• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      葡萄酒生產(chǎn)廢棄物與剩余污泥厭氧共消化研究進(jìn)展

      2022-02-06 01:00:40于莉芳馬芷萱楊佳毅鄭蘭香
      關(guān)鍵詞:產(chǎn)甲烷菌產(chǎn)甲烷乙酸

      于莉芳,王 澤,馬芷萱,范 燁,蔣 睿,楊佳毅,鄭蘭香

      葡萄酒生產(chǎn)廢棄物與剩余污泥厭氧共消化研究進(jìn)展

      于莉芳1,王 澤1,馬芷萱1,范 燁1,蔣 睿1,楊佳毅1,鄭蘭香2,3

      (1. 西安建筑科技大學(xué)環(huán)境與市政工程學(xué)院,西安 710055;2. 寧夏大學(xué)生態(tài)環(huán)境學(xué)院,銀川 750021;3. 中國葡萄酒產(chǎn)業(yè)技術(shù)研究院,銀川 750021)

      厭氧消化技術(shù)被廣泛應(yīng)用于多種行業(yè)廢棄物的處置。然而,葡萄酒生產(chǎn)廢棄物濃度高、pH值低以及季節(jié)性變化的特性容易造成負(fù)荷沖擊,導(dǎo)致反應(yīng)器微生物流失、運(yùn)行不穩(wěn)定。同時(shí),剩余污泥組分復(fù)雜、水解率低導(dǎo)致產(chǎn)氣效率低。厭氧共消化具有均衡營養(yǎng)素、減緩抑制效應(yīng)、豐富菌群多樣性和提高甲烷產(chǎn)量等優(yōu)勢,也逐漸成為一種重要的葡萄酒生產(chǎn)廢棄物與剩余污泥的處置方式。盡管已有二者在不同運(yùn)行策略下共消化性能的研究,但仍未有報(bào)道闡明其共消化的影響因素以及基于葡萄酒生產(chǎn)廢棄物特性建立直接種間電子傳遞的研究進(jìn)展。因此,該文介紹了葡萄酒生產(chǎn)廢水與剩余污泥、葡萄酒生產(chǎn)固體廢棄物與剩余污泥的共消化進(jìn)展,并分別歸納了2種體系中影響消化效能的主要因子;隨后總結(jié)了共消化體系中基于乙醇建立的直接種間電子傳遞的研究進(jìn)展;最后,圍繞以上內(nèi)容展望了共消化技術(shù)在葡萄酒生產(chǎn)廢棄物與剩余污泥協(xié)同處理的前景。

      廢棄物;污泥;厭氧共消化;乙醇;直接種間電子傳遞

      0 引 言

      截止2021年全球葡萄種植面積達(dá)到7.34×106hm2,葡萄酒產(chǎn)量超過2.5×1010L[1]。據(jù)國家統(tǒng)計(jì)局?jǐn)?shù)據(jù),全國葡萄酒企業(yè)超800家,產(chǎn)量峰值達(dá)1.148×109L。葡萄酒生產(chǎn)過程需消耗大量的水和能源并伴隨相當(dāng)大的廢物生成。通常,每生產(chǎn)1 L葡萄酒會(huì)伴隨生成0.5~14 L的有機(jī)廢水[2]和0.5~1.5 kg 固體廢棄物[3]。隨排放標(biāo)準(zhǔn)逐漸提高的同時(shí)酒廠對生產(chǎn)廢物的處置成本也逐年增加,尋求一種高效、節(jié)能的生物處置方式尤為重要。

      中國剩余污泥(Waste Activated Sludge,WAS)生成量逐年增加,預(yù)計(jì)2025年將達(dá)到9×107t[4]。剩余污泥中不僅富含有機(jī)物,還攜帶病原體、重金屬、抗生素等有毒有害物質(zhì),需妥善處理避免二次污染[5-6]。厭氧消化技術(shù)能將污泥資源化、穩(wěn)定化和無害化處理,但受限于污泥的低水解率和毒性物質(zhì)等因素的影響導(dǎo)致消化效率低。通常,為改善污泥厭氧消化性能常采用機(jī)械破碎、超聲、熱堿和電化學(xué)等方式進(jìn)行預(yù)處理[7-9],但預(yù)處理仍會(huì)生成抑制性副產(chǎn)物,如熱水解產(chǎn)生苯酚和難溶的氮磷化合物[10-11]等影響后續(xù)的產(chǎn)酸和產(chǎn)甲烷過程。

      葡萄酒生產(chǎn)廢棄物與剩余污泥厭氧共消化(Anaerobic co-Digestion,AcoD)可通過稀釋毒性、均衡營養(yǎng)素等方式營造適宜的環(huán)境來豐富菌群的數(shù)量和多樣性,從而增強(qiáng)消化效率和系統(tǒng)穩(wěn)定性[12-13]。此外,據(jù)報(bào)道稱AcoD技術(shù)已成功應(yīng)用于餐飲業(yè)[14]、畜牧業(yè)[15]和農(nóng)業(yè)[16]等多種行業(yè)廢水的處置。然而,AcoD仍無法突破產(chǎn)酸的熱力學(xué)限制。近年來,隨厭氧消化中存在直接種間電子傳遞(Direct Interspecies Electron Transfer,DIET)途徑被證實(shí),即產(chǎn)甲烷菌接受產(chǎn)酸菌釋放的電子并將CO2還原為CH4。為進(jìn)一步提高厭氧消化效率提供了新的解決思路。然而,DIET機(jī)制建立的條件較為苛刻,大多僅存在于以乙醇為底物或?qū)щ姴牧蠟榻橘|(zhì)的體系[17-18]。

      葡萄酒生產(chǎn)廢棄物季節(jié)性產(chǎn)生無疑會(huì)顯著影響與剩余污泥共消化的運(yùn)行,因此在總結(jié)葡萄酒生產(chǎn)廢棄物與剩余污泥厭氧AcoD研究進(jìn)展的同時(shí),介紹了影響AcoD性能的關(guān)鍵參數(shù),并分析了AcoD體系中潛在的、基于乙醇建立的DIET機(jī)制,最后展望共消化技術(shù)在剩余污泥與葡萄酒生產(chǎn)廢棄物協(xié)同處理的研究方向。

