丁宸旸,呂 新,韓小強,郝婷麗,麻向陽,劉世豪,田程程,劉尚昌,侯彤瑜
·農(nóng)業(yè)裝備工程與機械化·
機采棉種植模式對植保機械化學脫葉作業(yè)效果的影響
丁宸旸1,呂 新1,韓小強1,郝婷麗2,麻向陽1,劉世豪1,田程程1,劉尚昌1,侯彤瑜1※
(1. 石河子大學農(nóng)學院/新疆兵團綠洲生態(tài)農(nóng)業(yè)國家重點實驗室培育基地,石河子 832003;2. 石河子大學分析測試中心,石河子 832003)
種植模式優(yōu)化是實現(xiàn)新疆棉花高產(chǎn)優(yōu)質(zhì)的重要途經(jīng),但其對機采棉化學脫葉環(huán)節(jié)農(nóng)機農(nóng)藝融合的影響還不明確。該研究開展了“矮密早”(1膜6行,66 cm + 10 cm寬窄行,R6)、“寬早優(yōu)”(1膜3行,76 cm等行距,R3)2種機采棉種植模式下多旋翼植保無人機和自走式噴桿噴霧機2種植保機械的化學脫葉田間試驗,通過測定葉片尺度脫葉劑霧滴粒徑分布和沉積參數(shù),系統(tǒng)分析了不同種植模式和植保機械組合對棉花冠層脫葉劑霧滴沉積特性、行間地面霧滴損失以及最終脫葉效果的影響。結(jié)果表明無人機作業(yè)的霧滴粒徑分布、覆蓋率、沉積量及行間地面損失與噴霧機相比均有顯著差異(<0.01)。噴霧機和無人機作業(yè)的100~300m粒徑有效霧滴占比分別為2.60%和61.00%,無人機較噴霧機提高了58.40個百分點,霧滴粒徑分布更均勻;霧滴覆蓋率分別為42.05%和3.22%,噴霧機作業(yè)的霧滴覆蓋率是無人機的13倍;沉積量分別為0.49和0.69g/cm2,噴霧機作業(yè)的霧滴沉積量僅為無人機的71.00%,這是因為無人機噴霧具有高濃度、低容量的特點。噴霧機噴施后棉花冠層下部較冠層上部的霧滴覆蓋率和沉積量相對降低17.99%和17.63%,無人機作業(yè)后冠層下部的霧滴覆蓋率和沉積量較冠層上部相對降低35.45%和53.71%,說明無人機噴施的霧滴穿透性不足;噴霧機作業(yè)后行間地面霧滴沉積損失量為無人機的1.91倍。種植模式對霧滴沉積特性有顯著影響(<0.01),與“矮密早”相比,“寬早優(yōu)”模式冠層下部霧滴覆蓋度提高18.59個百分點(相對提高117.60%),變異系數(shù)降低43.73個百分點(相對降低43.83%);冠層下部霧滴沉積量提高0.33g/cm2(相對提高125.60%),變異系數(shù)降低31.63個百分點(相對降低36.00%),提高了霧滴的穿透性和均勻性。無人機二次噴施作業(yè)后,脫葉率在90%~94%間,滿足棉花機采作業(yè)要求。綜上,采用無人機進行化學脫葉作業(yè)霧滴粒徑分布合理但穿透性不足,而采用“寬早優(yōu)”模式可以改善無人機霧滴穿透性不足的問題,提升冠層內(nèi)霧滴分布均勻性,在滿足棉花機采對化學脫葉要求的前提下,降低作業(yè)過程對棉花生長和土壤環(huán)境的潛在影響。
植保機械;棉花;種植模式;霧滴沉積;化學脫葉
新疆是國內(nèi)最大的機采棉生產(chǎn)基地。在棉花機械采收前,需要噴施化學脫葉催熟劑促進棉葉快速脫落和棉鈴提前開裂,以減少棉纖維污染,提升機采效率[1]。脫葉劑的主要成分噻苯隆為非內(nèi)吸性藥劑[2-4],必須通過植保機械霧化噴施到葉面上才能有效發(fā)揮脫葉功能。然而,由于種植模式限制[5]、農(nóng)機農(nóng)藝融合度低[6]等問題導致化學脫葉效果差,棉纖維含雜率高,是當前新疆機采棉品質(zhì)提升的重要限制因素[5,7]。
快速發(fā)展的無人機與目前應(yīng)用最廣泛的噴霧機相比,不僅可以避免作業(yè)過程中由于植株和棉鈴機械損傷導致的棉花產(chǎn)量和品質(zhì)直接損失,而且在地形適應(yīng)性、作業(yè)時效性、節(jié)水節(jié)藥等方面也具有獨特優(yōu)勢[8-10],因此在將其應(yīng)用于機采棉脫葉劑噴施作業(yè)具有廣闊前景[11-12]。然而,由于其只能針對作物冠層頂部進行噴施作業(yè),霧滴在棉花冠層內(nèi)的穿透性及均勻性是否能夠滿足機采棉脫葉劑的噴施要求還不明確。有研究人員分析了無人機飛行高度、飛行速度、施藥量、施藥次數(shù)等對脫葉劑霧滴沉積特性和機采棉脫葉率、吐絮率及產(chǎn)量的影響,但是這些研究對近年來新疆機采棉種植模式的變化缺乏關(guān)注。
