这个sao货| 两个人看的免费小视频| 18禁观看日本| 性色av乱码一区二区三区2| 中文在线观看免费www的网站 | 亚洲全国av大片| 久久中文字幕一级| 精品久久久久久成人av| 色哟哟哟哟哟哟| 久久中文字幕一级| 99热这里只有精品一区 | 久久精品国产亚洲av高清一级| 午夜福利成人在线免费观看| 亚洲一区二区三区色噜噜| 免费高清视频大片| 在线av久久热| 亚洲成人免费电影在线观看| 黄色视频不卡| 在线看三级毛片| 欧美精品亚洲一区二区| 波多野结衣高清作品| 99久久精品国产亚洲精品| 手机成人av网站| 99热只有精品国产| 日本撒尿小便嘘嘘汇集6| 国产精品99久久99久久久不卡| 国产av不卡久久| 欧美一级毛片孕妇| 日本黄色视频三级网站网址| 听说在线观看完整版免费高清| 色尼玛亚洲综合影院| 18禁观看日本| 啪啪无遮挡十八禁网站| 亚洲 欧美一区二区三区| 美女免费视频网站| 好男人在线观看高清免费视频 | 欧美日韩亚洲综合一区二区三区_| 国产精品永久免费网站| 久久欧美精品欧美久久欧美| 久久中文字幕人妻熟女| 夜夜爽天天搞| 精品第一国产精品| 最好的美女福利视频网| 99久久无色码亚洲精品果冻| 啦啦啦观看免费观看视频高清| 久久国产精品男人的天堂亚洲| 视频在线观看一区二区三区| 91在线观看av| 他把我摸到了高潮在线观看| 国内精品久久久久久久电影| 国产精品亚洲一级av第二区| 叶爱在线成人免费视频播放| 中文在线观看免费www的网站 | 一级a爱片免费观看的视频| 久久久国产成人免费| 搞女人的毛片| 国产国拍精品亚洲av在线观看| 成年女人毛片免费观看观看9| 老熟妇乱子伦视频在线观看| 国产黄a三级三级三级人| 亚洲av不卡在线观看| 久久热精品热| 成人午夜高清在线视频| 欧美最黄视频在线播放免费| 精品国产三级普通话版| 中文字幕精品亚洲无线码一区| 伦理电影大哥的女人| 成人特级av手机在线观看| 亚洲第一电影网av| av中文乱码字幕在线| 给我免费播放毛片高清在线观看| 一个人看视频在线观看www免费| 久久精品影院6| 久久精品国产亚洲av天美| 99国产极品粉嫩在线观看| 给我免费播放毛片高清在线观看| 国内精品一区二区在线观看| 97在线视频观看| 日韩欧美国产在线观看| 午夜福利18| 亚洲国产精品成人久久小说 | 小说图片视频综合网站| 深爱激情五月婷婷| 在线播放国产精品三级| 无遮挡黄片免费观看| av女优亚洲男人天堂| 免费av不卡在线播放| 最近视频中文字幕2019在线8| 内地一区二区视频在线| 国产老妇女一区| 久久精品91蜜桃| av在线亚洲专区| 高清毛片免费看| 国产一区二区在线av高清观看| 人妻制服诱惑在线中文字幕| 99热这里只有是精品在线观看| 国产伦一二天堂av在线观看| 黑人高潮一二区| 一级黄片播放器| av福利片在线观看| 舔av片在线| 久久人妻av系列| ponron亚洲| 给我免费播放毛片高清在线观看| 成人高潮视频无遮挡免费网站| 久久久久久久午夜电影| 国产 一区 欧美 日韩| 国产男靠女视频免费网站| 午夜福利在线观看吧| 国产亚洲精品av在线| 免费电影在线观看免费观看| 最新在线观看一区二区三区| 插逼视频在线观看| 国产黄色小视频在线观看| 午夜视频国产福利| 搞女人的毛片| 最好的美女福利视频网| 99久久精品国产国产毛片| 国产成人freesex在线 | 天堂网av新在线| 国产高清激情床上av| 秋霞在线观看毛片| 99久久久亚洲精品蜜臀av| 18禁在线无遮挡免费观看视频 | 国产精品女同一区二区软件| 人妻丰满熟妇av一区二区三区| 国产精品av视频在线免费观看| 特大巨黑吊av在线直播| 国产爱豆传媒在线观看| 午夜福利在线观看吧| 人妻制服诱惑在线中文字幕| 久久久精品欧美日韩精品| 国产精品电影一区二区三区| 国产精品免费一区二区三区在线| 国产亚洲欧美98| 亚洲成人久久性| 高清毛片免费观看视频网站| 国产精品国产高清国产av| 美女xxoo啪啪120秒动态图| 少妇的逼水好多| 国产亚洲91精品色在线| 日本三级黄在线观看| 国产精品无大码| aaaaa片日本免费| 