      1 葡萄酒生產(chǎn)廢棄物特性及與污泥共消化機(jī)制

      葡萄酒生產(chǎn)過程中產(chǎn)生的有機(jī)廢水主要來源于加工設(shè)備的清洗和殘液的排出。廢水主要由醇、糖和有機(jī)酸組成的溶解性有機(jī)物、微量營養(yǎng)素、多酚類化合物、無機(jī)鹽以及殘留的肥料和農(nóng)藥等組成[19-20],呈現(xiàn)可生化性好、高化學(xué)需氧量(Chemical Oxygen Demand,COD)、高懸浮固體(Suspended Solids,SS)、高色度和低pH值等特征,且水質(zhì)水量隨季節(jié)性波動(dòng)巨大。葡萄酒固體廢棄物(酒糟(Wine Lee,WL))主要來自壓榨、倒灌和過濾等工序,由葡萄渣(45%)、葡萄莖梗(7.5%)和葡萄籽(6%)等組成[21],基本特性與生產(chǎn)廢水類似、但COD濃度(>20 g/L)、總多酚(Total Polyphenols,TPP)濃度(>1.0 g/L)和鉀離子(K+)濃度(>2.5 g/L)較高[3,22](圖1)。排放未處理的葡萄酒生產(chǎn)廢物易造成土壤退化、水體污染等問題[34]。

      AcoD經(jīng)過水解、酸化、產(chǎn)氫產(chǎn)乙酸和產(chǎn)甲烷四個(gè)過程將多糖、蛋白質(zhì)和乙醇等轉(zhuǎn)化成CH4、CO2和有機(jī)肥等(圖2)。水解階段,在水解菌分泌的水解酶和蛋白酶的作用下將多糖和蛋白質(zhì)等大分子降解為單糖和氨基酸等小分子物質(zhì)。其中包括多酚化合物在內(nèi)的難生物降解有機(jī)物會(huì)限制水解效率[22]。酸化階段,將水解產(chǎn)物進(jìn)一步轉(zhuǎn)化為揮發(fā)性脂肪酸(Volatile Fatty Acids,VFAs)和醇類物質(zhì)。因發(fā)酵細(xì)菌比生長和代謝速率快,該階段容易導(dǎo)致體系中VFAs的積累[10]。產(chǎn)氫產(chǎn)甲烷階段,在產(chǎn)氫產(chǎn)乙酸菌的參與下降解乙醇和轉(zhuǎn)化VFAs為乙酸、H2和CO2,體系中存在的嗜氫產(chǎn)乙酸菌則進(jìn)行同型產(chǎn)乙酸過程還原H2為乙酸。產(chǎn)甲烷過程主要是嗜氫產(chǎn)甲烷和嗜乙酸產(chǎn)甲烷兩種途徑,嗜氫產(chǎn)甲烷途徑是利用H2和CO2產(chǎn)甲烷,嗜乙酸產(chǎn)甲烷途徑是轉(zhuǎn)化乙酸產(chǎn)甲烷。產(chǎn)甲烷菌對環(huán)境變化敏感,常成為厭氧消化的限速步驟[5]。

      a. pH值a. pH valueb. 總多酚濃度b. Tatal Polyphenols(TPP) concentrationc. 乙醇濃度c. Ethanol concentration

      d. COD濃度d. Chemical Oxygen Demand(COD) concentratione. 總氮濃度e. Tatal Nitrogen (TN) concentrationf. 總磷濃度f. Total Phosphorus(TP) concentration

      圖2 葡萄酒廢棄物與剩余污泥厭氧共消化示意圖[1,24,27]

      2 葡萄酒生產(chǎn)廢水與剩余污泥共消化

      有研究表明,AcoD體系中底物混合比對消化性能影響顯著,而葡萄酒生產(chǎn)廢水與不同底物(牛糞、豬糞和微藻)AcoD體系的最佳混合比存在差異[15,35-36]。因此,針對葡萄酒生產(chǎn)廢水與剩余污泥AcoD需確定最佳混合比來提供適宜營養(yǎng)物濃度和碳氮比(C/N)等,還需探究采摘季(9—11月)短期大量高濃度有機(jī)廢水對AcoD體系的沖擊影響。

      2.1 混合比例

      研究發(fā)現(xiàn),增加AcoD體系中葡萄酒生產(chǎn)廢水比例會(huì)促進(jìn)COD、VS(Volatile Solid,揮發(fā)性固體)的去除,但隨體積比超過50%后消化效率又逐漸下降[12,24,37]。說明混合比例會(huì)影響共消化效果,且葡萄酒生產(chǎn)廢水與剩余污泥最佳混合比為1∶1,見表1。

      表1 葡萄酒生產(chǎn)廢水與剩余污泥共消化特性

      注:WW:葡萄酒生產(chǎn)廢水,WAS:剩余污泥,下同。

      Note:WW:wine wastewater,WAS:waste activated sludge, the same below.

      底物混合比例主要改變體系碳氮比,從而影響厭氧消化效率以及體系的穩(wěn)定性。低C/N比雖能增強(qiáng)體系的緩沖能力并適應(yīng)低pH的環(huán)境,但污泥中有機(jī)質(zhì)水解后會(huì)釋放游離氨,游離氨(FAN)透過細(xì)胞膜進(jìn)入細(xì)胞后破壞胞內(nèi)外質(zhì)子和pH平衡[38]。葡萄酒生產(chǎn)廢水高C/N比的水質(zhì)與剩余污泥混合后可提高體系的C/N比、降低游離氨濃度。然而,C/N比過高時(shí)體系容易因中間產(chǎn)物揮發(fā)性脂肪酸轉(zhuǎn)化不及時(shí)而積累,從而抑制產(chǎn)甲烷活性和降低體系穩(wěn)定性[39]。

      此外,改變體系C/N比將顯著影響代謝途徑和微生物群落結(jié)構(gòu)。Zheng等[40]指出隨C/N降低產(chǎn)甲烷途徑逐漸從嗜乙酸產(chǎn)甲烷向嗜氫產(chǎn)甲烷轉(zhuǎn)移,并富集出互營乙酸氧化菌,即在高氨氮-厭氧體系中“互營乙酸氧化-嗜氫產(chǎn)甲烷”途徑會(huì)替代嗜乙酸產(chǎn)甲烷途徑[41]。同時(shí),隨著C/N降低,產(chǎn)氫產(chǎn)乙酸菌、嗜丙酸產(chǎn)乙酸菌和嗜丁酸產(chǎn)乙酸菌分別增加了1.97、2.67和1.76倍,而嗜乙酸產(chǎn)甲烷菌減少了43.8%[12]。高溫下C/N降低后,產(chǎn)氫產(chǎn)乙酸菌和嗜氫產(chǎn)甲烷菌分別增加了116.5和89.5%[37](表2)。中高溫環(huán)境群落結(jié)構(gòu)隨C/N比降低有相同趨勢的演替,即產(chǎn)酸菌增加和嗜氫產(chǎn)甲烷菌增加。

      表2 共消化與單一消化的菌群演替

      2.2 水力停留時(shí)間

      水力停留時(shí)間(Hydraulic Residence Time,HRT)作為厭氧消化過程中的關(guān)鍵參數(shù),直接決定了底物與微生物接觸時(shí)間以及系統(tǒng)有機(jī)負(fù)荷,從而影響有機(jī)物的降解效率??傮w上,適當(dāng)延長HRT可進(jìn)一步提高甲烷產(chǎn)率[25-26],而縮短HRT意味著提高有機(jī)負(fù)荷。高負(fù)荷下產(chǎn)酸菌將有機(jī)物降解產(chǎn)酸后使體系pH值迅速降低,容易形成對產(chǎn)甲烷菌的抑制從而減少堿度的產(chǎn)生、增加酸化的風(fēng)險(xiǎn)[42]。