目前新疆機采棉普遍采用的“矮密早”種植模式(1膜6行,66 cm + 10 cm寬窄行,R6),雖然具有較好的產(chǎn)量表現(xiàn),但種植密度過大,果枝交叉纏繞導致化學脫葉效果差,機械采收籽棉葉屑含量高[13]。近年來,通過“擴行、降密、壯株和拓高”等方式對“矮密早”模式進行改進,推出了“寬早優(yōu)”種植模式(1膜3行,76 cm等行距,R3)。目前,研究人員針對“寬早優(yōu)”模式的冠層光能利用[13]、土壤水熱效應(yīng)[6]、產(chǎn)量表現(xiàn)和脫葉效率[14]等方面開展了一系列研究,但是對脫葉環(huán)節(jié)的農(nóng)機農(nóng)藝融合問題尚無報道。此外,種植模式對于作業(yè)過程中流失進入土壤的脫葉劑含量以及作業(yè)結(jié)束后最終的脫葉效果是否存在顯著影響,仍沒有明確結(jié)論。因此,本研究擬通過開展不同機采棉種植模式無人機和噴霧機化學脫葉作業(yè)田間試驗,在單葉和冠層尺度上對脫葉劑霧滴粒徑分布、沉積特性等進行測定,分析機采棉種植模式對化學脫葉作業(yè)效果的影響,以期為實現(xiàn)新疆機采棉化學脫葉的農(nóng)機農(nóng)業(yè)融合優(yōu)化提供參考。
在石河子大學農(nóng)試場(44°19′N,85°59′E,海拔:475 m)進行施藥機械和種植模式的二因素裂區(qū)田間試驗,其中植保機械為主區(qū),內(nèi)設(shè)電動多旋翼植保無人機噴施區(qū)(以下簡稱無人機)和地面拖拉機牽引式噴桿噴霧機噴施區(qū)(以下簡稱噴霧機)2個處理。每個主區(qū)內(nèi)設(shè)2個機采棉種植模式副區(qū),分別為目前新疆機采棉大田生產(chǎn)主流種植模式1膜3管3行(76 cm等行距,R3)和1膜3管6行(66 cm + 10 cm寬窄行,R6),每個副區(qū)均為15 m×50 m。試驗品種為新陸早54號,按新疆機采棉高產(chǎn)栽培技術(shù)進行管理。試驗設(shè)備參數(shù)如表1所示,試驗小區(qū)內(nèi)采樣點分布如圖1所示。
表1 脫葉劑噴施設(shè)備參數(shù)
1.2.1 脫葉劑霧滴采集
脫葉劑噴施之前(本文2021年9月3日,根據(jù)棉花吐絮狀況及當?shù)貧鉁貤l件綜合確定,具體見表2),在每個處理小區(qū)內(nèi)分別選取一個由2行×2列共4株生長發(fā)育狀態(tài)具有代表性的棉花群體冠層作為脫葉劑霧滴噴施效果測試點(圖1a)。為了精準測定棉花群體冠層內(nèi)每個葉片的脫葉劑霧滴截獲和沉積情況,將長11 cm×寬3 cm的標準水敏霧滴測試卡(六六山下,中國)裁剪為長2.5 cm×寬3 cm的長方形,用微型曲別針固定在脫葉劑霧滴測試點棉花群體冠層的每個葉片上(圖1b)。為了測定棉株冠層地面脫葉劑霧滴的損失情況,根據(jù)機采棉種植模式的不同,在測試點棉花群體冠層行間地面上距離待測植株不同位置處,分別放置7張標準水敏霧滴測試卡(圖1a)。
水敏霧滴測試卡安裝完成后立即進行脫葉劑噴施作業(yè)。試驗所用脫葉催熟試劑的成分和用量分別為:540 g/L噻苯·敵草隆懸浮劑180 mL/hm2(棉海,中國),280 g/L烷基乙基磺酸鹽助劑720 mL/hm2(棉海,中國);40%乙烯利水劑900 mL/hm2(安邦,中國)。其中無人機作業(yè)采用二次噴施[11],即在完成第一次噴施7 d后進行第二次噴施,第二次噴施除40%乙烯利水劑增加至1 200 mL/hm2外,其余藥劑和用量不變。無人機第一次施藥有效劑量為1 800 mL/hm2,第二次施藥有效劑量為2 100 mL/hm2,兩次藥劑成本為337.50元/hm2;噴霧機施藥的有效劑量為1 800 mL/hm2,一次施藥的藥劑成本為187.50元/hm2。作業(yè)時,噴霧機行走速度為2 m/s,藥液噴施量為450 L/hm2;無人機飛行速度為5 m/s,飛行高度為2.9 m(距地面),藥液噴施量為22.5 L/hm2。待作業(yè)完成后立即收集整理所有水敏霧滴測試卡并帶回實驗室進行掃描處理。
圖1 采樣點及水敏霧滴測試卡分布
1.2.2 霧滴沉積特性參數(shù)測定
將水敏霧滴測試卡帶回實驗室后立即采用高清掃描儀(惠普,美國)將其掃描為分辨率600 dpi的灰度圖像,并采用ImageJ專用圖像處理軟件(National Institutes of Health,美國)進行霧滴體積粒徑、霧滴覆蓋率(%)和霧滴沉積量(L/cm2)的提取[15]。在進行霧滴體積粒徑提取時,首先將霧滴所占據(jù)的像素數(shù)量還原為霧滴立體直徑和霧滴立體體積,并對所有霧滴按照估算的立體體積由小到大排列,分別選取立體體積累計分布為10%,50%和90%所表示的霧滴立體直徑(分別計為D0.1,D0.5和D0.9,m)進行霧滴粒徑分析。在進行霧滴沉積量分析前,根據(jù)脫葉劑有效成分的濃度將提取的霧滴沉積量(L/cm2)換算為有效成分沉積量(g/cm2)。
表2 化學脫葉作業(yè)時的棉花吐絮狀況、天氣狀況及施藥方案
1.2.3 理論最小沉積量
