王晨陽,胡冰艷,李雨晴,寇忠云,李愛赟,李 倩,龐衛(wèi)軍
非接觸式測(cè)溫鑒定母豬典型生理狀態(tài)
王晨陽1,胡冰艷1,李雨晴1,寇忠云1,李愛赟2,李 倩2,龐衛(wèi)軍1※
(1. 西北農(nóng)林科技大學(xué)動(dòng)物科技學(xué)院,楊凌 712100;2. 陽晨牧業(yè)股份有限公司,安康 725000)
體溫是衡量母豬發(fā)情與否的關(guān)鍵生理指標(biāo)。母豬發(fā)情期與間情期體溫的明顯不同,是運(yùn)用紅外熱成像監(jiān)測(cè)母豬體溫變化以鑒定母豬發(fā)情的依據(jù)。該研究基于Y3TB01體溫篩查智能攝像機(jī)和紅外熱像儀C3實(shí)時(shí)非接觸拍攝母豬紅外熱圖像,并運(yùn)用圖像分析技術(shù)獲取體溫,為非接觸式測(cè)溫用于鑒定母豬典型生理狀態(tài)提供支持。試驗(yàn)以空懷期、發(fā)情期、妊娠1~8 d和妊娠9~16 d大白初產(chǎn)和經(jīng)產(chǎn)母豬共720頭為研究對(duì)象,利用紅外設(shè)備和電子體溫計(jì)分別測(cè)量母豬的眼睛、耳、耳蝸、乳房、外陰、臀部和直腸溫度,篩選不同胎次發(fā)情母豬和返情母豬的體表關(guān)鍵部位溫度,進(jìn)行差異分析。結(jié)果表明:運(yùn)用Y3TB01體溫篩查智能攝像機(jī)可以代替直腸溫度測(cè)定,準(zhǔn)確監(jiān)測(cè)母豬體表溫度(相關(guān)系數(shù)為0.973);紅外熱像儀C3檢測(cè)體溫異常母豬的體表溫度,臀部溫度可以作為篩選大白初產(chǎn)發(fā)情母豬和返情母豬的測(cè)定部位(準(zhǔn)確率分別為77%和72%),外陰溫度可以作為篩選大白經(jīng)產(chǎn)發(fā)情母豬和返情母豬的測(cè)定部位(準(zhǔn)確率分別為88%和81%)。因此,Y3TB01體溫篩查智能攝像機(jī)和紅外熱像儀C3配套技術(shù)能準(zhǔn)確監(jiān)測(cè)母豬體溫和異常體溫報(bào)警,明確不同胎次不同生理時(shí)期大白母豬體表部位溫度和體溫分布,準(zhǔn)確鑒定出發(fā)情母豬和返情母豬。研究為非接觸式測(cè)溫鑒定母豬發(fā)情技術(shù)提供了科學(xué)依據(jù),對(duì)規(guī)?;i場(chǎng)母豬的飼養(yǎng)管理與疫情防控具有重要意義。
溫度;動(dòng)物;母豬;非接觸測(cè)量;發(fā)情鑒定;紅外熱像儀
體溫是鑒定母豬發(fā)情和疾病診斷的關(guān)鍵生理指標(biāo),研究發(fā)現(xiàn)不同胎次和不同生理時(shí)期的母豬體溫呈規(guī)律性變化[1-2],因此,掌握不同生理時(shí)期母豬的體溫分布規(guī)律,才能更準(zhǔn)確鑒定出發(fā)情母豬,從而提高豬場(chǎng)的經(jīng)濟(jì)效益[3-5]。目前鑒定發(fā)情母豬的主要方法為外部觀察法、公豬試情法和人工試情法[6-9],但由于工作量大、時(shí)間長(zhǎng)和動(dòng)物應(yīng)激反應(yīng)等缺點(diǎn),不適合在規(guī)?;i場(chǎng)普及[10]。
在非洲豬瘟和新冠疫情防控常態(tài)化的背景下,快速診斷和非接觸測(cè)量生豬個(gè)體信息是保障豬場(chǎng)生物安全的有效手段[11-12]。紅外非接觸測(cè)量母豬體溫時(shí),不需要對(duì)豬進(jìn)行保定,從而避免了人與豬的接觸。該技術(shù)通過實(shí)時(shí)監(jiān)測(cè)體溫可以發(fā)現(xiàn)異常豬并進(jìn)行診斷,有利于減少傳染性疾病的爆發(fā),對(duì)保障豬場(chǎng)生物安全具有重要意義[13-15]。