      另外,改變HRT的改變同樣影響微生物群落結(jié)構(gòu)。Esteban-Gutiérrez等[43]發(fā)現(xiàn)縮短HRT會(huì)抑制產(chǎn)乙酸菌活性,導(dǎo)致丙酸、丁酸積累,從而抑制嗜乙酸型產(chǎn)甲烷菌活性、增加嗜氫產(chǎn)甲烷菌豐度。Peces等[44]縮短HRT后發(fā)現(xiàn),嗜氫產(chǎn)甲烷菌豐度增加、嗜氫產(chǎn)甲烷途徑占比增加,使得嗜氫產(chǎn)甲烷菌與同型產(chǎn)乙酸菌競爭H2時(shí)更有優(yōu)勢,一定程度上緩解了體系乙酸積累速度,但仍存在甲烷產(chǎn)率降低、VFAs積累等現(xiàn)象。這是核心微生物群為應(yīng)對系統(tǒng)負(fù)載沖擊做出的群體響應(yīng)[45],即增加相關(guān)功能菌數(shù)量(互營乙酸氧化菌和嗜氫產(chǎn)甲烷菌等)加快VFAs向甲烷的轉(zhuǎn)化,從而維持群落結(jié)構(gòu)和消化系統(tǒng)的穩(wěn)定。

      3 葡萄酒固體廢棄物與剩余污泥共消化

      酒糟是葡萄酒生產(chǎn)過程中主要的固體廢棄物,由未發(fā)酵果汁殘留物(莖、梗、籽)、發(fā)酵后殘留的沉淀物(廢酵母)和過濾劑(硅藻土)3種類型的物質(zhì)組成,含有高濃度的K+和總多酚化合物(TPP)[2,22]。眾所周知,剩余污泥的低水解率以及大量積累的重金屬及抗生素限制消化效率。因此,需深入探究擴(kuò)散限制和抑制因子對酒糟與剩余污泥AcoD體系的影響。

      3.1 溫度

      眾多研究表明,提高溫度可通過影響功能菌活性、代謝活性、化學(xué)平衡、傳質(zhì)等促進(jìn)厭氧水解過程[33,46-47]。Da Ros團(tuán)隊(duì)發(fā)現(xiàn)[13,28-30],升高溫度后酒糟和剩余污泥AcoD體系容易酸化,且高溫下提高有機(jī)負(fù)荷后系統(tǒng)也難以成功運(yùn)行。與高溫AcoD體系相比,中溫環(huán)境下產(chǎn)氣量和揮發(fā)性固體、COD去除率以及總堿度和氨氮濃度降低。這是因?yàn)樯邷囟瓤商岣哂袡C(jī)物水解率、減少固體廢物量從而增加產(chǎn)氣量。高溫下對有機(jī)氮礦化程度高[48],向體系中釋放的NH4+-N濃度較高。但是,在系統(tǒng)穩(wěn)定性和多酚類化合物去除方面明顯強(qiáng)于高溫環(huán)境(表3)。促進(jìn)水解過程的同時(shí)大量的VFAs產(chǎn)生并積累,嚴(yán)重抑制產(chǎn)甲烷菌活性。中溫環(huán)境下微生物群多樣性高[12,46],各類微生物群分布較為均衡(表2),對多酚化合物去除效果更好。

      表3 葡萄酒固體廢棄物與污泥共消化

      注:WL:酒糟,CSTR:完全混合反應(yīng)器,TS為總固體,下同。

      Note:WL:wine lee,CSTR:continuous stirred tank reactor,TS is Total Solid, the same below.

      3.2 葡萄酒固體廢棄物和剩余污泥中主要的抑制因子

      葡萄酒固體廢棄物中高濃度的K+和TPP對厭氧微生物具有毒性。據(jù)報(bào)道稱,一定范圍的K+濃度可以緩解氨抑制,Lin等[50]發(fā)現(xiàn),添加0.58~0.6 g/L K+能夠緩解高濃度氨對厭氧產(chǎn)酸的影響。但是,酒糟中K+濃度常超過2.5 g/L,容易使產(chǎn)甲烷菌中毒凋亡,而且VFAs積累和甲烷產(chǎn)量降低的現(xiàn)象在中溫環(huán)境中更突出[2,22,51]。多酚類化合物通常分為類黃酮類物質(zhì)和非類黃酮類物質(zhì)兩大類,前者包括花色苷及衍生物、黃酮醇類和黃烷醇類,后者中含有酚酸類、芪類[52],種類繁多、組分復(fù)雜。具有植物毒性的多酚類化合物存在于葡萄皮和籽中,并能抑制產(chǎn)甲烷菌等微生物的酶活性,是共消化的抑制性底物[53-54]。Mkruqulwa等[55]將木薯廢水與酒糟AcoD發(fā)現(xiàn),多酚類化合物抑制了產(chǎn)甲烷菌活性。

      剩余污泥積累的重金屬及抗生素。剩余污泥中重金屬的積累主要因胞外聚合物表面的羥基、羧基、磷?;然鶊F(tuán)吸附或螯合金屬離子所致[56]。高濃度重金屬(Ni、Co、和Zn等)能夠與蛋白質(zhì)氨基酸中的巰氫基和輔酶M中巰基結(jié)合導(dǎo)致功能蛋白和關(guān)鍵酶失活[57]??股貜V泛應(yīng)用疾病的治療,并隨排污系統(tǒng)最終積累在剩余污泥中[58]。研究表明,抗生素通過抑制細(xì)胞組分合成來破壞細(xì)菌生長,且產(chǎn)甲烷菌受其影響大,從而導(dǎo)致VFAs積累、甲烷產(chǎn)量降低[59]。

      4 基于乙醇建立的DIET

      眾多研究表明,厭氧消化涉及的胞外電子傳遞體系包括:MIET(Mediated Interspecies Electron Transfer,間接種間電子傳遞)和DIET 2種機(jī)制[17-18,60]。其中,MIET依靠H2和甲酸鹽兩種方式傳遞電子(圖3a),DIET依靠細(xì)菌的導(dǎo)電鞭毛(e-pili)和細(xì)胞色素(OmcS)傳遞電子。與MIET相比,產(chǎn)酸菌通過DIET無需載體即將電子傳遞給產(chǎn)甲烷菌,傳遞效率更高。同時(shí),對緩解無機(jī)離子、有機(jī)物的抑制和強(qiáng)化難生物降解物質(zhì)的降解作用效果顯著[61]。然而,DIET機(jī)制難以在常規(guī)厭氧消化體系中建立,但有研究表明可添加乙醇或與碳基材料共同來建立DIET機(jī)制[18,62]。

