• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conductive polymer hydrogel-coated nanopipette sensor with tunable size

    2022-02-01 01:47:20LinLiFengZhouandQiannanXue
    納米技術與精密工程 2022年4期
    關鍵詞:原種場張羅隨縣

    Lin Li, Feng Zhou, and Qiannan Xue,2,a)

    ABSTRACT Nanopipette-based sensors are one of the most effective tools for detecting nanoparticles,bioparticles,and biomolecules.Quantitative analysis of nanoparticles with different shapes and electrical charges is achieved through measurement of the blockage currents that occur when particles pass through the nanopore.However,typical nanopipette sensors fabricated using a conventional needle-pulling method have a typical pore-diameter limitation of around 100 nm.Herein,we report a novel conductive hydrogel-composited nanopipette sensor with a tunable inner-pore diameter.This is made by electrodepositing poly(3,4-ethylenedioxythiophene)polystyrene sulfonate onto the surface of a nanopipette with a prefabricated sacrificia copper layer.Because of the presence of copper ions,the conductive polymer can stably adhere to the tip of the nanopipette to form a nanopore;when nanoparticles pass through the conductive nanopore,more distinct blocking events are observed.The size of the nanopore can be changed simply by adjusting the electrodeposition time.In this way,suitable nanopores can be obtained for highly sensitive screening of a series of particles with diameters of the order of tens of nanometers.

    KEYWORDS Nanopipette,Conductive polymer,Electrodeposition,Nanoparticles

    I.INTRODUCTION

    The word“nanopipette”usually refers to a borosilicate glass pipette with a pore diameter of less than 200 nm and a needle geometry.1Nanopipettes are usually used for biochemical sensing,2,3single-cell monitoring,4,5and scanning probe microscopy.6,7As an important type of nanopore sensor,nanopipettes can be used to test the material exchange in the deep parts of samples such as vesicles8and cells.9,10This is because of their probe-type structure,which allows for very flexibl testing in different scenarios.

    There are two main strategies that are used to fabricate nanopipettes:pulling a heated capillary tube11,12and externally penetrating a nanocavity enclosed in the terminal of a capillary pipette.13–15Most nanoprobes are currently made from borosilicate glass or quartz.16Generally,borosilicate glass capillaries are used for the preparation of nanopipettes using a laser pipette puller.By changing various parameters of this puller(laser intensity,processing time,tensile force,etc.),17the same glass tube can be transformed into nanopores with different apertures at their tips.Borosilicate glass capillaries are soft and easy to fabricate,but it is difficul to use them to create a nanopipette with a pore diameter less than 100 nm.8

    The preparation of nanopipettes using borosilicate capillaries is favored because of its simplicity and consistency,and the resulting nanopipettes can be further modifie to achieve various functions.For example,Ying et al.18used a nanopipette to probe into a cell to monitor its biochemical reactions.Nanopipettes can also be used to filte ions or detect molecules by attaching various molecules to their inner walls;these interact with ions or molecules passing through the nanopores.19A nanopore sensor can be used to distinguish the category of a measured object by detecting transient changes in conductance signals caused by the object passing through the pore.20Nanopipettes are generally suitable for the detection of larger biological particles such as exosomes,virus particles,and other particles above the 100 nm scale.21However,because of the excessive size of their apertures,the signals from nanopipettes are weak when attempting to identify particles with scales of the order of tens of nanometers.When facing the measured nanoparticles with dozens of nanometers,a simple fabrication method is highly desirable.In addition,if conductive materials can be used to form these nanopores,22this could be expected to result in the measured object causing larger transient changes in electrical signals,and this would be conducive to improving the detection resolution.

    In this paper,a new method for preparing nanopores from conductive polymers is proposed,in which the pore size can be adjusted and controlled according to the size of the target particles.In this technique,poly(3,4-ethylenedioxythiophene)polystyrene sulfonate(PEDOT:PSS)gel is applied to the tip of a nanopipette as the framework,forming a conductive polymer nanopore by electrodeposition.This design allows nanoparticles of different sizes to pass through the nanopore while resulting in different transient current responses.This method has the following advantages.(i)Conductive polymers have good conductivity and better response sensitivity than quartz nanopores.(ii)PEDOT:PSS is electrodeposited on a copper layer,and the anode oxidizes this copper into copper ions for doping the PEDOT:PSS.This causes the conductive polymer to crosslink into a gel state and more firml adhere to the nanopipette around the nanopore.(iii)Using direct electrodeposition,the pore size can be changed by adjusting the deposition time.This allows a series of transient-current spectra to be obtained and more information to be collected for the identificatio of mixed particles.

    FIG.1.(a)Schematic ofthe process used to produce the PEDOT:PSS conductive polymer nanopore sensors in this study.(b)Detection principle ofthese sensors.

    II.NANOPORE SENSOR FABRICATION

    A.Preparation and processing of nanopores

    A schematic of the process used to produce the nanopores in this study is shown in Fig.1(a).First,the nanopipettes are fabricated from borosilicate glass capillaries using a laser-based micropipette puller system(P-2000,Sutter Instrument Company).The pulling follows a two-step process(Line 1:Heat 350,Fil 3,Vel 30,Del 200,Pul 0;Line 2:Heat 340,Fil 2,Vel 27,Del 160,Pul 250).In the pulling parameters,Heat is related to the power of the laser;Fil is associated with the scanning mode of the laser;Vel is related to the pulling velocity during laser heating;Del is related to the duration of laser heating;and Pul is related to the tensile force after laser heating.Using these parameters,the pore diameter of the nanopore devices was found to be 138.4±3 nm;a scanning electron microscope(SEM)photograph of a nanopipette produced using these parameter values is shown in Fig.2(a).