通過紅外熱像儀(Infrared Thermography,IRT)非接觸測(cè)量母豬體表部位溫度,并通過建立體表部位溫度與直腸溫度的相關(guān)性模型,可以有效評(píng)估豬的直腸溫度和生理狀況[16]。Bai等[17]通過IRT測(cè)量母豬的眼睛、乳房、耳蝸、耳和外陰的溫度,分析其與直腸溫度的相關(guān)性,發(fā)現(xiàn)乳房和外陰溫度與直腸溫度的相關(guān)性最高,可以作為母豬體表溫度監(jiān)測(cè)的核心區(qū)域。Schmid等[18]研究發(fā)現(xiàn)大腿內(nèi)側(cè)和腹部溫度與核心溫度的相關(guān)性最高(0.60≤≤0.62;<0.01)。Tabuaciri等[19]通過IRT測(cè)量仔豬的耳朵溫度,發(fā)現(xiàn)仔豬右耳基部的最高溫度與直腸溫度相關(guān)性(=0.88)大于耳朵基部平均溫度與直腸溫度相關(guān)性(=0.85)。上述研究中用IRT測(cè)量豬單一體表部位溫度代替直腸溫度取得很好的效果,但用手持IRT鑒定母豬典型生理狀態(tài)效率低,又會(huì)增加豬場(chǎng)的生物安全風(fēng)險(xiǎn),不符合規(guī)?;?、集約化的豬場(chǎng)發(fā)展理念[20-22]。因此,急需尋找可替代解決方案。
針對(duì)上述問題,本研究提出采用Y3TB01體溫篩查智能攝像機(jī)和菲力爾紅外熱像儀C3(FLIR Infrared Thermography -C3,IRT-C3)非接觸測(cè)溫鑒定母豬典型生理狀態(tài)的方法。Y3TB01體溫篩查智能攝像機(jī)用于監(jiān)測(cè)母豬的體表最高溫度來代替直腸溫度,Y3TB01體溫篩查智能攝像機(jī)App顯示篩查次數(shù)、母豬異常體溫的次數(shù)、母豬圖像及體溫?cái)?shù)據(jù),可準(zhǔn)確篩出體溫異常的母豬。同時(shí),IRT-C3測(cè)量空懷期、發(fā)情期和妊娠早期的母豬的眼睛、耳、耳蝸、乳房、外陰和臀部體表部位的溫度分布,并進(jìn)行差異分析,可篩選出鑒定體溫異常的母豬的典型生理狀態(tài)的體表關(guān)鍵部位,提高紅外測(cè)溫鑒定發(fā)情母豬和返情母豬的準(zhǔn)確率,也為該方法在規(guī)?;i場(chǎng)推廣應(yīng)用提供技術(shù)支持。
試驗(yàn)在西北農(nóng)林科技大學(xué)畜牧教學(xué)試驗(yàn)基地開展,在陜西省安康市秦陽晨原種豬有限公司進(jìn)行母豬大群體驗(yàn)證,主要完成非接觸測(cè)溫鑒定大白母豬典型生理狀態(tài)的研究。選取空懷期(Weaned phase,WP)、發(fā)情期(Estrus phase,EP)、妊娠1~8 d(Pregnancy 1~8 d,BP1~8)和妊娠9~16 d(Pregnancy 9~16 d,BP9~16)大白初產(chǎn)母豬和經(jīng)產(chǎn)母豬共720頭,利用紅外設(shè)備和電子體溫計(jì)分別測(cè)量母豬的眼睛、耳、耳蝸、乳房、外陰、臀部最高溫度、平均溫度和直腸溫度。
試驗(yàn)儀器和設(shè)備主要包括:Y3TB01體溫篩查智能攝像機(jī)(精度±0.3 ℃)、IRT-C3(分辨率<0.10 ℃、視角度441°×31°、精度±2%)、電子體溫計(jì)(精度±0.1 ℃)、尚農(nóng)SN5000獸用B超和艾沃斯高精度風(fēng)速儀H8(精度±1.5 ℃)。
1.3.1 環(huán)境因素
使用艾沃斯高精度風(fēng)速儀H8測(cè)量拍攝紅外圖像數(shù)據(jù)時(shí)的空氣溫度、相對(duì)濕度及空氣風(fēng)速。測(cè)定高度距離豬背部0.5 m,測(cè)定時(shí)間為每天08:00—12:00和14:30—17:30。使用豬舍溫控系統(tǒng)監(jiān)測(cè)豬舍溫度,采用風(fēng)機(jī)、水簾調(diào)節(jié)豬舍溫濕度,確保試驗(yàn)期間豬舍溫度維持在20~28 ℃。
1.3.2 母豬直腸溫度