      4.1 乙醇與剩余污泥共消化建立DIET

      針對復(fù)雜的脂肪酸或難生物降解有機(jī)物存在的降解難、處理時(shí)間長等問題。向消化體系添加乙醇進(jìn)行AcoD是一種有效的方式,這是因?yàn)橐掖疾粌H可作為消化底物,還可作為“刺激因子”促進(jìn)電活性微生物(產(chǎn)電細(xì)菌和嗜電古菌)的富集,從而建立DIET機(jī)制強(qiáng)化對物質(zhì)的去除(圖3b)。Zhao等[63]先將WAS生物發(fā)酵(pH值4.0~4.5)增加乙醇濃度,再將發(fā)酵液與WAS進(jìn)行AcoD,產(chǎn)甲烷速率和COD去除率分別增加了25.1%和21.4%,電子傳遞活性提高了6.7倍,并富集出和等菌屬。Li等[64]將餐廚垃圾預(yù)發(fā)酵產(chǎn)乙醇后再與WAS進(jìn)行AcoD,甲烷產(chǎn)率增加68%,電子傳遞活性提高2.2倍(表4)。

      圖3 種間電子傳遞機(jī)制圖

      表4 乙醇與不同底物AcoD性能

      注:UASB:上流式厭氧污泥床,AFBR:厭氧流化床。

      Note:UASB:upflow anaerobic sludge blanket,AFBR:anaerobic fluidized bed reactor.

      代謝乙醇產(chǎn)生的能量主要用于微生物生長,細(xì)胞物質(zhì)合成和參與生化反應(yīng)三個(gè)方面。作為典型的DIET產(chǎn)電菌在大多數(shù)傳統(tǒng)的厭氧反應(yīng)器菌群中難以被檢出,但是在乙醇與WAS的AcoD體系中得到富集[61,63]。乙醇可刺激等產(chǎn)電菌分泌能與嗜電古菌形成DIET所需的導(dǎo)電菌絲等細(xì)胞物質(zhì)[68]。代謝乙醇產(chǎn)生的能量(-31.6 kJ/mol)可用于抵消短鏈脂肪酸(丙酸/丁酸等)轉(zhuǎn)化為乙酸所需能量(+76.2/+48.4 kJ/mol),從而促進(jìn)VFAs降解和增加甲烷產(chǎn)量[65,69]。

      4.2 乙醇與碳基材料協(xié)同促進(jìn)DIET

      碳基材料(活性炭、生物炭、石墨烯和碳布等)因其優(yōu)異的物化性質(zhì)(存在堿性官能團(tuán)、具備氧化還原特性、比表面積大等)在維持消化系統(tǒng)穩(wěn)定及微生物活性和提高種間電子轉(zhuǎn)移效率等方面發(fā)揮重要作用[70-71]。尤其是碳基材料的導(dǎo)電性,可代替/彌補(bǔ)e-pili和OmcS蛋白等細(xì)胞物質(zhì)在產(chǎn)電細(xì)菌和嗜電古菌之間建立DIET并富集相關(guān)功能菌[70-73](圖 3c,3d)。

      Liu等[74]以乙醇為唯一碳源純培養(yǎng).和.,添加顆?;钚蕴堪l(fā)現(xiàn)乙醇代謝速率加快、甲烷產(chǎn)量增加14倍。同時(shí),還發(fā)現(xiàn)生物炭[75]、碳布[76]等碳基材料在.和.純培養(yǎng)體系中起到加速乙醇代謝產(chǎn)甲烷的作用。乙醇與碳基材料積極的協(xié)同效果在多種廢水處理系統(tǒng)中被體現(xiàn),Zhao等[77]在處理生物乙醇型發(fā)酵產(chǎn)物發(fā)現(xiàn),添加250 g/L 顆粒活性炭后COD去除率和甲烷產(chǎn)量分別增加6.4和8.7%;Zhao等[78]向含乙醇的甘蔗渣中加入100 g/L顆?;钚蕴堪l(fā)現(xiàn),甲烷產(chǎn)量和產(chǎn)甲烷速率分別增加3.1和3.3倍。碳基材料添加后體系常表現(xiàn)出產(chǎn)甲烷速率加快、甲烷產(chǎn)量增加,這得益于碳基材料通過自身的導(dǎo)電性建立DIET從而促進(jìn)底物降解和提高代謝速率,與乙醇共同縮短DIET功能菌的富集時(shí)間和加快底物利用速率。

      表5 乙醇與多種碳材料共同促進(jìn)DIET

      5 展 望

      5.1 明晰代謝機(jī)制

      歐洲及南非等傳統(tǒng)產(chǎn)酒國對葡萄酒廢棄物厭氧處理研究起步早,對現(xiàn)有葡萄酒生產(chǎn)廢物與剩余污泥的AcoD研究已初步實(shí)現(xiàn)工程化。然而,AcoD效果仍取決于微生物群之間的代謝和協(xié)同能力。利用宏基因組和代謝組學(xué)等多組學(xué)技術(shù)深入解析AcoD體系中“菌群-底物”隨C/N比和溫度等運(yùn)行工況改變的代謝偶聯(lián),為定向培養(yǎng)、調(diào)控微生物和強(qiáng)化消化性能提供微觀指導(dǎo)。

      5.2 DIET機(jī)制的建立和確定

      葡萄酒生產(chǎn)廢棄物中含有乙醇且其濃度隨生產(chǎn)工藝和季節(jié)變化明顯(圖1c)。因此,AcoD體系中是否能夠富集以和等典型DIET功能菌,并以此建立DIET機(jī)制仍有待確定。

      與此同時(shí),越來越多的學(xué)者認(rèn)為具備參與DIET的電活性微生物種類遠(yuǎn)比已被證實(shí)的更廣泛,而且嗜氫產(chǎn)甲烷菌也參與DIET。例如,Rotaru等[81]于2014年進(jìn)行的與.共培養(yǎng)實(shí)驗(yàn)證實(shí)不具備DIET的能力。但是,最近Zheng等人發(fā)現(xiàn)屬中一株被命名為“YSL”的菌株可通過DIET與.共培養(yǎng)[82]。Zhao等[83]認(rèn)為與在乙醇與剩余污泥AcoD體系建立了DIET。然而,嗜氫產(chǎn)甲烷菌主導(dǎo)/參與的體系中難以運(yùn)用常規(guī)手段驗(yàn)證DIET的存在,需使用宏基因組等高級別方法檢測其代謝途徑來確定是否存在DIET。