由于噴霧機噴施區(qū)內(nèi)棉株上層部分葉片的水敏霧滴測試卡上霧滴較大并融合成一片,導致霧滴覆蓋率大于30%,超過了ImageJ軟件能夠計算的霧滴沉積量閾值。針對這類測試卡,根據(jù)霧滴噴施在水敏霧滴測試卡上接觸角的變化規(guī)律[16],基于水敏霧滴測試卡上所有變色面積都為半飽和吸收的假設(shè),采用如下計算式計算理論最小沉積量(L/cm2):
式中為ImageJ軟件提取的霧滴覆蓋率,%;=0.1為單張標準水敏霧滴測試卡厚度,mm。
1.2.4 霧滴粒徑均勻性測定
采用霧滴譜寬度RS[17]表征經(jīng)噴頭霧化后霧滴粒徑的均勻性,其計算式為
霧滴譜寬度越小,霧滴粒徑越均勻[18]。
1.2.5 霧滴空間分布均勻性測定
采用變異系數(shù)(CV)表征棉花冠層不同葉片霧滴分布的均勻性,其計算式為
式中SD為霧滴覆蓋率(%)或沉積量(g/cm2)的標準差;為霧滴覆蓋率(%)或沉積量(g/cm2)的平均值;x為單個葉片的霧滴覆蓋率(%)或沉積量(g/cm2);為葉片個數(shù)。
1.2.6 棉花脫葉率
在每個處理小區(qū)內(nèi)選取10株生長發(fā)育狀態(tài)具有代表性的棉花植株,分別在脫葉劑噴施前及噴施20 d后統(tǒng)計每株棉花的葉片數(shù)量,計算各處理棉花冠層脫葉率:
式中為噴施脫葉劑前10株棉花總?cè)~片數(shù);為噴施脫葉劑20 d后10株棉花總?cè)~片數(shù)。
無人機和噴霧機的霧滴粒徑分布差異顯著(檢驗,<0.01,圖2)。無人機的霧滴粒徑在0~800m之間,R3與R6模式下粒徑在100~300m的有效霧滴占比分別為74.20%和47.10%,兩種模式的平均值為61.00%。霧滴譜寬度分別為0.99和0.86,R3較R6的有效霧滴占比提高了27.10個百分點,霧滴譜寬度提高了0.13。噴霧機的霧滴粒徑分布在0~3 000m之間,其中R3模式下粒徑在2 000~3 000m之間的霧滴占比63.70%,其余霧滴的粒徑在0~2 000m之間均勻分布,霧滴譜寬度為1.11;而R6模式下各粒徑區(qū)間的霧滴占比則基本相同,霧滴譜寬度為0.98;2種模式下的有效沉積霧滴占比均小于3.00%。噴霧機作業(yè)后粒徑在100~300m的有效霧滴占比僅為2.60%,較無人機降低了58.40個百分點。
圖2 兩種植模式下無人機與噴霧機噴施脫葉劑后棉花冠層葉片霧滴粒徑分布
無人機作業(yè)后,R3和R6在葉片尺度上的平均霧滴覆蓋率分別為4.55%和1.89%,2種模式間差異顯著(表 3,檢驗,<0.01)。從冠層空間垂直分布來看,覆蓋率呈先快速下降后保持穩(wěn)定的總體趨勢,說明無人機作業(yè)的霧滴穿透性能有限;在冠層上部(6~9層)R3與R6的覆蓋率分別為6.79%和2.19%,R3較R6提高4.60個百分點;在冠層中部第5層時覆蓋率達到最低值2.50%和0.80%;在冠層下部(1~4層)覆蓋率基本保持穩(wěn)定,R3與R6分別為3.03%和1.85%,R3較R6平均提高1.18個百分點,說明R3模式下霧滴穿透性更強。R3和R6的覆蓋率變異系數(shù)分別為80.44%和110.05%,R3較R6降低了29.61個百分點,說明R3模式的冠層內(nèi)霧滴分布更加均勻。R3和R6模式的行間地面霧滴覆蓋率分別為1.75%和0.82%,R3為R6的2.13倍。
噴霧機作業(yè)后,R3的葉片尺度霧滴覆蓋率平均為61.00%,為R6模式23.00%的2.65倍,2種模式間差異顯著(表3,檢驗,<0.01)。冠層內(nèi)不同高度葉片的霧滴覆蓋率呈規(guī)律性波動,分別在冠層第5、第2層達到最小值,在第9、第6層達到最大值,這可能與噴霧器在吊桿上的空間分布有關(guān)。冠層上部,R3與R6霧滴覆蓋率分別為67.00%和26.60%,R3較R6提高了40.40個百分點;冠層下部的霧滴覆蓋率分別為57.00%和21.00%,R3較R6提高了36.00個百分點,說明R3模式下霧滴穿透性更強,且R3冠層上下部的覆蓋率較R6提升幅度分別為151.88%和171.43%。R3的覆蓋率變異系數(shù)為37.58%,較R6的95.24%降低了57.85個百分點,說明冠層內(nèi)霧滴分布更加均勻。R3模式的行間地面霧滴覆蓋率為73.75%,為R6的3.50倍。
綜合可知,噴霧機與無人機的平均霧滴覆蓋率分別為42.05%和3.22%,噴霧機的霧滴覆蓋率是無人機的13 倍,噴霧機噴施后棉花冠層下部較冠層上部的霧滴覆蓋率相對降低17.99%,無人機作業(yè)后冠層下部的霧滴覆蓋率較冠層上部平均相對降低35.45%,與R6相比,R3模式的冠層下部平均霧滴覆蓋度提高18.59 個百分點(相對提高117.60%),平均變異系數(shù)降低43.73 個百分點(相對降低43.83%)。
表3 棉花冠層不同高度葉片及行間地面的霧滴覆蓋率