使用電子體溫計(jì)測(cè)量母豬直腸溫度。測(cè)量前,用75%酒精對(duì)電子體溫計(jì)探頭消毒,檢查電子體溫計(jì)測(cè)量溫度是否準(zhǔn)確,前5頭母豬測(cè)量3次直腸溫度,每次測(cè)量都需要取出電子體溫計(jì)探頭,重新插入生豬肛門,若3次體溫測(cè)量結(jié)果相差很小,證明電子體溫計(jì)正常。測(cè)溫時(shí),將電子體溫計(jì)插入生豬肛門6~8 cm,避免插入糞便,測(cè)量過程中保持電子體溫計(jì)與豬體平行,聽到蜂鳴提示音取出電子體溫計(jì),完成測(cè)溫。
1.3.3 母豬體表關(guān)鍵部位溫度
用IRT-C3(距離母豬5~30 cm)拍攝初產(chǎn)母豬和經(jīng)產(chǎn)母豬WP、EP、BP1~8和BP9~16眼睛、耳、耳蝸、乳房、外陰和臀部紅外圖像。使用IRT-C3電腦軟件分析紅外熱圖像選中區(qū)域的最大值、平均值、最小值和區(qū)域大小。
1.3.4 鑒定早期妊娠母豬
前期記錄好發(fā)情母豬耳標(biāo)號(hào)和配種記錄,在下一個(gè)發(fā)情時(shí)期,技術(shù)員查情,若有返情母豬,做好返情記錄。使用尚農(nóng)SN5000獸用B超做孕檢,在配種21~28 d進(jìn)行第1次測(cè)孕,配種35~40 d進(jìn)行復(fù)測(cè),進(jìn)一步確定是否妊娠,若有空懷母豬,做好標(biāo)記和前期數(shù)據(jù)更改。針對(duì)試驗(yàn)過程中配種3次還未妊娠的母豬,做好淘汰標(biāo)記;針對(duì)配種成功的母豬,由于各種原因在配種1~18 d流產(chǎn),也要做好標(biāo)記和前期數(shù)據(jù)更改。
使用Microsoft Excel初步整理和分析試驗(yàn)數(shù)據(jù),采用SPSS 21.0版本進(jìn)行對(duì)數(shù)據(jù)的正態(tài)性和方差齊性檢驗(yàn),將不符合數(shù)據(jù)進(jìn)行反正弦矯正,再對(duì)數(shù)據(jù)進(jìn)行獨(dú)立樣本T檢驗(yàn)和單因素方差分析。Person進(jìn)行相關(guān)性分析,試驗(yàn)結(jié)果為平均值±標(biāo)準(zhǔn)誤表示,Graph Pad Prim 9.0進(jìn)行作圖。
2.1.1 不同角度母豬體表溫度
Y3TB01體溫篩查智能攝像機(jī)監(jiān)測(cè)不同角度母豬體表溫度如圖1所示。Y3TB01體溫篩查智能攝像機(jī)分別從俯視、平視、側(cè)視和俯視30°~45°測(cè)量母豬體表溫度,體表溫度分別為38.34、38.34、38.54和38.44℃,不同角度母豬體表溫度相差0.2℃。后期試驗(yàn)為了測(cè)量方便,選擇俯視30°~45°測(cè)量。
圖1 Y3TB01體溫篩查智能攝像機(jī)監(jiān)測(cè)不同角度母豬體表溫度
2.1.2 不同距離母豬體表溫度
Y3TB01體溫篩查智能攝像機(jī)監(jiān)測(cè)不同距離母豬體表溫度如圖2所示。在Y3TB01體溫篩查智能攝像機(jī)測(cè)溫有效距離1.5 m內(nèi),分別距離1.4、1.2、1.0和0.8 m測(cè)量母豬體表溫度,不同距離母豬體表溫度均為38.44℃。為了保證試驗(yàn)過程中母豬不接觸到Y(jié)3TB01體溫篩查智能攝像機(jī)和測(cè)量結(jié)果準(zhǔn)確性,后期試驗(yàn)選擇1.2~1.4 m測(cè)量。
2.1.3 不同姿勢(shì)母豬體表溫度
Y3TB01體溫篩查智能攝像機(jī)監(jiān)測(cè)不同姿勢(shì)母豬體表溫度如圖3所示。Y3TB01體溫篩查智能攝像機(jī)分別在母豬平躺、站立、頭向前和臀部向前不同姿勢(shì)監(jiān)測(cè)體表溫度,分別為38.44、38.44、38.34和38.34℃,母豬不同姿勢(shì)體溫相差0.1 ℃。
圖2 Y3TB01體溫篩查智能攝像機(jī)監(jiān)測(cè)不同距離母豬體表溫度
圖3 Y3TB01體溫篩查智能攝像機(jī)監(jiān)測(cè)不同姿勢(shì)母豬體表溫度
2.1.4 不同時(shí)間母豬體表溫度