    Then,a layer of copper is evaporated onto the surface of the obtained nanopipettes using an electron beam evaporation method.The nanopipettes are then immersed in PEDOT:PSS solution(0.13 wt.%)for deposition.The copper layer is taken as the working electrode,a platinum electrode(10×10 mm2)is used as a counter electrode,and a calomel electrode is used as a reference electrode.A positive bias voltage is applied between the working electrode and the counter electrode,and the metallic copper layer of the working electrode is oxidized to form copper ions.These copper ions diffuse around the nanopipette and induce the PEDOT:PSS to become locally gelatinous.23As shown in the inset diagrams of Fig.1(a),the PEDOT:PSS is initially in a colloidal dispersion in the buffer.When the copper layer is oxidized to Cu2+,the electrostatic repulsion between the dispersed PEDOT:PSS particles disappears because of the introduction of copper ions,and they thus cross-link with each other and form a gel state.The instruments and materials required for this preparation process are listed in Table S3.

    B.Optimization of nanopore processing parameters

    We further optimized the parameters used to produce the nanopores.When the Pul parameters of lines 1 and 2 were 0 and 240,respectively,the pore diameter was found to be 189.4 nm[Fig.2(b)].When the Vel parameters of lines 1 and 2 were 27 and 24,respectively,the pore diameter was 109.3 nm[Fig.2(c)].When the Heat parameters of lines 1 and 2 were 340 and 330,respectively,the pore diameter was 219.5 nm[Fig.2(d)].When the Del parameters of lines 1 and 2 were 190 and 150,respectively,the pore diameter was 151.5 nm[Fig.2(e)].As shown in Fig.2(c),the nanopipette was not straight when the aperture was reduced to 109.3 nm.Therefore,we took the parameters used to prepare the nanopipette shown in Fig.2(a)as the optimum values.

    FIG.2.Nanopores produced using different processing parameters.(a)Nanopores obtained following the two-step process(scale bar is 500 nm).(b)–(e)Nanopores obtained after changing the processing parameters.(f)Comparison ofadjusted parameters and corresponding nanopore diameters(units:nm).

    FIG.3.Optical microscope images of nanopipettes:(a)as initially prepared;(b)after copper deposition;(c)after formation of a PEDOT:PSS conductive polymer layer.SEM images of nanopipettes:(d)as initially prepared;(e)with a PEDOT:PSS conductive polymer layer.(f)SEM image showing enlarged section of PEDOT:PSS gel.The scale bars in(a)–(e)are 500 nm long;the scale bar in(f)is 200 nm long.

    C.Characterization of nanopores

    The morphology of the nanopipettes after each preparation step was observed with an optical microscope.It can be seen from Figs.3(a)and 3(b)that the metal copper layer was deposited on the outside of the nanopipette to form a good level of cover.Figure 3(c)demonstrates that the deposited PEDOT:PSS can be uniformly attached to the outer wall of a nanopipette with a diameter of only 100 nm.To demonstrate that the copper ions are conducive to the stable deposition of PEDOT:PSS,we prepared nanopipettes with evaporated gold layers under the same conditions.Figure S1 shows that in these conditions,it is difficul to form a perfect polymer layer on the gold surface.This is because copper ions are oxidized by applying a forward bias to the copper layer;the addition of copper ions causes the slightly negatively charged dispersed PEDOT:PSS particles near the copper layer to become crosslinked with each other,and a stable conductive polymer nanopore is formed at the tip of the nanopipette.If the copper is replaced with gold,it is difficul for the PEDOT:PSS to adhere to the outside of the nanoscale-diameter tubes because there is no metal cation involved.

    We observed the nanopipettes before and after deposition by SEM.Figure 3(e)clearly shows that the PEDOT:PSS is wrapped over the outer walls of the nanopipettes,and the layer is relatively fla and uniform.Figure 3(f)shows a more uniform and flatte PEDOT:PSS gel polymer layer on a nanopipette.Compared with the control group with a gold layer,the sacrificia copper layer helps to obtain a stable conductive polymer layer at the tip of the nanopipette.

    D.Experimental process

    The PEDOT:PSS conductive polymer was electrodeposited on the outside of the tube wall using the nanopipette as the anode.The constant-current method was adopted,and the current was set to 30μA.The nanopores formed by the conductive polymer under four deposition conditions were compared.After the preparation of these four kinds of nanopore,we used a solution of 80 nm-diameter polystyrene spheres(0.1 nM,in 1M KCl,pH=7.4)as standard objects to test each in turn.As shown in Fig.1(b),the polystyrene nanoparticle solution was injected into the nanopipette,a silver probe was inserted into the nanopipette close to the nanopore,and the nanopipette was then put into a test cell with KCl solution(1M KCl,pH=7.4).An Ag/AgCl electrode was also placed in the test cell,and a bias voltage of 1 V was applied between the silver probe and the Ag/AgCl electrode.High-definitio current data were recorded using a patch clamp amplifie(HEKA Elektronik,GmbH).