      5.3 建立共消化模型

      厭氧消化模型(Anaerobic Digestion Model No 1,ADM1)通過設(shè)定模型組分、建立動(dòng)力學(xué)方程來描述反應(yīng)過程中參與的生化和物化進(jìn)程,廣泛用于厭氧消化工藝的設(shè)計(jì)、模擬和預(yù)測[84]。Garcia-Gen等[85]在上流式厭氧污泥床中混合葡萄酒廢水、明膠和豬糞,并基于ADM1模型建立了一套AcoD模型。Ripoll等[86]建立葡萄酒生產(chǎn)廢水與剩余污泥中溫半連續(xù)混合消化模型,并由此探究有機(jī)負(fù)荷對有機(jī)物去除、甲烷產(chǎn)量及代謝動(dòng)力學(xué)的影響。但是,采摘季與非采摘季葡萄酒廢棄物的水質(zhì)、水量差異大,且中、高溫環(huán)境中微生物活性也明顯不同,需分別針對性的建立AcoD模型。為進(jìn)一步闡明不同運(yùn)行參數(shù)對AcoD性能影響機(jī)制和提高AcoD效能提供有效的依據(jù)。

      6 結(jié) 論

      葡萄酒生產(chǎn)廢棄物與剩余污泥AcoD是一種高效的廢物利用和資源回收策略。國外眾多中試及以上規(guī)模的試驗(yàn)研究證實(shí),通過調(diào)控AcoD的運(yùn)行工況顯著影響系統(tǒng)的效率和穩(wěn)定性。卻未深入解釋運(yùn)行工況改變后底物降解與微生物代謝的內(nèi)在聯(lián)系,也無法克服熱力學(xué)限制進(jìn)一步提高消化性能。有待進(jìn)一步研究的問題是:表征和量化AcoD體系中水解速率、產(chǎn)甲烷活性及相關(guān)酶活性或濃度隨運(yùn)行工況的變化;建立并改進(jìn)AcoD模型從而更準(zhǔn)確地預(yù)測AcoD體系中存在的多種相互作用;探索AcoD體系建立DIET機(jī)制的可行性并確定最佳條件和各代謝途徑貢獻(xiàn)率。

      [1] OIV, 2021. OIV Statistical report on world vitiviniculture[EB/OL]. (2021-07-16)[2022-08-12] https: //www.oiv.int.

      [2] Bolzonella D, Papa M, Da Ros C, et al. Winery wastewater treatment: A critical overview of advanced biological processes[J]. Critical Reviews in Biotechnology, 2019, 39(4): 489-507.

      [3] Ioannou L A, Puma G L, Fatta-Kassinos D, et al. Treatment of winery wastewater by physicochemical, biological and advanced processes: A review[J]. Journal of hazardous materials, 2015, 286: 343-368.

      [4] 戴曉虎. 我國污泥處理處置現(xiàn)狀及發(fā)展趨勢[J]. 科學(xué),2020,72(6):30-34.

      Dai Xiaohu. Applications and perspectives of sludge treatment and disposal in China[J]. Science, 2020, 72(6): 30-34. (in Chinese with English abstract)

      [5] Wu B, Dai X, Chai X. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations[J]. Water Research, 2020, 180: 115912.

      [6] Ziemba C, Peccia J. Net energy production associated with pathogen inactivation during mesophilic and thermophilic anaerobic digestion of sewage sludge[J]. Water Research, 2011, 45(16): 4758-4768.

      [7] Nabi M, Liang J S, Zhang P Y, et al. Anaerobic digestion of sewage sludge pretreated by high pressure homogenization using expanded granular sludge blanket reactor: Feasibility, operation optimization and microbial community[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104720.

      [8] Liu X, Wang Q, Tang Y, et al. Hydrothermal pretreatment of sewage sludge for enhanced anaerobic digestion: Resource transformation and energy balance[J]. Chemical Engineering Journal, 2021, 410: 127430.

      [9] Tian X B, Wang C, Trzcinski A P, et al. Insights on the solubilization products after combined alkaline and ultrasonic pre-treatment of sewage sludge[J]. Journal of Environmental Sciences, 2015, 29(3): 97-105.

      [10] Li C X, Zhang G Y, Zhang Z K, et al. Alkaline thermal pretreatment at mild temperatures for biogas production from anaerobic digestion of antibiotic mycelial residue[J]. Bioresource Technology, 2016, 208: 49-57.

      [11] Zhang D, Feng Y M, Huang H B, et al. Recalcitrant dissolved organic nitrogen formation in thermal hydrolysis pretreatment of municipal sludge[J]. Environment International, 2020,138:105629.

      [12] Ripoll V, Garcia-Agabo C, Perez M, et al. Improvement of biomethane potential of sewage sludge anaerobic co-digestion by addition of “sherry-wine” distillery wastewater[J]. Journal of Cleaner Production, 2020, 251: 119667.

      [13] Da Ros C, Cavinato C, Pavan P, et al. Mesophilic and thermophilic anaerobic co-digestion of winery wastewater sludge and wine lees: An integrated approach for sustainable wine production[J]. Journal of Environmental Management, 2017, 203: 745-752.

      [14] 袁海榮,王奎升,朱保寧,等. 果蔬垃圾與餐廚垃圾混合厭氧消化產(chǎn)氣性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(增刊1):91-95.

      Yuan Hairong, Wang Kuisheng, Zhu Baoning, et al. Anaerobic digestion performances of fruit and vegetable waste and kitchen waste[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.1): 91-95. (in Chinese with English abstract)

      [15] Akassou M, Kaanane A, Crolla A, et al. Statistical modelling of the impact of some polyphenols on the efficiency of anaerobic digestion and the co-digestion of the wine distillery wastewater with dairy cattle manure and cheese whey[J]. Water Science and Technology, 2010, 62(3): 475-483.

      [16] 寧靜,朱葛夫,呂楠,等. 碳氮比對豬糞與玉米秸稈混合厭氧消化產(chǎn)沼氣性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(增刊1):93-98.

      Ning Jing, Zhu Gefu, Lv Nan, et al. Effects of C/N ratio on biogas production by anaerobic co-digestion of pig manure and corn straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018,34(Supp.1): 93-98. (in Chinese with English abstract)

      [17] Feng D, Guo X B, Lin R C, et al. How can ethanol enhance direct interspecies electron transfer in anaerobic digestion?[J]. Biotechnology Advances, 2020, 52, 107812.

      [18] Yin Q D, Wu G X. Advances in direct interspecies electron transfer and conductive materials: Electron flux, organic degradation and microbial interaction[J]. Biotechnology Advances, 2019, 37(8): 107443.

      [19] Beck C, Prades G, Sadowski A G, et al. Activated sludge wastewater treatment plants optimisation to face pollution overloads during grape harvest periods[J]. Water Science and Technology, 2005, 51(1): 81-88.

      [20] Bustamante M, Paredes C, Moral R, et al. Uses of winery and distillery effluents in agriculture: Characterisation of nutrient and hazardous components[J]. Water Science and Technology, 2005, 51(1): 145-151.

      [21] Broome J C, Warner K D. Agro-environmental partnerships facilitate sustainable wine-grape production and assessment[J]. California Agriculture, 2008, 62, 133–141.