無人機作業(yè)后,R3和R6的葉片尺度霧滴沉積量分別為0.94和0.43g/cm2,兩種模式間差異顯著(表4,檢驗,<0.01)。從冠層空間垂直分布來看,沉積量與覆蓋率規(guī)律相似,即先快速下降后保持穩(wěn)定,在冠層上部6~9層隨高度的降低而快速降低,此時R3(1.45g/cm2)較R6(0.56g/cm2)的沉積量平均提高0.89g/cm2;在第5層時R3和R6沉積量分別為0.52和0.22g/cm2;冠層下部1~4層的沉積量與第5層基本相同,但R3比R6增加了0.26g/cm2,說明霧滴穿透性更強。R3模式下冠層內(nèi)霧滴沉積量變異系數(shù)為92.93%,較R6的102.35%降低了9.42個百分點,說明R3模式下冠層內(nèi)不同空間位置的霧滴分布更加均勻。R3模式下行間地面的霧滴損失沉積量為0.43g/cm2,為R6的2.15倍。
表4 棉花冠層不同高度葉片及行間地面的霧滴沉積量
R3和R6模式下,噴霧機作業(yè)后的霧滴沉積量分別為0.69和0.28g/cm2,2種模式間差異顯著(表4,檢驗,<0.01)。從霧滴在冠層空間的分布來看,冠層內(nèi)各層葉片的霧滴沉積呈規(guī)律性波動,在第2層達到最小值,第6層達到最大值。在冠層上部和下部,R3較R6的沉積量提升幅度均在0.40~0.45g/cm2之間。R3模式下冠層內(nèi)霧滴沉積量變異系數(shù)為31.88%,較R6的85.71%降低了53.83個百分點。R3和R6的行間地面霧滴損失沉積量分別為0.88g/cm2和0.34g/cm2,R3為R6的2.59倍。
比較可知,噴霧機與無人機的平均霧滴沉積量分別為0.49和0.69 μg/cm2,噴霧機作業(yè)后的霧滴沉積量僅為無人機的71.00%,冠層下部較冠層上部相對降低17.63%,而無人機作業(yè)后的冠層下部霧滴沉積量較上部相對降低53.71%。與R6相比,R3模式下冠層下部霧滴沉積量平均提高0.33g/cm2(相對提高125.60%),變異系數(shù)平均降低31.63 個百分點(相對降低36.00%)。與噴霧機相比,無人機噴施可節(jié)約施藥量90.00%,沉積流失進入土壤的藥液量降低34.00%,噴霧機作業(yè)后行間地面霧滴沉積損失為無人機的1.91倍。
脫葉劑噴施之前,R3與R6模式的植株平均葉片數(shù)分別為32和25,在脫葉劑噴施20 d后,兩種模式均有約12.80%植株的剩余葉片數(shù)為0,其余植株在冠層下部平均殘余2~3片葉(圖3)。R3模式下無人機和噴霧機作業(yè)后棉花脫葉率分別為91.90%和90.70%;R6模式下分別為93.80%和92.20%,不同處理間無顯著差異(檢驗,>0.4,圖3)。無人機二次噴施作業(yè)后,脫葉率在90%~94%間,平均為91.30%。
圖3 兩種種植模式下脫葉劑噴施前后植株葉片數(shù)量及脫葉率
2種植保作業(yè)方式、噴頭噴施壓力和施藥液量的不同導致脫葉劑霧滴沉積特性差異顯著(<0.01)。無人機主要依托旋翼產(chǎn)生的下洗氣流結(jié)合空中噴霧系統(tǒng),在與棉花冠層不發(fā)生直接接觸的前提下實現(xiàn)霧滴噴施,具有高濃度、低容量噴霧的特點[19],其施藥量為22.5 L/hm2[20],噴霧粒徑D0.5為250m(圖2),作業(yè)后霧滴覆蓋率和沉積量分別為3.22%和0.69g/cm2。而噴霧機通過將噴頭裝在橫向和豎立噴桿上,在與棉花冠層近距離接觸過程中完成噴霧,具有濃度低、噴霧大容量的特點,其施藥量為450 L/hm2,霧滴粒徑D0.5達到2 000m,作業(yè)后霧滴覆蓋率和沉積量分別為42.05%和0.49g/cm2。此外,由于無人機在冠層上方飛行作業(yè),存在霧滴穿透性不足的問題[21],導致冠層下部的霧滴覆蓋率(2.44%)與沉積量(0.43g/cm2)較上層葉片(4.49%和1.01g/cm2)分別降低了45.66%和57.43%(表3,表4),霧滴覆蓋率和沉積量的變異系數(shù)較噴霧機增加了43.64%和66.06%。
種植模式是影響霧滴沉積特性的重要因素。在“寬早優(yōu)”模式下棉花種植密度降低,冠層內(nèi)果枝和葉片的相互遮蔽下降[22-24],更加有利于霧滴在冠層內(nèi)不同高度葉片上的均勻分布,霧滴覆蓋率與沉積量均高于“矮密早”模式(表3,表4)。然而,由于作業(yè)方式的差異,種植模式對2種植保機械作業(yè)效果的影響不同。采用無人機噴施脫葉劑,相較于“矮密早”模式,“寬早優(yōu)”的冠層上部霧滴覆蓋率和沉積量分別提升3.10倍和2.59倍,冠層下部的提升幅度僅為63.79%和86.67%;但采用噴霧機時“寬早優(yōu)”模式下冠層上部和下部的霧滴覆蓋率和沉積量均提升2~3倍左右。