    III.RESULTS AND DISCUSSION

    A.Optimization of electrodeposition time

    We selected four kinds of nanopores prepared with different electrodeposition durations:0,180,360,and 600 s.As can be seen from Fig.4(a),as the deposition time increases,the average response current of the prepared conductive polymer nanopores when detecting nanoparticles decreases.It can be considered that under the test framework shown in Fig.1(b),the Ag probe and Ag/AgCl electrode are connected by ionic solution through the nanopores,forming an ionic conductivity,g.This conforms to the relationship g=Ig/Vr,where Vris the bias voltage applied between the silver probe and the control electrode and Igis the current obtained from the test.With increasing deposition time,the conductivity inside and outside the nanopores decreases,indicating that the pore size of the conductive polymer nanopores decreases gradually.

    The pore diameter of the nanopores dtipcan be calculated using24

    FIG.4.The current signals from the nanopipettes in response to 80 nm nanoparticles were tested with a patch clamp.(a)Average response currents of the nanopipettes under the four deposition times,0,180,360,and 600 s,labeled as 1#,2#,3#,and 4#,respectively;panels(b)–(e)show plots of the respective currents of the nanopipettes over time.

    It is difficul to characterize the sizes of the pores using images,and the purpose of this study was to test nanoparticles with scales of the order of tens of nanometers using an electrical method.This is the reason that 80 nm-diameter polystyrene nanoparticles were used as the test object to observe the changes in transient current signals.Figures 4(b)–4(d)show the real-time current results from the four kinds of nanopores.When the nanopipette without any deposited conductive polymer was tested,no translocations were observed[Fig.4(b)].This shows that the nanoparticles were able to pass through the nanopore.Because the particle size is much smaller than the nanopore size,the particles will not cause single-particle translocation.

    For a single particle to be observed using a nanopore,the ratio of the pore diameter to the particle diameter needs to be within a certain range.25When a nanopore prepared with a deposition time of 180 s was used to test the nanoparticles,only a very small transient current peak occurred[Fig.4(c)].This is because the nanopore size has been reduced,and it is possible for the nanoparticles to cause a blockage.However,since the pore size is still relatively larger than the particle size,few translocation events can be observed.When the nanopore prepared with a deposition time of 360 s was used to test the nanoparticles,the results showed regular transient current signals[Fig.4(d)].This is because in this case,the size of the nanoparticles is well matched with the pore size;therefore,when the nanoparticles pass through the nanopore one by one,there will be a parallel current with a peak value.When a nanopore prepared with a deposition time of 600 s was used to test the nanoparticles,there were no transient currents observed[Fig.4(e)].Under such deposition conditions,the size of the prepared nanopore is too small to allow 80 nm particles to pass through.These electrical test results are consistent with the calculated apertures,and this preliminarily demonstrates that the experimental assumptions are appropriate.Based on these results,a deposition time of 360 s was selected as the optimal preparation conditions for the modifie conductive polymer PEDOT:PSS.

    FIG.5.Transientcurrent signals under bias voltages of:(a)0.5 V;(b)0.75 V;(c)1 V.(d)–(f)Respective counts of currentpeaks with these three values of bias voltage.(g)–(i)Respective dwelltimes and currentpeaks for each single-particle translocation event.

    B.Optimization of testing conditions for conducting polymer nanopores

    Again using 80 nm-diameter polystyrene nanoparticles as the test object,the bias voltage was optimized to fin an appropriate value for examining the translocation events.The silver probe in the nanopore was used as the anode,and the silver chloride electrode in the solution was used as the cathode.Considering the upper limit of the system voltage,the bias voltage was set to test values of 0.5,0.75,and 1 V.Here,the nanopipette was prepared by drawing,evaporating a copper layer,and electrodeposition(constant current:30μA,360 s).Each nanoparticle passing through the conductive polymer nanopore will cause a single particle-translocation event,and this will result in a transient falling peak in the real-time current curve.

    Figures 5(a)–5(c)show the transient-current signals under the three values of bias voltage.Correspondingly,Figs.5(d)–5(f)show counts of the numbers of current peaks.These results show that the current peaks increase significantl with increasing bias voltage:the number of current peaks is the highest under a bias voltage of 1 V.Figures 5(g)–5(i)show the dwell times under the three respective values of bias voltage;the longest average dwell times were observed with a bias voltage of 1 V.The tested polystyrene nanoparticles have negatively charged sulfonic-acid groups on their surfaces,so when they pass through a nanopore with a positive bias,the dwell time will increase with the bias voltage.The most translocation events occurred with a bias of 1 V,and they had the longest dwell times.

    FIG.6.Real-time current curves of:(a)80 nm and(b)50 nm nanoparticles detected by nanopores deposited for 360 s;(c)80 nm and(d)50 nm nanoparticles detected by nanopores deposited for 600 s.(e)–(h)Counts ofcurrentpeaks in the four tests,corresponding to the current signals in(a)–(d),respectively.(i)–(l)Dwelltimes and current peaks for each single-particle translocation event in the four tests,corresponding to the currentcurves in(a)–(d),respectively.