      [22] Bustamante M A, Moral R, Paredes C, et al. Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry[J]. Waste Management, 2008, 28(2): 372-380.

      [23] Montalvo S, Martinez J, Castillo A, et al. Sustainable energy for a winery through biogas production and its utilization: A Chilean case study[J]. Sustainable Energy Technologies and Assessments, 2020, 37: 100640.

      [24] Rodriguez L, Villasenor J, Fernandez F J, et al. Anaerobic co-digestion of winery wastewater[J]. Water Science and Technology, 2007, 56(2): 49-54.

      [25] Zahedi S, Solera R, Perez M, et al. An eco-friendly way to valorize winery wastewater and sewage sludge: Anaerobic co-digestion[J]. Biomass and Bioenergy, 2020, 142, 105779.

      [26] Ripoll V, Garcia-Agabo C, Solera R, et al. Modelling of the anaerobic semi-continuous co-digestion of sewage sludge and wine distillery wastewater[J]. Water Research and Technology, 2020, 6: 1880-1889.

      [27] Vlyssides A G, Barampouti E M, Mai S, et al. Wastewater characteristics from Greek wineries and distilleries[J]. Water Science and Technology, 2005, 51(1): 53-60.

      [28] Da Ros C, Cavinato C, Pavan P, et al. Winery waste recycling through anaerobic co-digestion with waste activated sludge[J]. Waste Management, 2014, 34(11): 2028-2035.

      [29] Da Ros C, Cavinato C, Cecchi F, et al. Anaerobic co-digestion of winery waste and waste activated sludge: assessment of process feasibility[J]. Water Science and Technology, 2014, 69(2): 269-277.

      [30] Da Ros C, Micolucci F, Gottardo M, et al. Development and application of an automatic feeding control to manage anaerobic co-digestion of winery wastes[J]. Journal of Cleaner Production, 2017, 161: 75-83.

      [31] Zacharof M P. Grape winery waste as feedstock for bioconversions: applying the biorefinery concept[J]. Waste and Biomass Valorization, 2017, 8(4): 1011-1025.

      [32] Welz P J, Holtman G, Haldenwang R, et al. Characterisation of winery wastewater from continuous flow settling basins and waste stabilisation ponds over the course of 1 year: Implications for biological wastewater treatment and land application[J]. Water Science and Technology, 2016, 74(9): 2036-2050.

      [33] Buitrón G, Francisco J, Ojeda F, et al. Biogas production from a highly organic loaded winery effluent through a two-stage process[J]. BioEnergy Research, 2019, 12(3): 714-721.

      [34] Liang X Y, Rengasamy P C, Smernik R, et al. Does the high potassium content in recycled winery wastewater used for irrigation pose risks to soil structural stability?[J]. Agricultural Water Management, 2021, 243: 106422.

      [35] Riano B, Molinuevo B, Garcia-Gonzalez M C, et al. Potential for methane production from anaerobic co-digestion of swine manure with winery wastewater[J]. Bioresource Technology, 2011, 102: 4131-4136.

      [36] Mader A E, Holtman G A, Welz P J, et al. Treatment wetlands and phyto-technologies for remediation of winery effluent: Challenges and opportunities[J]. Science of the Total Environment, 2022, 807, 150544.

      [37] Agabo-Garcia C, Perez M, Solera R, et al. Adaptation of thermophilic sludge-inoculum to co-digestion with Sherry-wine distillery waste-water[J]. Biomass and Bioenergy, 2020, 139: 105628.

      [38] Capson-Tojo G, Moscoviz R, Astals S, et al. Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion[J]. Renewable and Sustainable Energy Reviews, 2020, 117: 109487.

      [39] Cai Y F, Zheng Z H, Wei L X E, et al. The characteristics of multi-substrates (low and high C/N) anaerobic digestion: Focus on energy recovery and the succession of methanogenic pathway[J]. Bioresource Technology, 2022, 343: 125976.

      [40] Zheng Z H, Cai Y F, Zhang Y, et al. The effects of C/N (10–25) on the relationship of substrates, metabolites, and microorganisms in “inhibited steady-state” of anaerobic digestion[J]. Water Research, 2021, 188: 116466.

      [41] Pan X F, Zhao L X, Li C X, et al. Deep insights into the network of acetate metabolism in anaerobic digestion: focusing on syntrophic acetate oxidation and homoacetogenesis[J]. Water research, 2021, 190: 116774.

      [42] Rui X, Yang Z H, Chen T, et al. Anaerobic co-digestion of municipal wastewater sludge with food waste with different fat, oil, and grease contents: Study of reactor performance and extracellular polymeric substances[J]. Rsc Advances, 2015, 5(125): 103547-103556.

      [43] Esteban-Gutirrez M, Garcia-Aguirre J, Irizar I, et al. From sewage sludge and agri-food waste to VFA: Individual acid production potential and up-scaling[J]. Waste Management, 2018, 77: 203-212.

      [44] Peces M, Astals S, Jensen P D, et al. Transition of microbial communities and degradation pathways in anaerobic digestion at decreasing retention time[J]. New Biotechnology, 2021, 60: 52-61.

      [45] Xu R, Yang Z H, Zheng Y, et al. Organic loading rate and hydraulic retention time shape distinct ecological networks of anaerobic digestion related microbiome[J]. Bioresource Technology, 2018, 262: 184-193.

      [46] Yu J, Zhao Y, Zhang H, et al. Hydrolysis and acidification of agricultural waste in a non-airtight system: Effect of solid content, temperature, and mixing mode[J]. Waste Management, 2017, 59: 487-497.

      [47] Zeshan, Karthikeyan O P, Visvanathan C, et al. Effect of C/N ratio and ammonia-N accumulation in a pilot-scale thermophilic dry anaerobic digester[J]. Bioresource Technology, 2012, 113: 294-302.

      [48] Capson-Tojo G, Moscoviz R, Astals S, et al. Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion[J]. Renewable and Sustainable Energy Reviews, 2020, 117: 109487.

      [49] Aylin-Alagoz B, Yenigiin O, Erdincler A, et al. Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: Comparison with microwave pre-treatment[J]. Ultrasonics Sonochemistry, 2018, 40: 193-200

      [50] Lin L, Wan C L, Liu X, et al. Anaerobic digestion of swine manure under natural zeolite addition: VFA evolution, cation variation, and related microbial diversity[J]. Applied Microbiology and Biotechnology, 2013, 97(24): 10575-10583

      [51] Wu D, Li L, Zhao X F, et al. Anaerobic digestion: A review on process monitoring[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 1-12.

      [52] 張欣珂,趙旭,成池芳,等. 葡萄酒中的酚類物質(zhì)Ⅰ:種類,結(jié)構(gòu)及其檢測方法研究進(jìn)展[J]. 食品科學(xué),2019,40(15):255-268.