霧滴粒徑是影響霧滴有效性的關(guān)鍵要素[18]。研究表明,對于農(nóng)作物植保而言,霧滴粒徑在100~300m之間霧滴最有效,粒徑小于100m的霧滴會飄逸進入大氣中,粒徑大于300m的霧滴則會因附著性差或碰撞反彈等原因流失進入土壤[18,25]。噴頭噴施壓力的差異是造成霧滴粒徑差異的主要原因,噴施壓力越高霧滴粒徑越小,霧滴粒徑在150m以下的比例越大[26-28]。本研究結(jié)果表明,無人機的霧滴粒徑在0~800m之間,其中100~300m粒徑的霧滴占比達61.30%,霧滴譜寬度為0.93,而噴霧機的100~300m粒徑霧滴僅占2.60%,2000~3 000m之間超大粒徑霧滴占比達到54.90%(圖2),是導致大量霧滴流失進入土壤的重要因素之一(表3,表4)。
種植模式可以有效改善霧滴粒徑分布(圖2)。相比于“寬早優(yōu)”模式霧滴粒徑所呈現(xiàn)的正態(tài)分布,在密度較高的“矮密早”模式下,2種植保機械作業(yè)后棉花葉片所截獲霧滴的分布均向粒徑更小的方向移動,霧滴譜寬度降低,霧滴粒徑總體呈現(xiàn)非正態(tài)分布,這可能是由于高密度種植模式下枝葉遮蔽嚴重,霧滴與枝葉撞擊幾率增加[29],導致大量微小霧滴產(chǎn)生,改變了噴霧機霧滴的粒徑分布(圖2)。
分別采用無人機和噴霧機噴施化學脫葉劑,棉花冠層的最終脫葉率差異不超過2.00%,且種植模式對該結(jié)果沒有顯著影響(圖3),這一結(jié)果與Meng等[11-12]的研究結(jié)果一致。無人機能夠?qū)崿F(xiàn)較高脫葉率,主要得益于2個方面,一是雖然無人機的霧滴覆蓋率明顯小于噴霧機(表3),但由于更高的霧滴濃度致使其最終的有效沉積量超過噴霧機(表4),因此仍然能夠滿足誘導棉花葉片生理性脫落的需求。二是在第一次脫葉劑噴施7~10 d棉花上層葉片出現(xiàn)一定程度脫落后進行第二次噴施,可以克服其噴霧穿透性相對較差的問題(表3,表4),使冠層中下部葉片再次獲得藥液沉積,提高整體脫葉率[30]。在無人機進行二次施藥前,無人機噴施的棉花脫葉率一般小于噴霧機的,而在二次施藥后2種噴施機械的最終脫葉率無顯著差異[17](圖3)。
按照新疆機采棉優(yōu)質(zhì)高效綜合栽培技術(shù)規(guī)程,噴霧機和無人機均需采用二次施藥技術(shù),以實現(xiàn)良好的脫葉效果[31-32]。但是,在采用噴霧機噴施化學脫葉劑過程中,由于棉鈴碰撞等機械損傷一般會導致約5%的產(chǎn)量損失(未發(fā)表數(shù)據(jù)),對于發(fā)生倒伏的棉田則損失會更多。因此,對于長勢狀況較為理想的棉田,可以按照操作規(guī)范選擇使用無人機完成機采棉的化學脫葉。
與噴霧機相比,無人機噴施棉花脫葉劑時可節(jié)約施藥量90.00%,流失進入土壤的藥液量降低34.00%(表3,表4)。湯可心等[33]研究了土壤中棉花化學脫葉劑主要成分噻苯隆含量對種植后茬小麥的影響,結(jié)果表明當噻苯隆含量低于135.00 g/hm2時,其對小麥幼苗生長不會造成顯著影響。此外,噻苯隆在土壤中屬于易降解物質(zhì),施藥后40~50 d后土壤中殘留中值小于0.000 2 mg/kg,因此在正常施藥情況下,噻苯隆對土壤理化性質(zhì)應(yīng)及后茬作物生長無顯著影響[33-34]。關(guān)于機采棉化學脫葉劑對土壤理化性質(zhì)和生物學性質(zhì)的影響目前尚無具體研究,但采用無人機進行化學脫葉作業(yè)時可有效減少流失進入土壤的藥液量,因此可最大程度降低對土壤理化性質(zhì)及后茬作物生長的潛在影響。
本文采用植保無人機和噴桿噴霧機進行機采棉化學脫葉劑噴施試驗,對比了“矮密早”和“寬早優(yōu)”兩種種植模式下霧滴沉積差異性及脫葉效果,主要結(jié)論如下:
1)植保無人機具有低容量、高濃度的噴霧作業(yè)特點,采用無人機噴施機采棉化學脫葉劑時,棉花葉片的霧滴覆蓋率和沉積量分別為3.22%和0.69g/cm2,與噴桿噴霧機相比覆蓋率顯著降低(<0.01),但沉積量顯著提升(<0.01),在采用二次噴施技術(shù)后其最終脫葉率為91.30%,與噴霧機無顯著差異,均能滿足棉花機采需求。
2)種植模式對棉花冠層霧滴沉積特性有重要影響。與“矮密早”模式相比,“寬早優(yōu)”模式下不僅霧滴粒徑分布更加均勻,而且冠層下部霧滴覆蓋率和沉積量分別提升1.18個百分點和0.26g/cm2,可有效改善無人機作業(yè)時霧滴穿透性不足的問題。
3)與噴霧機相比,無人機噴施脫葉劑時,粒徑在100~300m的有效霧滴占比提高58.40個百分點,施藥量和流失量分別降低了90.00%和34.00%。
[1] 周婷婷,肖慶剛,杜睿,等. 我國棉花脫葉催熟技術(shù)研究進展[J]. 棉花學報,2020,32(2):170-184.