    C.Conductive polymer nanopores with adjustable pore size

    Using the technique proposed in this paper,nanopores of different sizes can be prepared simply by adjusting the electrodeposition conditions.To demonstrate this,PEDOT:PSS conductive polymer layers were electrodeposited on the tips of nanopipettes with a copper sacrificia layer(constant current:30μA)using two different deposition durations:360 and 600 s.The results in Fig.4 indicate that the diameters of nanopores prepared with a 360 s deposition time should be slightly greater than 80 nm;with a 600 s deposition time,the nanopore diameter should be less than 80 nm.These two kinds of nanopore were used to test polystyrene nanoparticles with particle sizes of 80 and 50 nm to establish whether a differentiated response could be observed.From the real-time current curve for the nanopore prepared with a deposition time of 360 s,it can be seen that there are obvious current spikes in the test with 80 nm nanoparticles[Fig.6(a)],and there were 69 translocation events within a period of 4 s[Fig.6(e)].When the same nanopore was used to test 50 nm nanoparticles,it can be seen that the peaks become very small,and there are significantl fewer than with the 80 nmnanoparticles[Figs.6(e)and 6(f)].These results show that with a deposition time of 360 s,the diameter of the prepared nanopores is only slightly larger than 80 nm.When testing particles with 50 nm size,they cannot produce a response because of the large size difference.This demonstrates that the conductive polymer nanopores prepared under this condition are selective to 80 nm particles.

    2016—2017年在襄陽市襄州區(qū)古驛鎮(zhèn)張羅崗原種場、隨州市隨縣農(nóng)業(yè)科學研究所進行生產(chǎn)試驗,表現(xiàn)分蘗力強、穗多、穗大、穗層整齊,抗倒性好,綜合抗病性較好,每公頃產(chǎn)量分別為7680、7005kg/hm2。

    Nanopores prepared with a deposition time of 600 s were also used for the testing of 80 and 50 nm-diameter nanoparticles.From Figs.6(c)and 6(d),it can be seen that these nanopores provide no response for the 80 nm nanoparticles.The test with 50 nm nanoparticles resulted in regular current-peak signals,and there were 51 translocation events within a period of 4 s[Fig.6(h)].Figures 6(i)–6(l)show the dwell times for the two kinds of nanopores tested with the two sizes of nanoparticle.It can be seen that the nanopore prepared with a deposition time of 600 s has a selective response to 50 nm-diameter nanoparticles.

    The above results demonstrate that by simply changing the deposition time,the selective identificatio of nanoparticles of different sizes can be realized.These nanopore devices can work for more than 180 min under a 1 V bias voltage.The prepared nanopores respond sensitively and can identify single-particle translocation events stably and in real time.

    IV.CONCLUSIONS

    In this paper,a method for preparing nanopores based on electrodeposition of conductive polymers is proposed to meet the test requirements of nanoparticles with scales of the order of tens of nanometers,such as exosomes and virus particles.The nanopores prepared using conductive polymers have good conductivity,so they have better response sensitivity than nanopores prepared with borosilicate glass alone.To solve the problem of securely adhering the conducting polymers to the tips of the nanopipettes,copper ions were introduced,and this caused the polymers to become crosslinked into a gel state during electrodeposition.Stable attachment to the nanopipette tip and the formation of conductive polymer nanopores was successfully achieved.The size of the nanopores can be changed by simply changing the duration of electrodeposition,and this was demonstrated by obtaining a series of transient-current spectra with two kinds of nanoparticles.This method provides a new approach for identificatio of multiple particles at scales of the order of tens of nanometers.

    SUPPLEMENTARY MATERIAL

    See the supplementary material for more details about the deposition of PEDOT:PSS on the gold-plated nanopipette and the instruments and materials used in the experiments.

    AUTHOR DECLARATIONS

    Conflict of Interest

    The authors have no conflict to disclose.

    Author Contributions

    L.L.and F.Z.contributed equally to this work.

    ACKNOWLEDGMENTS

    The authors gratefully acknowledge financia support from the National Natural Science Foundation of China(Grant No.62174119),the National Key R&D Program of China(Grant No.2021YFC3002202),the 111 Project(Grant No.B07014),and the Scientifi Research Transformation Foundation of Wenzhou Safety(Emergency)Institute of Tianjin University.The authors gratefully acknowledge Wenlan Guo,Quanning Li,Chongling Sun,Chen Sun,Xuejiao Chen,and Bohua Liu for their help.

    DATA AVAILABILITY

    The data that support the finding of this study are available within the article and its supplementary material.