Y3TB01體溫篩查智能攝像機(jī)監(jiān)測(cè)不同時(shí)間母豬體表溫度如圖4所示。Y3TB01體溫篩查智能攝像機(jī)在4個(gè)連續(xù)5 s時(shí)間點(diǎn)監(jiān)測(cè)母豬體表溫度變化,體表溫度分別為38.44、38.44、38.44和38.34℃,4個(gè)連續(xù)時(shí)間點(diǎn)體表溫度相差0.1 ℃。表明該設(shè)備能持續(xù)穩(wěn)定地監(jiān)測(cè)母豬體表溫度,也能滿足在規(guī)?;i場(chǎng)軌道式智能巡檢設(shè)備測(cè)溫時(shí)間的要求。
圖4 Y3TB01體溫篩查智能攝像機(jī)監(jiān)測(cè)不同時(shí)間母豬體表溫度
2.1.5 Y3TB01體溫篩查智能攝像機(jī)監(jiān)測(cè)異常豬體溫界面
Y3TB01體溫篩查智能攝像機(jī)監(jiān)測(cè)豬體溫界面如圖5所示。當(dāng)豬第1次出現(xiàn)在感興趣區(qū)域會(huì)被識(shí)別(圖5a),同時(shí)豬體表溫度被監(jiān)測(cè),體溫監(jiān)測(cè)結(jié)果顯示于Y3TB01體溫篩查智能攝像機(jī)App界面;當(dāng)豬體溫異常時(shí),Y3TB01體溫篩查智能攝像機(jī)App會(huì)抓拍豬圖像并記錄體溫?cái)?shù)據(jù),推送報(bào)警信息,如圖5b所示。
圖5 Y3TB01體溫篩查智能攝像機(jī)監(jiān)測(cè)豬體溫界面
2.1.6 Y3TB01體溫篩查智能攝像機(jī)測(cè)量溫度與直腸溫度的相關(guān)性分析
隨機(jī)選取同一批次90頭母豬,使用Y3TB01體溫篩查智能攝像機(jī)和電子體溫計(jì)分別對(duì)母豬體表溫度和直腸溫度進(jìn)行測(cè)量,二者呈現(xiàn)線性關(guān)系(相關(guān)系數(shù)為0.973),決定系數(shù)(2)為0.948?2,<0.01,表明直腸溫度和體表溫度存在極顯著的線性正相關(guān)(圖6),母豬的體表溫度為(38.40±0.03) ℃,直腸溫度(38.51±0.03) ℃。
圖6 體表溫度與直腸溫度的回歸分析
2.2.1 大白母豬體表關(guān)鍵部位紅外圖
試驗(yàn)選取大白母豬熱窗區(qū)域和非熱窗區(qū)域6個(gè)測(cè)試部位,分別為眼睛、耳、耳蝸、乳房、外陰和臀部區(qū)域,如圖7所示。
2.2.2 大白初產(chǎn)母豬體表部位溫度變化
表1和表2分別為IRT-C3測(cè)量大白初產(chǎn)母豬關(guān)鍵體表部位最高溫度、平均溫度及體溫。由表1和表2可知,大白初產(chǎn)母豬發(fā)情體溫約為38.80 ℃,耳與乳房最高溫度及體溫在BP9~16達(dá)到妊娠早期最低值,且眼睛、耳和乳房平均溫度在BP9~16值最低;眼睛、耳蝸、外陰及臀部最高溫度在BP1~8達(dá)到最低值,耳蝸、外陰及臀部平均溫度在BP1~8達(dá)到最低值。WP到EP,臀部最高溫度變化-1.01 ℃,臀部平均溫度變化-0.94 ℃,體溫變化-0.52 ℃;WP與BP1~8相比,臀部最高溫度變化0.39 ℃,臀部平均溫度變化0.64 ℃,體溫變化0.07 ℃;WP到BP9~16,體溫變化0.11 ℃。由IRT-C3測(cè)量大白初產(chǎn)母豬關(guān)鍵體表部位溫度可得,臀部溫度可作為篩選大白初產(chǎn)發(fā)情母豬和返情母豬的測(cè)定部位。
圖7 大白母豬關(guān)鍵部位紅外圖
表1 IRT-C3測(cè)量大白初產(chǎn)母豬關(guān)鍵體表部位最高溫度及體溫
注:小寫字母表示母豬相同部位不同時(shí)期的溫度差異顯著。下同。
Note: Lowercase letters indicate the significant differences in temperature between the same site of sows at different periods. The same as below.