Zhou Tingting, Xiao Qinggang, Du Rui, et al. Research advances on cotton harvest aids in China[J]. Cotton Science, 2020, 32(2): 170-184. (in Chinese with English abstract)
[2] Suttle J C. Involvement of ethylene in the action of the cotton defoliant thidiazuron[J]. Plant Physiology, 1985, 78(2): 272-276.
[3] 周先林,覃琴,王龍,等. 脫葉催熟劑在新疆棉花生產(chǎn)中的應(yīng)用現(xiàn)狀[J]. 中國植保導刊,2020,40(2):26-32.
Zhou Xianlin, Tan Qin, Wang Long, et al. Application status of defoliation and ripening agents on cotton production in Xinjiang[J]. China Plant Protection, 2020, 40(2): 26-32. (in Chinese with English abstract)
[4] Suttle J C. Disruption of the polar auxin transport system in cotton seedlings following treatment with the defoliant thidiazuron[J]. Plant Physiology, 1988, 86(1): 241-245.
[5] 婁善偉,董合忠,田曉莉,等. 新疆棉花“矮、密、早”栽培歷史、現(xiàn)狀和展望[J]. 中國農(nóng)業(yè)科學,2021,54(4):720-732.
Lou Shanwei, Dong Hezhong, Tian Xiaoli, et al. The “short, dense and early” cultivation of cotton in Xinjiang: History, current situation and prospect[J]. Chinese Agricultural Sciences, 2021, 54(4): 720-732. (in Chinese with English abstract)
[6] 張恒恒,王香茹,胡莉婷,等. 不同機采棉種植模式和種植密度對棉田土壤水熱效應(yīng)及產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學報,2020,36(23):39-47.
Zhang Hengheng, Wang Xiangru, Hu Liting, et al. Effects of different machine-harvested cotton planting patterns and planting densities on soil hydrothermal conditions and cotton yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 39-47. (in Chinese with English abstract)
[7] 聶軍軍,代建龍,杜明偉,等. 我國現(xiàn)代植棉理論與技術(shù)的新發(fā)展:棉花集中成熟栽培[J]. 中國農(nóng)業(yè)科學,2021,54(20):4286-4298.
Nie Junjun, Dai Jianlong, Du Mingwei, et al. New development of modern cotton farming theory and technology in China: concentrated maturation cultivation of cotton[J]. Chinese Agricultural Sciences, 2021, 54(20): 4286-4298. (in Chinese with English abstract)
[8] Meng Y H, Lan Y B, Mei G Y, et al. Effect of aerial spray adjuvant applying on the efficiency of small unmanned aerial vehicle for wheat aphids control[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(5): 46-53
[9] 薛新宇,蘭玉彬. 美國農(nóng)業(yè)航空技術(shù)現(xiàn)狀和發(fā)展趨勢分析[J]. 農(nóng)業(yè)機械學報,2013,44(5):194-201.
Xue Xinyu, Lan Yubin. Agricultural aviation applications in USA[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 194-201. (in Chinese with English abstract)
[10] 周志艷,臧英,羅錫文,等. 中國農(nóng)業(yè)航空植保產(chǎn)業(yè)技術(shù)創(chuàng)新發(fā)展戰(zhàn)略[J]. 農(nóng)業(yè)工程學報,2013,29(24):1-10.
Zhou Zhiyan, Zang Ying, Luo Xiwen, et al. Technology innovation development strategy on agricultural aviation industry for plant protection in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 1-10. (in Chinese with English abstract)
[11] Meng Y H, Song J L, Lan Y B, et al. Harvest aids efficacy applied by unmanned aerial vehicles on cotton crop[J]. Industrial Crops and Products, 2019, 140(C): 111645
[12] 王林,張強,馬江鋒,等. 新疆棉區(qū)植保無人機噴施棉花脫葉催熟劑效果研究[J]. 棉花學報,2021,33(3):200-208.
Wang Lin, Zhang Qiang, Ma Jiangfeng, et al. Study on the effect of spraying cotton defoliant by plant protection UAVs in Xinjiang cotton area[J]. Cotton Science, 2021, 33(3): 200-208. (in Chinese with English abstract)
[13] 張昊,林濤,湯秋香,等. 種植模式對機采棉冠層光能利用與產(chǎn)量形成的影響[J]. 農(nóng)業(yè)工程學報,2021,37(12):54-63.
Zhang Hao, Lin Tao, Tang Qiuxiang, et. al, Effects of planting pattern on canopy light utilization and yield formation in machine-harvested cotton field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(12): 54-63. (in Chinese with English abstract)
[14] 石峰,田雨,時曉娟,等. 北疆機采棉等行密植模式下脫葉效果,產(chǎn)量及纖維品質(zhì)研究[J]. 石河子大學學報(自然科學版),2022,40(2):166-171.
Shi Feng, Tian Yu, Shi Xiaojuan, et al. Study on defoliation effect, yield and fiber quality in machine-harvested cotton under the equal row spacing with dense planting model in Northern Xinjiang[J]. Journal of Shihezi University (Natural Science), 2022, 40(2): 166-171. (in Chinese with English abstract)
[15] Zhu H, Salyani M, Fox R D. A portable scanning system for evaluation of spray deposit distribution[J]. Computers & Electronics in Agriculture, 2011, 76(1): 38-43.
[16] Meng Y H, Zhong W Q, Liu C J, et al. UAV spraying on citrus crop: Impact of tank-mix adjuvant on the contact angle and droplet distribution[J]. PeerJ, 2022, 10: 13064
[17] 唐青,陳立平,張瑞瑞,等. 高速氣流條件下標準扇形噴頭和空氣誘導噴頭霧化特性[J]. 農(nóng)業(yè)工程學報,2016,32(22):121-128.