    猜你喜歡
    原種場張羅隨縣
    張羅姣作品
    兩種輕型汽車能耗及續(xù)駛里程試驗方法對比
    隨縣第三次林業(yè)有害生物普查結(jié)果及分析
    綠色科技(2020年13期)2020-12-15 06:56:08
    賀家山原種場深兩優(yōu)867再生稻示范總結(jié)
    綠殼蛋雞種群禽白血病凈化技術研究
    靳局長的牽掛
    資源導刊(2019年8期)2019-09-10 07:22:44
    隨縣苗圃主要林業(yè)有害生物
    龍巖市地方優(yōu)良種禽原種場禽白血病p27抗原檢測與分析
    億元土地糾紛牽出多少貪腐黑幕
    新傳奇(2016年31期)2016-10-12 03:32:34
    “小香菇”開創(chuàng)“大產(chǎn)業(yè)”
    支點(2016年1期)2016-01-29 18:50:40
    成年人午夜在线观看视频| 亚洲精品粉嫩美女一区| 久久久国产欧美日韩av| 精品亚洲乱码少妇综合久久| 新久久久久国产一级毛片| 久久精品国产a三级三级三级| 亚洲中文字幕日韩| 欧美亚洲日本最大视频资源| 黄色 视频免费看| 久久久久久人人人人人| 国产精品亚洲av一区麻豆| 777米奇影视久久| 精品欧美一区二区三区在线| 黄色丝袜av网址大全| 黄色怎么调成土黄色| 免费一级毛片在线播放高清视频 | 黑人操中国人逼视频| 王馨瑶露胸无遮挡在线观看| 欧美人与性动交α欧美软件| 国产精品国产高清国产av | 国产免费视频播放在线视频| 国产1区2区3区精品| 免费一级毛片在线播放高清视频 | 亚洲欧美日韩高清在线视频 | 久久久欧美国产精品| 99国产精品免费福利视频| 国产一区二区激情短视频| 捣出白浆h1v1| 黑丝袜美女国产一区| 日韩视频一区二区在线观看| 视频区欧美日本亚洲| 午夜福利在线免费观看网站| 香蕉丝袜av| 国产亚洲精品久久久久5区| 国产男女超爽视频在线观看| 国产精品av久久久久免费| 99精国产麻豆久久婷婷| 国产亚洲精品久久久久5区| 久久久久久久久久久久大奶| 久久精品91无色码中文字幕| 一边摸一边抽搐一进一小说 | 最近最新中文字幕大全免费视频| 国产黄色免费在线视频| 欧美亚洲 丝袜 人妻 在线| 叶爱在线成人免费视频播放| 在线看a的网站| 黄片大片在线免费观看| 久久午夜亚洲精品久久| 性少妇av在线| 久久久国产一区二区| 最新美女视频免费是黄的| 日日爽夜夜爽网站| 日韩免费高清中文字幕av| 成年版毛片免费区| 精品国产亚洲在线| 在线观看人妻少妇| 欧美黑人欧美精品刺激| 一个人免费在线观看的高清视频| 别揉我奶头~嗯~啊~动态视频| 成人影院久久| 动漫黄色视频在线观看| 性高湖久久久久久久久免费观看| 99热网站在线观看| 国产精品久久久久久精品电影小说| 男女无遮挡免费网站观看| 99精国产麻豆久久婷婷| 欧美日韩视频精品一区| 国产欧美日韩一区二区精品| 精品熟女少妇八av免费久了| 在线av久久热| 亚洲avbb在线观看| 国产一区二区 视频在线| 美女福利国产在线| 国产精品99久久99久久久不卡| 久久久久久免费高清国产稀缺| 国产男靠女视频免费网站| 精品一品国产午夜福利视频| 中文字幕人妻丝袜一区二区| 国产精品av久久久久免费| 桃红色精品国产亚洲av| 国产麻豆69| 国产片内射在线| 丰满少妇做爰视频| 久久婷婷成人综合色麻豆| 国产欧美日韩精品亚洲av| 69精品国产乱码久久久| 日韩免费高清中文字幕av| 国产在线观看jvid| 久久精品成人免费网站| 91麻豆av在线| 啦啦啦中文免费视频观看日本| 五月天丁香电影| 久久婷婷成人综合色麻豆| 亚洲国产毛片av蜜桃av| 91麻豆精品激情在线观看国产 | a级毛片黄视频| 黄网站色视频无遮挡免费观看| 黑人欧美特级aaaaaa片| 精品人妻熟女毛片av久久网站| 亚洲成av片中文字幕在线观看| 99精国产麻豆久久婷婷| 最近最新中文字幕大全免费视频| 99riav亚洲国产免费| 菩萨蛮人人尽说江南好唐韦庄| 国产成人啪精品午夜网站| 2018国产大陆天天弄谢| 男女高潮啪啪啪动态图| 丝袜美足系列| 国产精品一区二区精品视频观看| 亚洲 国产 在线| 日本精品一区二区三区蜜桃| 日韩熟女老妇一区二区性免费视频| 天天操日日干夜夜撸| 99riav亚洲国产免费| 久久久久视频综合| xxxhd国产人妻xxx| 色婷婷久久久亚洲欧美| 亚洲专区中文字幕在线| h视频一区二区三区| 99精品欧美一区二区三区四区| 亚洲av日韩在线播放| 亚洲人成电影免费在线| 国产激情久久老熟女| 美国免费a级毛片| 