表2 IRT-C3測(cè)量大白初產(chǎn)母豬關(guān)鍵體表部位平均溫度
2.2.3 大白經(jīng)產(chǎn)母豬體表部位溫度變化
表3、表4分別為IRT-C3測(cè)量大白經(jīng)產(chǎn)母豬關(guān)鍵體表部位最高溫度、平均溫度及體溫。由表3和表4可知,大白經(jīng)產(chǎn)母豬發(fā)情體溫約為38.80 ℃,耳、乳房、外陰、臀部最高溫度和體溫在BP 9~16達(dá)到最低值,耳、乳房、臀部平均溫度在BP 9~16達(dá)到最低值,眼睛和耳蝸?zhàn)罡邷囟仍贐P1~8達(dá)到最低值,眼睛、耳蝸和外陰平均溫度在BP1~8達(dá)到最低值。WP到EP,乳房最高溫度變化-1.09 ℃,乳房平均溫度變化-1.29 ℃,外陰最高溫度變化-1.32 ℃,外陰平均溫度變化-1.47 ℃,臀部最高溫度變化-0.57 ℃,臀部平均溫度變化-0.62 ℃,體溫變化-0.39 ℃;WP與BP9~16溫差,乳房最高溫度變化3.09 ℃,乳房平均溫度變化3.18 ℃,外陰最高溫度變化2.10 ℃,外陰平均溫度變化2.57 ℃,臀部最高溫度變化0.97 ℃,臀部平均溫度變化1.02 ℃,體溫變化0.27 ℃。由IRT-C3測(cè)量大白經(jīng)產(chǎn)母豬關(guān)鍵體表部位溫度可得,乳房最高溫度和平均溫度變化最大,但乳房溫度易受到漏糞地板的影響。因此,外陰溫度可以作為篩選大白經(jīng)產(chǎn)發(fā)情母豬和返情母豬的測(cè)定部位。
表3 IRT-C3測(cè)量大白經(jīng)產(chǎn)母豬關(guān)鍵體表部位最高溫度及體溫
表4 IRT-C3測(cè)量大白經(jīng)產(chǎn)母豬關(guān)鍵體表部位平均溫度
2.2.4 IRT-C3測(cè)量大白發(fā)情母豬和返情母豬的準(zhǔn)確率
表5為IRT-C3測(cè)量大白發(fā)情母豬和返情母豬的準(zhǔn)確率。由表5可知,IRT-C3測(cè)溫鑒定發(fā)情母豬和返情母豬,大白初產(chǎn)母豬檢測(cè)準(zhǔn)確率分別為77%和72%;大白經(jīng)產(chǎn)母豬檢測(cè)準(zhǔn)確率分別為88%和81%。
表5 IRT-C3測(cè)量大白發(fā)情母豬和返情母豬的準(zhǔn)確率
由于豬體表部位血管分布、被毛密度和脂肪厚度等差異,把豬體表部位分為熱窗區(qū)域和非熱窗區(qū)域[23]。前人研究表明,熱窗區(qū)域溫度與直腸溫度相關(guān)性更高,通過IRT非接觸測(cè)量熱窗區(qū)域溫度評(píng)估直腸溫度具有重要研究意義。然而,少有研究挖掘通過IRT非接觸測(cè)量非熱窗區(qū)域溫度來識(shí)別母豬典型生理時(shí)期的潛力[24-26]。在IRT測(cè)溫鑒定母豬發(fā)情方面,Weng等[27]用紅外溫度計(jì)從母豬斷奶第4天到第7天測(cè)量外陰、乳房、耳和背部中央皮膚溫度,外陰皮膚溫度比乳房皮膚溫度高0.5 ℃,非熱窗區(qū)域(外陰)的溫度可以作為鑒定母豬發(fā)情的關(guān)鍵部位。本研究也證實(shí)這一個(gè)觀點(diǎn),但本研究基于WP和EP測(cè)試的豬體6個(gè)關(guān)鍵部位體表溫度和直腸溫度進(jìn)行差異分析,篩出空懷期到發(fā)情期的母豬體表溫度變化最大的部位。用IRT-C3檢測(cè)體溫異常的母豬體表溫度變化最大的部位來鑒定發(fā)情母豬,進(jìn)而在下一個(gè)發(fā)情期前鑒定出發(fā)情母豬,因此可縮短母豬非生產(chǎn)時(shí)間。通過文中分析可知,與大白初產(chǎn)母豬體表溫度相比,大白經(jīng)產(chǎn)母豬WP到EP體表外陰溫度變化明顯(表3、表4),更有利于通過IRT-C3測(cè)溫鑒定發(fā)情母豬。在IRT測(cè)溫鑒定妊娠母豬方面,孟祥雪[28]利用IRT檢測(cè)發(fā)情母豬和妊娠母豬的非熱窗區(qū)域(外陰和臀部)的體表溫度,發(fā)情母豬外陰和臀部體表最高溫度與妊娠母豬體表最高溫度存在顯著性差異,利用臀部和外陰的體表溫度可以把妊娠母豬和發(fā)情母豬區(qū)別。與本研究的結(jié)果基本一致,但考慮到生產(chǎn)實(shí)際問題,對(duì)發(fā)情母豬進(jìn)行人工授精,B型超聲診斷儀在配種18 d后才能檢測(cè)到孕囊,由于羊水太少,技術(shù)人員經(jīng)驗(yàn)誤差等原因,容易造成誤判。技術(shù)員一般在配種27 d和配種35 d左右分別進(jìn)行孕檢,而母豬發(fā)情周期平均為21 d,不能在下一個(gè)發(fā)情期鑒定出返情母豬,從而導(dǎo)致母豬非生產(chǎn)時(shí)間增加[29-30]。因此,為了確保配種成功,需對(duì)妊娠早期和空懷時(shí)期的母豬體表測(cè)試部位溫度進(jìn)行差異分析,篩出妊娠早期的母豬差異體表溫度部位,有利于鑒定出返情母豬[31]。本試驗(yàn)條件下,對(duì)WP和BP1~8或BP9~16母豬體表測(cè)試部位溫度進(jìn)行差異分析,相對(duì)大白初產(chǎn)母豬體表溫度,大白經(jīng)產(chǎn)母豬WP與BP9~16體表外陰溫度變化大,更有利于通過IRT-C3測(cè)溫鑒定返情母豬??傊?,WP到EP比WP與BP1~8或BP9~16的體表溫度變化大,通過IRT測(cè)溫鑒定發(fā)情母豬比返情母豬準(zhǔn)確率高。
本研究探討了使用Y3TB01體溫篩查智能攝像機(jī)和IRT-C3非接觸測(cè)溫鑒定母豬典型生理狀態(tài)的可行性。盡管該方法可篩選鑒定體溫異常的發(fā)情母豬,但影響豬體溫的因素較多,比如環(huán)境、疾病和爭(zhēng)斗等,僅通過檢測(cè)母豬體溫鑒定發(fā)情,準(zhǔn)確率不高。此外,母豬發(fā)情還具有行為和生理特征表現(xiàn),比如遇到公豬表現(xiàn)呆立反射、互相爬跨和分泌粘液等,因此,結(jié)合公豬外激素刺激母豬,綜合研判母豬體溫變化和行為表征將是團(tuán)隊(duì)下一步研發(fā)重點(diǎn),能更精準(zhǔn)的鑒定發(fā)情母豬。