      Zhang Xinke, Zhao Xu, Cheng Chifang, et al. Phenolics in wines: A review of categories, structures and detection methods[J]. Food Science, 2019, 40(15): 255-268.

      [53] Battista F, Fino D, Erriquens F, et al. Scaled-up experimental biogas production from two agro-food waste mixtures having high inhibitory compound concentrations[J]. Renewable Energy, 2015, 81: 71-77.

      [54] Tabassum M R, Xia A, Murphy J D, et al. Seasonal variation of chemical composition and biomethane production from the brown seaweed Ascophyllum nodosum[J]. Bioresource Technology, 2016, 216: 219-226.

      [55] Mkruqulwa U, Okudoh V, Oyekola O, et al. Optimizing methane production from co-digestion of cassava biomass and winery solid waste using response surface methodology[J]. Waste and Biomass Valorization, 2020, 11(9): 4799-4808.

      [56] Cai Y F, Hua B B, Gao L J, et al. Effects of adding trace elements on rice straw anaerobic mono-digestion: Focus on changes in microbial communities using high-throughput seq-uencing[J]. Bioresource Technology, 2017, 239: 454-463.

      [57] Cai Y F, Zheng Z H, Wang X F, et al. Obstacles faced by methanogenic archaea originating from substrate-driven toxicants in anaerobic digestion[J]. Journal of Hazardous Materials, 2021, 403: 123938.

      [58] Song Y, Han Z, Song K, et al. Antibiotic consumption trends in China: Evidence from six-year surveillance sales records in Shandong Province[J]. Frontiers in Pharmacology, 2020, 11: 491

      [59] Senta I, Kostanjevecki P, Krizman-Matasic I, et al. Occurrence and behavior of macrolide antibiotics in municipal wastewater treatment: Possible importance of metabolites, synthesis byproducts, and transformation products[J]. Environmental Science and Technology, 2019, 53(13): 7463-7472.

      [60] Baek G, Kim J, Lee C, et al. Role and potential of direct interspecies electron transfer in anaerobic digestion[J]. Energies, 2018, 11(1): 1-18.

      [61] 司哺春,劉凱強(qiáng),林新宇,等. 直接種間電子傳遞對緩解厭氧消化抑制效應(yīng)的研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(24):227-235.

      Si Buchun, Liu Kaiqiang, Lin Xinyu, et al. Research progress of the relief of anaerobic digestion inhibitions based on direct interspecies electron transfer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 227-235. (in Chinese with English abstract)

      [62] Jeong-Hoon P, Hyun-Jin K, Kang-Hee P, et al. Direct interspecies electron transfer via conductive materials: a perspective for anaerobic digestion applications[J]. Bioresource Technology, 2018, 254: 300-311.

      [63] Zhao Z Q, Li Y, He J Y, et al. Establishing direct interspecies electron transfer during laboratory-scale anaerobic digestion of waste activated sludge via biological ethanol-type fermentation pretreatment[J]. ACS Sustainable Chemistry Engineering, 2018, 6(10): 13066-13077.

      [64] Li Y, Tang Y P, Xiong P, et al. High-efficiency methanogenesis via kitchen wastes served as ethanol source to establish direct interspecies electron transfer during anaerobic Co-digestion with waste activated sludge[J]. Water Research, 2020, 176: 115763.

      [65] Zhao Z Q, Zhang Y B, Yu Q L, et al. Communities stimulated with ethanol to perform direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate[J]. Water Research, 2016, 102: 475-484.

      [66] Wang C Q, Qiao W L, Chen H, et al. A short-term stimulation of ethanol enhances the effect of magnetite on anaerobic digestion[J]. Applied Microbiology and Biotechnology, 2019, 103: 1511-1522.

      [67] Macedo T Z, Okada D Y, Delforno T P, et al. The comparative advantages of ethanol and sucrose as co-substrates in the degradation of an anionic surfactant: microbial community selection[J]. Bioprocess and Biosystems Engineering volume, 2015, 38: 1835-1844.

      [68] Ueki T, Nevin A K P, Rotaru A E, et al. Geobacter Strains Expressing Poorly Conductive Pili Reveal Constraints on Direct Interspecies Electron Transfer Mechanisms[J]. mBio, 9(4): e01273-18.

      [69] Zhao Z Q, Wang J F, Li Y, et al. Why do DIETers like drinking: Metagenomic analysis for methane and energy metabolism during anaerobic digestion with ethanol[J]. Water Research, 2020, 171: 115425.

      [70] Wang C, Liu Y, Gao X, et al. Role of biochar in the granulation of anaerobic sludge and improvement of electron transfer characteristics[J]. Bioresource Technology, 2018, 268: 28-35.

      [71] Chowdhury B, Lin L, Dhar B R, et al. Enhanced biomethane recovery from fat, oil, and grease through co-digestion with food waste and addition of conductive materials[J]. Chemosphere, 2019, 236: 124362.

      [72] Yu N J W, Guo B, Zhang Y D, et al. Self-fluidized GAC-amended UASB reactor for enhanced methane production[J]. The Chemical Engineering Journal, 2021, 420(2): 127652.

      [73] Zhao Z Q, Zhang Y B, Woodard T L, et al. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials[J]. Bioresource Technology, 2015, 191, 140-145.

      [74] Liu F H, Rotaru A E, Shrestha P M, et al. Promoting direct interspecies electron transfer with activated carbon[J]. Energy and Environmental Science, 2012, 5: 8982.

      [75] Chen S S, Rotaru A E, Shrestha P M, et al. Promoting interspecies electron transfer with biochar[J]. Scientific Reports, 2014, 4: 5019.

      [76] Chen S S, Rotaru A E, Liu F H, et al. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures[J]. Bioresource Technology, 2014, 173: 82-86.

      [77] Zhao Z Q, Li Y, Quan X, et al. New application of ethanol-type fermentation: Stimulating methanogenic communities with ethanol to perform direct interspecies electron transfer[J]. ACS Sustainable Chemistry Engineering, 2017, 5(10): 9441-9453.

      [78] Zhao Z Q, Zhang Y. Application of ethanol-type fermentation in establishment of direct interspecies electron transfer: A practical engineering case study[J]. Renewable Energy, 2019, 136: 846-855.

      [79] Yuan H Y, Ding L J, Zama E F, et al. Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate[J]. Environmental Science and Technology, 2018, 52(21): 12198-12207.

      [80] Lin R C, Cheng J, Zhang J B, et al. Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion[J]. Bioresource Technology, 2017, 239: 345-352.

      [81] Rotaru A E, Shrestha P M, Liu F H, et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy and Environmental Science, 2014, 7: 408-415.

      [82] Zheng S L, Liu F H, Wang B C, et al. Methanobacterium capable of direct interspecies electron transfer[J]. Environmental Science and Technology, 2020, 54(23): 15347-15354.