Tang Qing, Chen Liping, Zhang Ruirui, et al. Atomization characteristics of normal flat fan nozzle and air induction nozzle under high speed airflow conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 121-128. (in Chinese with English abstract)
[18] 張慧春,周宏平,鄭加強,等. 農(nóng)藥助劑對空中和地面防控林業(yè)有害生物的霧滴粒徑影響[J]. 林業(yè)科學,2020,56(5):118-129.
Zhang Huichun, Zhou Hongping, Zheng Jiaqiang, et al. Adjuvant's influence to droplet size based on forestry pests' prevention with ground and air chemical application[J]. Forestry Science, 2020, 56(5): 118-129. (in Chinese with English abstract)
[19] 蘭玉彬,單常峰,王慶雨,等. 不同噴霧助劑在無人機噴施作業(yè)中對霧滴沉積特性的影響[J]. 農(nóng)業(yè)工程學報,2021,37(16):31-38.
Lan Yubin, Shan Changfeng, Wang Qingyu, et al. Effects of different spray additives on droplet deposition characteristics during plant protection UAV spraying operations[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(16): 31-38. (in Chinese with English abstract)
[20] 蒙艷華,蘭玉彬,梁自靜,等. 無人機施藥液量對棉花脫葉效果的影響[J]. 中國棉花,2019,46(6):10-15.
Meng Yanhua, Lan Yubin, Liang Zijing, et al. Impact of spraying volume on defoliation efficacy by unmanned aerial vehicle[J]. Chinese Cotton, 2019, 46(6): 10-15. (in Chinese with English abstract)
[21] 王國賓,王十周,陳鵬超,等. 無人機噴施不同霧滴粒徑藥劑對其在棉花冠層沉積、穿透及脫葉催熟效果的影響[J]. 植物保護學報,2021,48(3):493-500.
Wang Guobin, Wang Shizhou, Chen Pengchao, et al. Effect of spraying droplet size with drones on deposition, penetration, and cotton harvest-aid efficacv[J]. Journal of Plant Protection, 2021, 48(3): 493-500. (in Chinese with English abstract)
[22] Dai J L, Li W J, Tang W, et al. Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management[J]. Field Crops Research, 2015, 180: 207-215
[23] Mao L L, Zhang L Z, Evers J B, et al. Yield components and quality of intercropped cotton in response to mepiquat chloride and plant density[J]. Field Crops Research, 2015, 179: 63-71.
[24] Li T, Zhang Y J, Dai J L, et al. High plant density inhibits vegetative branching in cotton by altering hormone contents and photosynthetic production[J]. Field Crops Research, 2019, 230: 121-131.
[25] Post S L, Roten R L. A review of the effects of droplet size and flow rate on the chargeability of spray droplets in electrostatic agricultural sprays[J]. Transactions of the ASABE, 2018, 61(4): 1243-1248.
[26] 何雄奎. 我國無人機噴霧系統(tǒng)與施藥技術(shù)[J]. 農(nóng)業(yè)工程技術(shù),2018,38(9):33-38.
[27] 馬鈺,貢常委,張韞政,等. 噴頭類型對無人機低容量噴霧霧滴在稻田冠層沉積分布及防治效果的影響[J]. 植物保護學報,2021,48(3):518-527.
Ma Yu, Gong Changwei, Zhang Yunzheng, et al. Effects of spray nozzles and spray adjuvant on the deposition of droplets of plant protection unmanned aerial vehicle (UAV) in paddy fields and the control efficacy against Asiatic rice borer Chilo suppressalis[J]. Journal of Plant Protection, 2021, 48(3): 518-527. (in Chinese with English abstract)
[28] 張慧春,Dorr G,鄭加強,等. 扇形噴頭霧滴粒徑分布風洞試驗[J]. 農(nóng)業(yè)機械學報,2012,43(6):53-57,52.
Zhang Huichun, Dorr G, Zheng Jiaqiang, et al. Wind tunnel experiment of influence on droplet size distribution of flat fan nozzles[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(6): 53-57, 52. (in Chinese with English abstract)
[29] He L F, Xi S W, Ding L, et al. Regulating the entire journey of pesticide application on surfaces of hydrophobic leaves modified by pathogens at different growth stages[J]. ACS Nano, 2022, 16(1), 1318–1331.
[30] 田景山,張煦怡,張麗娜,等. 新疆機采棉花實現(xiàn)葉片快速脫落需要的溫度條件[J]. 作物學報,2019,45(4):613-620.
Tian Jingshan, Zhang Xuyi, Zhang Lina, et al. Temperatures of promoting rapid leaf abscission of cotton in Xinjiang region[J]. Acta Agronomica Sinica, 2019, 45(4): 613-620. (in Chinese with English abstract)
[31] 張旺鋒,田景山,董恒義,等. 新疆北疆機采棉優(yōu)質(zhì)高效綜合栽培技術(shù)規(guī)程[J]. 中國棉花,2019,46(6):37-39
Zhang Wangfeng, Tian Jingshan, Dong Hengyi, et al. Cultivation technical regulation of fine-quality and high-efficient machine-harvested cotton in northern Xinjiang[J]. Chinese Cotton, 2019, 46(6): 37-39. (in Chinese with English abstract)
[32] 張旺鋒,田景山,余力. 新疆南疆棉區(qū)機采棉優(yōu)質(zhì)高效綜合栽培技術(shù)規(guī)程[J]. 中國棉花. 2019,46(7):30-32.
Zhang Wangfeng, Tian Jingshan, Yu Li. Cultivation technical regulation of fine-quality and high-efficient machine-harvested cotton in southern Xinjiang region[J]. Chinese Cotton, 2019, 46(7): 30-32. (in Chinese with English abstract)
[33] 湯可心,霍旖旎,宋興虎,等. 棉花應(yīng)用脫葉催熟劑對后茬小麥生長及產(chǎn)量的影響[J]. 中國農(nóng)業(yè)大學學報,2022,27(3):1-10.