本研究針對(duì)現(xiàn)有紅外測(cè)溫鑒定母豬典型生理狀態(tài)方法的問題,研發(fā)了一種基于Y3TB01體溫篩查智能攝像機(jī)監(jiān)測(cè)母豬體溫和IRT-C3檢測(cè)體溫異常母豬體表關(guān)鍵部位溫度的方法來鑒定母豬典型生理狀態(tài)。
本文方法可以代替直腸溫度測(cè)定,準(zhǔn)確監(jiān)測(cè)母豬體表溫度(相關(guān)系數(shù)為0.973)。應(yīng)用本文所提的方法在鑒定母豬發(fā)情和返情母豬方面可得,大白初產(chǎn)和經(jīng)產(chǎn)發(fā)情母豬體溫約為38.80 ℃,臀部溫度可以作為鑒定大白初產(chǎn)發(fā)情母豬和返情母豬的測(cè)定部位(準(zhǔn)確率分別為77%和72%),外陰溫度可以作為鑒定大白經(jīng)產(chǎn)發(fā)情母豬和返情母豬的測(cè)定部位(準(zhǔn)確率分別為88%和81%)。綜上所述,本研究為紅外測(cè)溫鑒定母豬典型生理狀態(tài)提供了一種可靠方法,也為紅外測(cè)溫鑒定母豬發(fā)情的技術(shù)在規(guī)?;i場(chǎng)的應(yīng)用奠定了良好基礎(chǔ)。
[1] 陳光吉. 母豬的發(fā)情與發(fā)情鑒定[J]. 吉林畜牧獸醫(yī),2016,37(3):26-28.
Chen Guangji. Estrus and estrus identification of sows[J]. Jilin Animal Husbandry and Veterinary Medicine, 2016, 37(3): 26-28. (in Chinese with English abstract)
[2] 謝秋菊,劉學(xué)飛,鄭萍,等.畜禽體溫自動(dòng)監(jiān)測(cè)技術(shù)及應(yīng)用研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(15):212-225.
Xie Qiuju, Liu Xuefei, Zheng Ping, et al. Research progress of automatic temperature monitoring of livestock and poultry and application[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2022, 38(15): 212-225. (in Chinese with English abstract)
[3] 孟珍琪. 基于紅外技術(shù)的生豬體溫自動(dòng)檢測(cè)的研究[D]. 天津:天津農(nóng)學(xué)院,2018.
Meng Zhenqi. Research on Automatic Temperature Detection of Live Pigs Based on Infrared Technology[D]. Tianjin: Tianjin Agricultural College, 2018. (in Chinese with English abstract)
[4] 王凱,劉春紅,段青玲. 基于MFO-LSTM的母豬發(fā)情行為識(shí)別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(14):211-219.
Wang Kai, Liu Chunhong, Duan Qingling. Estrus behavior recognition of sows based on MFO-LSTM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(14): 211-219. (in Chinese with English abstract)
[5] Feng Y Z, Zhao H T, Jia G F, et al. Establishment of validated models for non-invasive prediction of rectal temperature of sows using infrared thermography and chemometrics[J]. International Journal of Biometeorology, 2019, 63: 1405-1415.
[6] Krueger F, Knauf-Witzens T, Getto S. New approach in thermal pregnancy diagnosis: Teat's heating in babirusa (Babyrousa babyrussa)[J]. Theriogenology, 2019, 133: 144-148.
[7] Zheng S, Zhou C, Jiang X, et al. Progress on infrared imaging technology in animal production[J]. Sensors (Basel). 2022, 22(3): 705.
[8] 呂娜. 豬場(chǎng)母豬發(fā)情鑒定與人工授精技術(shù)[J]. 中國(guó)畜禽種業(yè),2020,16(9):146-147.
Lyu Na. Estrus identification and artificial insemination of sows in pig farms[J]. China Livestock and Poultry Breeding, 2020, 16(9): 146-147. (in Chinese with English abstract)
[9] 李文芝. 淺談母豬發(fā)情鑒定與適時(shí)配種[J]. 云南農(nóng)業(yè),2019(6):73-75.