      [83] Zhao Z Q, Sun C, Li Y, et al. Upgrading current method of anaerobic co-digestion of waste activated sludge for high-efficiency methanogenesis: Establishing direct interspecies electron transfer via ethanol-type fermentation[J]. Renewable Energy, 2020, 148(C): 523-533.

      [84] Maharaj B C, Mattei M R, Frunzo L, et al. ADM1 based mathematical model of trace element complexation in anaerobic digestion processes[J]. Bioresource Technology, 2018, 276: 253-259.

      [85] García-Gen S, Lema J M, Rodríguez J, et al. Generalised modelling approach for anaerobic co-digestion of fermentable substrates[J]. Bioresource Technology, 2013, 147: 525-533.

      [86] Ripoll V, Agabo C, Solera R, et al. Modelling of the anaerobic semi-continuous co-digestion of sewage sludge and wine distillery wastewater[J]. Environmental Science: Water Research and Technology, 2020, 6: 1880-1889.

      Research progress of anaerobic co-digestion of winery waste and residue activated sludge

      Yu Lifang1, Wang Ze1, Ma Zhixuan1, Fan Ye1, Jiang Rui1, Yang Jiayi1, Zheng Lanxiang2,3

      (1.,,710055,; 2.,,750021,; 3.,750021,)

      Anaerobic digestion has been widely used in the disposal of various industrial wastes. However, the load shock and microbial loss have been caused by the high chemical oxygen demand (COD) content, low pH, and seasonal production of winery waste. Meanwhile, the low methane production efficiency cannot fully meet the requirements, particularly for the complex components and low hydrolysis rate of the waste activated sludge. Anaerobic co-digestion (AcoD) can be expected to serve a pivotal disposal way for the winery waste and waste activated sludge, due to the balance nutrients, loss inhibitory effects, high microbial synergy, and methane production. A systematic review was made on the research progress in the AcoD process of the wine wastewater and waste activated sludge. Two systems were selected as the wine wastewater and waste activated sludge, as well as the wine solid waste and waste activated sludge. The main factors of two systems were summarized in the AcoD performance. The wine wastewater was mainly from the processes, such as pressing, pouring, filtering, and cleaning. At the same time, there were also the high COD content, low carbon/nitrogen (C/N) ratio, high generation, and seasonal production. Thus, the optimal mixing ratio was performed to determine the suitable contents of nutrients and C/N ratio. An investigation was also made on the impact of the short-term, large-scale high-concentrations wastewater in the AcoD system during the picking seasons (9~11). Three types of substances were consists of the unfermented juice residues (stems) sediments after fermentation (waste yeast), and filters (diatomaceous earth) in the wine lees, which was the main solid waste in the winery production process. Wine lees were characterized by the low pH, low C/N ratio, high total solids, as well as the high-concentrations of K+ and polyphenols. Generally, the hydrolysis was considered as the rate-limiting step for the WAS in the AcoD process. The approach was applied to raise the temperature for the better hydrolysis and solubilization of organic components. The impact of multiple toxic substances were investigated in the AcoD system. The accumulated antibiotics and heavy metals were considered as the negative for the microbes. Secondly, a summary was made on the ethanol-based direct interspecies electron transfer in the AcoD. The extracellular electron transfer system (EET) was involved two main types of mechanisms: the mediated interspecies electron transfer (MIET) and direct interspecies electron transfer (DIET) in the anaerobic digestion. Compared with the MIET, the DIET was considered to be a more efficient electron transfer pathway through the cell components (e-pili or cytochrome OmcS) without relying on the electron carriers. Although the DIET between the bacteria and methanogens was difficult to establish in the conventional anaerobic digestion system, the establishment of DIET can be promoted by adding ethanol or cooperating with the carbon-based materials. Ethanol was set as the substrate in the AcoD system functions, as the precursor to stimulate DIET by enriching the electroactive microbes for the co-digesting complex organic wastes. Therefore, the ethanol was widely applied as the electron donor in the presence of carbon-based materials to induce the DIET. The carbon-based materials presented the high conductivity to promote the DIET, in order to accelerate the substrates degradation for the less enrichment time of functional microbes. Ultimately, the omics technologies were used as the community-substrate metabolic coupling of the AcoD system. The finding can provide a strong reference to clarify the methanogenesis metabolic pathway for the co-digestion models, in order to characterize the metabolic kinetics in the AcoD process.

      wastes; sludge; anaerobic co-digestion; ethanol; direct interspecies electron transfer

      10.11975/j.issn.1002-6819.2022.20.023

      X7

      A

      1002-6819(2022)-20-0199-10

      于莉芳,王澤,馬芷萱,等. 葡萄酒生產(chǎn)廢棄物與剩余污泥厭氧共消化研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(20):199-208.doi:10.11975/j.issn.1002-6819.2022.20.023 http://www.tcsae.org

      Yu Lifang, Wang Ze, Ma Zhixuan, et al. Research progress of anaerobic co-digestion of winery waste and residue activated sludge[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(20): 199-208. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.20.023 http://www.tcsae.org

      2022-08-19

      2022-10-05

      國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFD1002500);陜西省教育廳重點(diǎn)科學(xué)研究計(jì)劃項(xiàng)目(22JT024)

      于莉芳,博士,副教授,主要研究方向?yàn)閺U水生物處理。Email:yulifang@xauat.edu.cn

      猜你喜歡
      產(chǎn)甲烷菌產(chǎn)甲烷乙酸
      乙醇和乙酸常見考點(diǎn)例忻
      玉米淀粉水解液的制備及對油藏中產(chǎn)甲烷菌的激活
      基于GenBank中16S rRNA分析的產(chǎn)甲烷菌的地域分布特征
      農(nóng)藝措施對稻田土壤產(chǎn)甲烷菌的影響研究進(jìn)展
      DMAC水溶液乙酸吸附分離過程
      乙酸仲丁酯的催化合成及分析
      零級動(dòng)力學(xué)模型產(chǎn)甲烷量估算值與實(shí)測值的比較研究
      普通一級模型產(chǎn)甲烷量估算
      丙烯酸鹽及對甲苯磺酸鹽對乙酸、丙酸產(chǎn)甲烷活性的影響
      未培養(yǎng)技術(shù)在瘤胃產(chǎn)甲烷菌群研究中的應(yīng)用
      水富县| 类乌齐县| 塔城市| 临猗县| 库车县| 英超| 棋牌| 香港| 开封市| 汶川县| 青岛市| 迁安市| 陇南市| 玛曲县| 屯昌县| 株洲县| 府谷县| 司法| 大渡口区| 正蓝旗| 永新县| 凉城县| 会昌县| 紫云| 静宁县| 大荔县| 育儿| 鄄城县| 礼泉县| 台北市| 轮台县| 鄂托克前旗| 宝山区| 芜湖市| 十堰市| 宁晋县| 搜索| 古田县| 潼南县| 偏关县| 缙云县|