在线观看人妻少妇| 高清毛片免费观看视频网站 | www.999成人在线观看| 国产色视频综合| 久久ye,这里只有精品| 亚洲自偷自拍图片 自拍| 一级毛片女人18水好多| 色婷婷久久久亚洲欧美| 丁香六月天网| 黄色视频不卡| 国产精品久久久久久人妻精品电影 | 黄色视频不卡| 久久精品91无色码中文字幕| 少妇的丰满在线观看| 啦啦啦中文免费视频观看日本| 亚洲专区国产一区二区| 悠悠久久av| 精品人妻在线不人妻| 成人亚洲精品一区在线观看| 亚洲精华国产精华精| 午夜老司机福利片| 两个人看的免费小视频| 日韩免费高清中文字幕av| 变态另类成人亚洲欧美熟女 | 日韩欧美一区视频在线观看| 亚洲熟妇熟女久久| 麻豆av在线久日| 亚洲精品乱久久久久久| xxxhd国产人妻xxx| 少妇 在线观看| 天天影视国产精品| 成人亚洲精品一区在线观看| 亚洲天堂av无毛| 国产精品一区二区在线不卡| 老熟妇乱子伦视频在线观看| 巨乳人妻的诱惑在线观看| 精品久久久久久久毛片微露脸| 亚洲精品中文字幕一二三四区 | 女同久久另类99精品国产91| 男人舔女人的私密视频| 1024香蕉在线观看| 又黄又粗又硬又大视频| 精品福利观看| www.自偷自拍.com| 人妻一区二区av| 99精国产麻豆久久婷婷| 一区二区av电影网| 黄片播放在线免费| 国产精品亚洲一级av第二区| 国产在线观看jvid| 国内毛片毛片毛片毛片毛片| 久久九九热精品免费| 久久久久国产一级毛片高清牌| 王馨瑶露胸无遮挡在线观看| 男女午夜视频在线观看| 国产在线视频一区二区| 青草久久国产| 成人影院久久| 午夜两性在线视频| 日韩制服丝袜自拍偷拍| 国产成人精品久久二区二区免费| 少妇 在线观看| 一区二区日韩欧美中文字幕| 大香蕉久久网| 久久精品91无色码中文字幕| 人妻久久中文字幕网| 母亲3免费完整高清在线观看| 老司机福利观看| av一本久久久久| 欧美日韩亚洲国产一区二区在线观看 | 午夜福利,免费看| 国产伦人伦偷精品视频| 最黄视频免费看| 欧美大码av| 97人妻天天添夜夜摸| 国产主播在线观看一区二区| 午夜福利在线免费观看网站| 亚洲成a人片在线一区二区| 国精品久久久久久国模美| 不卡一级毛片| 啦啦啦 在线观看视频| 中文欧美无线码| 成人三级做爰电影| 国产精品国产高清国产av | 极品少妇高潮喷水抽搐| 午夜福利免费观看在线| 一区二区av电影网| 国产精品一区二区免费欧美| 亚洲五月色婷婷综合| 一区二区日韩欧美中文字幕| 久久人妻熟女aⅴ| 国产区一区二久久| 午夜91福利影院| 少妇粗大呻吟视频| 91精品三级在线观看| a在线观看视频网站| 午夜激情久久久久久久| 午夜激情av网站| 欧美变态另类bdsm刘玥| 男女下面插进去视频免费观看| 中文字幕色久视频| 搡老熟女国产l中国老女人| 亚洲伊人色综图| 黄色视频不卡| 国产麻豆69| 色播在线永久视频| 人人妻,人人澡人人爽秒播| 十八禁网站网址无遮挡| 免费观看a级毛片全部| 欧美精品av麻豆av| av免费在线观看网站| 国产xxxxx性猛交| 99精国产麻豆久久婷婷| 人人妻人人澡人人看| 成年人午夜在线观看视频| 国产伦理片在线播放av一区| av福利片在线| 9191精品国产免费久久| 精品亚洲成a人片在线观看| 午夜福利在线免费观看网站| 国产麻豆69| 咕卡用的链子| 久久久国产欧美日韩av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品乱久久久久久| 在线观看免费视频日本深夜| 日韩欧美免费精品| 午夜日韩欧美国产| 捣出白浆h1v1| 亚洲情色 制服丝袜| 国产又爽黄色视频| 日本一区二区免费在线视频| 无限看片的www在线观看| 久久久欧美国产精品| 中文欧美无线码| 国产精品一区二区免费欧美| 久久国产精品影院| 18禁国产床啪视频网站| 成人手机av| 久久99热这里只频精品6学生| 亚洲全国av大片| 狠狠婷婷综合久久久久久88av| 91老司机精品| 日韩欧美一区二区三区在线观看 | 国产成人影院久久av| 老司机深夜福利视频在线观看| 亚洲精品粉嫩美女一区| 黄色怎么调成土黄色| 国产av一区二区精品久久| e午夜精品久久久久久久| 国产无遮挡羞羞视频在线观看| 狠狠狠狠99中文字幕| 男男h啪啪无遮挡| 久久久欧美国产精品| 亚洲第一欧美日韩一区二区三区 | 中亚洲国语对白在线视频| 午夜日韩欧美国产| 成人免费观看视频高清| 精品国产乱子伦一区二区三区| 久久亚洲精品不卡| 高清av免费在线| 日韩欧美国产一区二区入口| 操出白浆在线播放| 成人av一区二区三区在线看| 欧美成狂野欧美在线观看| 国产精品99久久99久久久不卡| 亚洲九九香蕉| 亚洲成人手机| 国产午夜精品久久久久久| 搡老乐熟女国产| 国产淫语在线视频| 亚洲免费av在线视频| 久久久久久人人人人人| 波多野结衣一区麻豆| 亚洲五月色婷婷综合| 男女免费视频国产| 在线十欧美十亚洲十日本专区| 大香蕉久久网| 啦啦啦视频在线资源免费观看| 亚洲,欧美精品.