欧美日韩一区二区视频在线观看视频在线 | 极品教师在线视频| 欧美又色又爽又黄视频| 成人性生交大片免费视频hd| 亚洲中文字幕一区二区三区有码在线看| 美女内射精品一级片tv| 看免费成人av毛片| 美女xxoo啪啪120秒动态图| 午夜视频国产福利| 国产av不卡久久| 精品久久久久久久久久免费视频| avwww免费| 老司机午夜福利在线观看视频| 日韩精品青青久久久久久| 国内精品宾馆在线| 你懂的网址亚洲精品在线观看 | 日韩av不卡免费在线播放| 亚洲国产色片| 日本黄大片高清| 午夜免费激情av| 日本成人三级电影网站| 69av精品久久久久久| 一个人看视频在线观看www免费| 嫩草影院精品99| 亚洲三级黄色毛片| 搡女人真爽免费视频火全软件 | 两性午夜刺激爽爽歪歪视频在线观看| 亚洲最大成人av| 中文字幕av在线有码专区| 久久久久久国产a免费观看| 日韩大尺度精品在线看网址| 国产精品国产三级国产av玫瑰| 欧美国产日韩亚洲一区| 最新中文字幕久久久久| 一级av片app| 日韩欧美精品v在线| 美女高潮的动态| 亚洲精品一区av在线观看| 简卡轻食公司| 国产精品综合久久久久久久免费| 1024手机看黄色片| 国产精品一区二区性色av| 插阴视频在线观看视频| 波野结衣二区三区在线| 夜夜爽天天搞| 三级经典国产精品| 欧美zozozo另类| 亚洲欧美日韩东京热| 综合色丁香网| 97超碰精品成人国产| 成年女人永久免费观看视频| 成人欧美大片| 天堂√8在线中文| 联通29元200g的流量卡| 国产精品一区二区三区四区久久| 国产在线精品亚洲第一网站| 国产成年人精品一区二区| 丝袜喷水一区| 久久久久久伊人网av| 亚洲国产精品久久男人天堂| 搡女人真爽免费视频火全软件 | 少妇高潮的动态图| av在线播放精品| 亚洲性久久影院| 日韩成人av中文字幕在线观看 | 日本免费a在线| 国产成人一区二区在线| 免费观看人在逋| 久久精品国产亚洲av涩爱 | 观看美女的网站| 18+在线观看网站| or卡值多少钱| 午夜日韩欧美国产| 欧美一区二区国产精品久久精品| 亚洲中文日韩欧美视频| 长腿黑丝高跟| 国产激情偷乱视频一区二区| 天堂√8在线中文| 国产精品野战在线观看| 久久久精品94久久精品| 少妇的逼水好多| 成人漫画全彩无遮挡| 伦精品一区二区三区| 美女xxoo啪啪120秒动态图| 91狼人影院| 亚洲七黄色美女视频| 欧美激情久久久久久爽电影| 免费搜索国产男女视频| 在线观看66精品国产| 一边摸一边抽搐一进一小说| 国产精品亚洲一级av第二区| 午夜福利视频1000在线观看| 寂寞人妻少妇视频99o| 亚洲四区av| 免费av不卡在线播放| 偷拍熟女少妇极品色| 搡老熟女国产l中国老女人| 欧美性猛交╳xxx乱大交人| 久久久精品大字幕| 最好的美女福利视频网| 99久国产av精品| avwww免费| 99久久成人亚洲精品观看| 亚洲一级一片aⅴ在线观看| 精品一区二区三区av网在线观看| 亚洲精品粉嫩美女一区| 亚洲成av人片在线播放无| 男女之事视频高清在线观看| 看十八女毛片水多多多| 69人妻影院| av天堂中文字幕网| 亚洲av免费高清在线观看| 久久久久久九九精品二区国产| 非洲黑人性xxxx精品又粗又长| 国产午夜精品久久久久久一区二区三区 | 成人漫画全彩无遮挡| 两性午夜刺激爽爽歪歪视频在线观看| 色播亚洲综合网| 国产视频一区二区在线看| 禁无遮挡网站| 在线观看av片永久免费下载| 在线看三级毛片| 久久精品久久久久久噜噜老黄 | 亚洲国产欧洲综合997久久,| 国产在线男女| 国产一区二区三区在线臀色熟女| 欧美激情国产日韩精品一区| 欧美激情在线99| 插逼视频在线观看| 久久久国产成人免费| 自拍偷自拍亚洲精品老妇| 亚洲av电影不卡..在线观看| 一进一出好大好爽视频| 国产成人a区在线观看| 天堂动漫精品| 国产精品人妻久久久久久| 两个人视频免费观看高清| av福利片在线观看| 1024手机看黄色片| 国产男靠女视频免费网站| 免费黄网站久久成人精品| 免费电影在线观看免费观看| 免费人成在线观看视频色|