Li Wenzhi. Discussion on estrus identification and timely breeding of sows[J]. Yunnan Agriculture, 2019(6): 73-75. (in Chinese with English abstract)
[10] 王曉潔. 母豬發(fā)情與鑒定[J]. 畜牧獸醫(yī)科學(xué),2021(12):30-31.
Wang Xiaojie. Estrus and identification of sows[J]. Animal Husbandry and Veterinary Science, 2021(12): 30-31. (in Chinese with English abstract)
[11] Tian L, Li Y, Wen T, et al. A quadruple protection procedure for resuming pig production in small-scale ASFV-positive farms in China[J]. Current Research in Microbial Sciences, 2020, 2: 100014.
[12] Tao D, Sun D, Liu Y, et al. One year of african swine fever outbreak in China[J]. Acta Trop, 2020, 211: 105602.
[13] 黃志文. 非洲豬瘟形勢(shì)下豬場(chǎng)的生物安全管理措施[J]. 獸醫(yī)導(dǎo)刊,2022(5):142-143.
Huang Zhiwen. Biosafety management measures in pig farms under african swine fever situation[J]. Veterinary Guide, 2022(5): 142-143. (in Chinese with English abstract)
[14] 秦永孝,王玉梁,高雪峰,等. 基于紅外設(shè)備的母豬發(fā)情狀態(tài)下體溫變化研究[J]. 畜牧獸醫(yī)學(xué)報(bào),2016,47(1):85-91.
Qin Yongxiao, Wang Yuliang, Gao Xuefeng, et al. Study on temperature change of sows in estrus state based on infrared equipment[J]. Chinese Journal of Animal Science and Veterinary Medicine, 2016, 47(1): 85-91. (in Chinese with English abstract)
[15] Chevalier S, Tourvieille J N, Sommier A, et al. Thermal camera-based fourier transform infrared thermospectroscopic imager[J]. Appl Spectrosc, 2021, 75: 462-474.
[16] Barbieri S, Talamonti Z, Nannoni E, et al. Use of thermography in pigs: Relationship between surface and core temperature[J]. Veterinaria Italiana, 2021, 57: 79-82.
[17] Bai J H, Qin Y S, Zhang S L, et al. A comparison of the reproductive performance in primiparous sows following two timed artificial insemination protocols[J]. Animal, 2021, 15(12): 100410.
[18] Schmid S M, Büscher W, Steinhoff-Wagner J. Suitability of different thermometers for measuring body core and skin temperatures in suckling piglets[J]. Animals (Basel), 2021, 11(4): 1004.
[19] Tabuaciri P, Bunter K L, Graser H U. Thermal imaging as a potential tool for identifying piglets at risk[J]. Reserach, 2016, 20: 35-38.
[20] Lee J H, Lee D H, Yun W, et al. Quantifiable and feasible estrus detection using the ultrasonic sensor array and digital infrared thermography[J]. Journal of Animal Science and Technology, 2019, 61(3): 163-169.
[21] Traulsen I, Naunin K, Mueller K, et al. Application of infrared thermography to measure body temperature of sows[J]. Zuchtungskunde, 2010, 82(6): 437-446.
[22] Mota-Rojas D, Wang D, Titto C G, et al. Pathophysiology of fever and application of infrared thermography in the detection of sick domestic animals[J]. Animals (Basel), 2021, 11(8): 2316.
[23] Cao M, Zong C, Zhuang Y, et al. Modeling of heat stress in sows part 2: Comparison of various thermal comfort indices[J]. Animals (Basel), 2021, 11(6): 1498.
[24] 肖德琴,林思聰,劉勤,等. 基于紅外熱成像的生豬耳溫自動(dòng)提取算法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(8):255-262.
Xiao Deqin, Lin Sicong, Liu Qin, et al. Automatic extraction algorithm of pig ear temperature based on infrared thermal imaging[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 255-262. (in Chinese with English abstract)
[25] Domino M, Borowska M, Koz?owska N, et al. Advances in thermal image analysis for the detection of pregnancy in horses using infrared thermography[J]. Sensors (Basel), 2021, 22(1): 191.
[26] 汪開英,趙曉洋,何勇. 畜禽行為及生理信息的無損監(jiān)測(cè)技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(20):197-209.
Wang Kaiying, Zhao Xiaoyang, He Yong. Advances in nondestructive monitoring of animal behavior and physiological information[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2017, 33(20): 197-209. (in Chinese with English abstract)
[27] Weng R C. Variations in the body surface temperature of sows during the post weaning period and its relation to subsequent reproductive performance[J]. Asian Australasian Journal of Animal Sciences, 2020, 33: 1138-1147.
[28] 孟祥雪. 紅外熱像儀在母豬皮溫現(xiàn)場(chǎng)檢測(cè)中的應(yīng)用[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2016.