| 久久久国产一区二区| 午夜免费成人在线视频| 别揉我奶头~嗯~啊~动态视频| 日韩一区二区三区影片| 亚洲精华国产精华精| 99国产精品一区二区三区| 亚洲人成77777在线视频| 国产99久久九九免费精品| 18禁国产床啪视频网站| 久久午夜综合久久蜜桃| 亚洲精品一二三| 亚洲欧洲日产国产| 国产高清激情床上av| 精品午夜福利视频在线观看一区 | 国产色视频综合| 九色亚洲精品在线播放| av超薄肉色丝袜交足视频| 老司机亚洲免费影院| 天天添夜夜摸| 色播在线永久视频| 国产一区二区三区在线臀色熟女 | 男女高潮啪啪啪动态图| 另类亚洲欧美激情| 国产精品 欧美亚洲| 国产xxxxx性猛交| 成人国产av品久久久| 91国产中文字幕| 午夜激情av网站| 在线看a的网站| 又黄又粗又硬又大视频| 香蕉丝袜av| 亚洲欧美一区二区三区久久| 99国产综合亚洲精品| 99国产精品99久久久久| 久久久国产精品麻豆| 黄色a级毛片大全视频| kizo精华| 欧美久久黑人一区二区| 久久中文看片网| 夫妻午夜视频| 少妇被粗大的猛进出69影院| 一区二区av电影网| 日韩一区二区三区影片| 嫁个100分男人电影在线观看| 99九九在线精品视频| 巨乳人妻的诱惑在线观看| 老司机午夜十八禁免费视频| av线在线观看网站| 亚洲人成伊人成综合网2020| 精品亚洲乱码少妇综合久久| 在线av久久热| 欧美av亚洲av综合av国产av| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产毛片av蜜桃av| 午夜激情久久久久久久| 精品人妻在线不人妻| 国产成人啪精品午夜网站| 国产精品香港三级国产av潘金莲| 欧美中文综合在线视频| 久久毛片免费看一区二区三区| 高清av免费在线| 午夜福利欧美成人| svipshipincom国产片| 久久狼人影院| av一本久久久久| 久久亚洲精品不卡| 正在播放国产对白刺激| 18禁国产床啪视频网站| 我的亚洲天堂| 国产一区二区激情短视频| 啦啦啦在线免费观看视频4| 亚洲成av片中文字幕在线观看| 国产aⅴ精品一区二区三区波| av视频免费观看在线观看| 久久久国产一区二区| 久久狼人影院| 国产高清videossex| 91麻豆精品激情在线观看国产 | 国产一区二区在线观看av| 两个人看的免费小视频| 老熟妇仑乱视频hdxx| 亚洲欧美一区二区三区黑人| 正在播放国产对白刺激| 韩国精品一区二区三区| 一边摸一边抽搐一进一小说 | 啦啦啦在线免费观看视频4| 日本欧美视频一区| 久久香蕉激情| 亚洲一区中文字幕在线| 国产精品九九99| 高清av免费在线| 亚洲av成人不卡在线观看播放网| 老鸭窝网址在线观看| 看免费av毛片| 日韩欧美一区视频在线观看| 18禁黄网站禁片午夜丰满| 亚洲欧美日韩另类电影网站| 99国产综合亚洲精品| 国产成人av激情在线播放| 免费少妇av软件| 大香蕉久久成人网| 国产精品国产高清国产av | 久久久久久久久久久久大奶| 欧美日韩国产mv在线观看视频| 亚洲,欧美精品.| 色综合欧美亚洲国产小说| 精品国产亚洲在线| 最近最新中文字幕大全免费视频| 啦啦啦视频在线资源免费观看| 午夜福利一区二区在线看| 女人精品久久久久毛片| 国产一区二区三区视频了| 久久亚洲真实| 天天躁日日躁夜夜躁夜夜| 亚洲男人天堂网一区| 国产精品欧美亚洲77777| 女人高潮潮喷娇喘18禁视频| 后天国语完整版免费观看| 色老头精品视频在线观看| 一个人免费在线观看的高清视频| 国产精品一区二区免费欧美| 欧美黑人精品巨大| 日本wwww免费看| 亚洲五月色婷婷综合| 狠狠狠狠99中文字幕| 精品卡一卡二卡四卡免费| 人人妻人人爽人人添夜夜欢视频| 亚洲国产欧美在线一区| av天堂在线播放| 久久精品亚洲av国产电影网| 我要看黄色一级片免费的| 99国产综合亚洲精品| 久久 成人 亚洲| 色94色欧美一区二区| 亚洲专区字幕在线| 亚洲国产欧美一区二区综合| 国产日韩欧美视频二区| 国产极品粉嫩免费观看在线| 丁香六月天网| 免费av中文字幕在线| 久久中文看片网| 啦啦啦在线免费观看视频4| 国产精品自产拍在线观看55亚洲 | 一个人免费看片子| 国产精品欧美亚洲77777| 亚洲av美国av| 在线观看免费高清a一片| 