Tang Kexin, Huo Yini, Song Xinghu, et al. Effect of application of harvest aids in cotton on the emergence, growth and yield of subsequent wheat[J]. Journal of China Agricultural University, 2022, 27(3): 1-10. (in Chinese with English abstract)
[34] Du M W, Ren X M, Tian X L, et al. Evaluation of harvest aid chemicals for the cotton-winter wheat double cropping system[J]. Journal of Integrative Agriculture, 2012, 12(2): 273-282.
Effects of machine-harvested cotton planting pattern on the efficacy of chemical defoliant application of plant protection machine
Ding Chenyang1, Lyu Xin1, Han Xiaoqiang1, Hao Tingli2, Ma Xiangyang1, Liu Shihao1, Tian Chengcheng1,Liu Shangchang1, Hou Tongyu1※
(1.,,,832003,;2.,,832003,)
Planting pattern of cotton can be optimized for the higher yield, quality and efficiency production in Xinjiang Uygur Autonomous Region, China. However, it is still unclear about the effects of machine-harvested cotton planting pattern on the agricultural machinery and techniques in the spray application of chemical harvest-aid. In this study, a field experiment was carried out to clarify the effects, with two planting patterns of machine-harvested cotton, including the “aimizao” planting pattern (six lines per film with the wide-narrow row spacing, 66 + 10 cm, R6), and the “kuanzaoyou” planting pattern (three lines per film with equal row spacing, 76 cm, R3), as well as with two chemical defoliant spraying machines, including an agricultural drone sprayer (UAV), and a ground-based boom sprayer (MTZ). A representative canopy of four individual plants was selected in each pattern-sprayer combination. Some parameters were also measured for each leaf, including the volume diameter, coverage rate, and deposition amount of defoliant spray droplets. A systematic analysis was made on the effects of planting mode on the deposition and dissipation characteristics of defoliant droplets. An optimal defoliation efficiency of the cotton before the plants were determined ready for the mechanical harvesting. The results showed that there were significant differences between the UAV and MTZ in the volume diameter distribution, droplet coverage rate, deposition amount, and loss magnitude of the defoliant spray droplets (<0.01). There was the more uniform distribution in the volume diameter of the droplet, when the defoliant was sprayed using UAV. 2.60% proportion was found in the most effective droplet with the size between 100-300m for the MTZ, which was improved by 58.40 percentage points to 61.00% for the UAV. The droplet coverage rates of UAV and MTZ were 3.22% and 42.05%, respectively. The coverage rate of MTZ was about 13 times higher than that of UAV. But, the droplet deposition amount of UAV and MTZ was 0.49 and 0.69g/cm2, respectively. Among them, the deposition amount of MTZ was only 71.00% of UAV, indicating the low capacity but high concentration of the UAV. Furthermore, the coverage rate and deposition amount in the lower part of the cotton canopy decreased by 17.99%, and 17.63%, respectively, using MTZ, but decreased by 35.45% and 53.71%, respectively, using UAV, compared with the upper part of the cotton canopy. Therefore, the penetration of spray droplets in the UAV was insufficient to reach the lower canopy. The droplet deposition loss between the cotton canopy rows of the MTZ was 1.91 times as large as that of the UAV. Different planting patterns of machine-harvested cotton also showed a significant effect on the deposition of spray droplet. More importantly, the coverage rate and deposition amount in the lower canopy increased by 18.59 percentage points and 0.33g/cm2(117.60%, and 125.60% for the relative differences), respectively, in the “kuanzaoyou” planting pattern, compared with the “aimizao”. By contrast, there was the decrease in the coefficient of variation by 43.73, and 31.63 percentage points (43.83%, and 36.00% for the relative differences), respectively. It infers that the “kuanzaoyou” planting mode was improved the penetration and uniformity of droplets in the canopy, especially for the middle-lower canopy layers. There was a great benefit in the penetration of UAV. All of the final defoliation rates reached a range of 90%-94% after spraying once by the BGM or twice by the UAV, fully meeting the harsh requirement of cotton mechanical harvesting operation. In conclusion, the UAV chemical defoliant spraying at the planting mode of “kuanzaoyou” can be expected to reduce the potential impact on the cotton growth and soil environment, due to the non-contact operation and reasonable distribution of droplet size. The finding can provide a strong reference for the mechanical harvesting of cotton to the chemical defoliation.
plant protection machinery; cotton; planting pattern; droplet deposition characteristics; chemical defoliation
10.11975/j.issn.1002-6819.2022.20.001
S252
A
1002-6819(2022)-20-0001-08
丁宸旸,呂新,韓小強,等. 機采棉種植模式對植保機械化學脫葉作業(yè)效果的影響[J]. 農(nóng)業(yè)工程學報,2022,38(20):1-8.doi:10.11975/j.issn.1002-6819.2022.20.001 http://www.tcsae.org
Ding Chenyang, Lyu Xin, Han Xiaoqiang, et al. Effects of machine-harvested cotton planting pattern on the efficacy of chemical defoliant application of plant protection machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(20): 1-8. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.20.001 http://www.tcsae.org
2022-08-22
2022-10-06
國家自然科學基金項目(31960566,32160419);石河子大學3152優(yōu)秀中青年骨干教師培養(yǎng)支持計劃(ZG010303)
丁宸旸,研究方向為農(nóng)業(yè)航空施藥技術(shù)。Email:1965275792@qq.com
侯彤瑜,博士,副教授,研究方向為棉花成熟及脫葉優(yōu)化。Email:tongyu.hou@shzu.edu.cn