Meng Xiangxue. Application of Infrared Thermography in Field Detection of Sow Skin Temperature[D]. Harbin: Northeast Agricultural University, 2016. (in Chinese with English abstract)
[29] 崔炳燦. 獸用B超進(jìn)行母豬妊娠診斷的要點(diǎn)及效益分析[J]. 畜牧獸醫(yī)雜志,2015,34(4):105-107.
Cui Bingcan. Key points and benefit analysis of B- ultrasound for sows pregnancy diagnosis[J]. Journal of Animal Science and Veterinary Medicine, 2015, 34(4): 105-107. (in Chinese with English abstract)
[30] Thilmant P, Maes D, Beckers J F, et al. Ultrasound measurements of uterine height, horns diameter and presence of intraluminal fluid to investigate uterine involution in lactating sows housed in farrowing crates[J]. Animal Reproduction Science, 2022; 19(3): e20210066.
[31] Farrar K L, Field A E, Norris S L, et al. Comparison of rectal and infrared thermometry temperatures in anesthetized swine (Sus scrofa)[J]. Journal of the American Association for Laboratory Animal Science, 2020, 59: 221-225.
Identification of the typical physiological state of sows by non-contact temperature measurement
Wang Chenyang1, Hu Bingyan1, Li Yuqing1, Kou Zhongyun1, Li Aiyun2, Li Qian2, Pang Weijun1※
(1.,,712100,;2.,725000,)
Body temperature is a key physiological indicator to monitor the disease and estrus in pigs. The estrus status of sows can be identified to assess the health status by the rectal temperature with a thermometer in the large-scale pig farms at present. However, traditional manual identification and temperature measurement cannot fully meet the high demand of large-scale production, particularly with the increase in labor costs under the harsh epidemic prevention and control level. Fortunately, infrared thermography can be expected to monitor the body temperature of sows for the identification of sows in estrus. It is obviously different in the body temperature of sows in estrus and interestrus. Specifically, the body temperature in estrus is significantly higher than that in interestrus. In this study, the non-contact temperature measurement was proposed to identify the typical physiological state of sows. A Y3TB01 smart camera was first used for body temperature screening. An infrared thermography camera C3 was then utilized to capture the infrared images of sows in real time. An image analysis software was finally selected to obtain the body surface temperature after the non-contact temperature measurement. A total of 720 primiparous and farrowing sows were used as the study objects in this case. The body surface and rectal temperatures were measured during the nulliparous period, estrus, 1-8, and 9-16 d of gestation. The body surface temperature of the sows was measured using infrared thermography equipment, ranging from the eyes, ears, cochlea, udder, vulva, and rump. An electronic thermometer was utilized to measure the temperature of the rectal area. A correlation analysis was then performed between the body surface and rectal temperature, in order to screen the key sites of estrus and return to estrus temperature in the sows of different litters. The results showed that better performance was achieved in the Y3TB01 smart camera of body temperature screening (correlation coefficient of 0.973), compared with the rectal temperature measurement. The body surface temperature of sows was also accurately monitored in real time. The infrared thermal camera C3 was used to detect the abnormal body surface temperature of sows. The different sites of the sows were determined in estrus and returned to estrus by infrared equipment and thermometer. The accuracy rates of the vulva measurement site were 88% and 81% in estrus and returning to estrus, respectively, whereas, those were only 77% and 72% in the rump measurement site, respectively. Overall, the combination of the Y3TB01 smart camera of body temperature screening and infrared thermal camera C3 accurately and rapidly monitored the body temperature of sows in real time. The Internet of Things was then integrated to transmit the data into the cell phone or computer terminal. The warning alarm of the abnormal body temperature was realized to monitor the health condition of pigs. In addition, the temperature distribution was obtained at the body surface sites of sows in different litters and periods. The finding can provide a scientific basis for the non-contact identification of sows in estrus and return to estrus, particularly for the intelligent feeding management and epidemic prevention and control of sows in large-scale pig farms.
temperature; animal;sow; non-contact measurement; estrus identification; infrared thermography
10.11975/j.issn.1002-6819.2022.20.017
S828.2
A
1002-6819(2022)-20-0149-07
王晨陽,胡冰艷,李雨晴,等. 非接觸式測(cè)溫鑒定母豬典型生理狀態(tài)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(20):149-155.doi:10.11975/j.issn.1002-6819.2022.20.017 http://www.tcsae.org
Wang Chenyang, Hu Bingyan, Li Yuqing. et al. Identification of the typical physiological state of sows by non-contact temperature measurement[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(20): 149-155. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.20.017 http://www.tcsae.org
2022-06-22
2022-09-13
國(guó)家生豬產(chǎn)業(yè)技術(shù)體系專項(xiàng)(CARS-35);陜西省重點(diǎn)研發(fā)項(xiàng)目(2022ZDLNY01-04)
王晨陽,研究方向?yàn)槟肛i發(fā)情鑒定與體尺測(cè)量。Email:1873529344@qq.com
龐衛(wèi)軍,教授,博士生導(dǎo)師,研究方向?yàn)橹悄芑B(yǎng)豬技術(shù)。Email:pwj1226@nwafu.edu.cn