俄罗斯特黄特色一大片| 777久久人妻少妇嫩草av网站| 在线观看免费日韩欧美大片| 国产深夜福利视频在线观看| av网站在线播放免费| 久久天堂一区二区三区四区| 久久青草综合色| 国产免费现黄频在线看| 国产精品国产高清国产av | 国产精品久久久久成人av| 美女午夜性视频免费| 如日韩欧美国产精品一区二区三区| 国产精品98久久久久久宅男小说| 久久人妻福利社区极品人妻图片| 国产1区2区3区精品| 亚洲精品美女久久久久99蜜臀| 正在播放国产对白刺激| 精品视频人人做人人爽| 亚洲成国产人片在线观看| 一边摸一边做爽爽视频免费| 男女免费视频国产| 亚洲av成人一区二区三| 99在线人妻在线中文字幕 | 搡老乐熟女国产| 久久精品熟女亚洲av麻豆精品| 久久久久视频综合| 国产精品影院久久| 99香蕉大伊视频| 久久久精品区二区三区| 欧美日韩成人在线一区二区| 在线观看66精品国产| 午夜福利在线观看吧| 午夜激情av网站| 一级,二级,三级黄色视频| 女性被躁到高潮视频| 男女之事视频高清在线观看| 免费av中文字幕在线| 淫妇啪啪啪对白视频| 好男人电影高清在线观看| 99精品久久久久人妻精品| 少妇粗大呻吟视频| 大香蕉久久成人网| 亚洲欧美精品综合一区二区三区| 午夜福利在线观看吧| 在线观看免费视频日本深夜| 啪啪无遮挡十八禁网站| 国产精品国产高清国产av | 十八禁网站免费在线| av一本久久久久| 日韩欧美一区二区三区在线观看 | 成人黄色视频免费在线看| 激情视频va一区二区三区| 亚洲人成电影观看| 国产日韩欧美视频二区| 久久午夜亚洲精品久久| 色在线成人网| 欧美久久黑人一区二区| 久久人妻福利社区极品人妻图片| 午夜两性在线视频| 亚洲成a人片在线一区二区| 久久精品熟女亚洲av麻豆精品| 国产男女内射视频| 80岁老熟妇乱子伦牲交| 一级毛片电影观看| 精品视频人人做人人爽| 老司机福利观看| 国产又色又爽无遮挡免费看| 国产亚洲欧美精品永久| 夜夜骑夜夜射夜夜干| 亚洲av成人不卡在线观看播放网| 亚洲一卡2卡3卡4卡5卡精品中文| 美女视频免费永久观看网站| 久久精品亚洲av国产电影网| 亚洲欧美日韩另类电影网站| 久久久久国内视频| 亚洲精品国产区一区二| 精品熟女少妇八av免费久了| 精品一区二区三区视频在线观看免费 | 97在线人人人人妻| 国产国语露脸激情在线看| 在线亚洲精品国产二区图片欧美| 丝袜人妻中文字幕| 建设人人有责人人尽责人人享有的| 欧美精品人与动牲交sv欧美| 女性被躁到高潮视频| 99精国产麻豆久久婷婷| 一本—道久久a久久精品蜜桃钙片| 天天躁夜夜躁狠狠躁躁| 精品国产乱码久久久久久小说| 一本久久精品| 国产精品九九99| 99国产精品99久久久久| 国产欧美亚洲国产| 99国产精品99久久久久| 精品乱码久久久久久99久播| 法律面前人人平等表现在哪些方面| 国产精品香港三级国产av潘金莲| 成人三级做爰电影| 久久久国产欧美日韩av| 视频在线观看一区二区三区| 国产视频一区二区在线看| 视频在线观看一区二区三区| 久久国产精品影院| 亚洲一区二区三区欧美精品| 国产亚洲av高清不卡| 成年人黄色毛片网站| 久久婷婷成人综合色麻豆| 国产熟女午夜一区二区三区| 91字幕亚洲| 夜夜夜夜夜久久久久| 国产又爽黄色视频| 午夜成年电影在线免费观看| 国产欧美日韩一区二区三| 亚洲欧美日韩高清在线视频 | 中文字幕精品免费在线观看视频| 国产黄频视频在线观看| 丁香欧美五月| 窝窝影院91人妻| 天天操日日干夜夜撸| 欧美+亚洲+日韩+国产| 国产高清videossex| 国内毛片毛片毛片毛片毛片| 超碰97精品在线观看| 人妻久久中文字幕网| 女性生殖器流出的白浆| 在线观看免费视频日本深夜| 18禁裸乳无遮挡动漫免费视频| 精品人妻熟女毛片av久久网站| 亚洲一区中文字幕在线| 国产精品秋霞免费鲁丝片| 亚洲精品一二三| 欧美 亚洲 国产 日韩一| 别揉我奶头~嗯~啊~动态视频| h视频一区二区三区| 9191精品国产免费久久| 久久性视频一级片| 国产不卡一卡二| 精品少妇内射三级| 国产精品偷伦视频观看了| 巨乳人妻的诱惑在线观看| 真人做人爱边吃奶动态| 欧美亚洲 丝袜 人妻 在线| 国产日韩欧美在线精品| 91精品国产国语对白视频| 丝袜人妻中文字幕| 在线观看一区二区三区激情| 黄色a级毛片大全视频| 精品福利永久在线观看| 午夜免费成人在线视频| 精品国产乱子伦一区二区三区| av网站免费在线观看视频| 国产精品影院久久| 亚洲欧美日韩高清在线视频 | 久久久久久久大尺度免费视频| 国产精品欧美亚洲77777| 久久中文字幕一级| 久久久久久久大尺度免费视频| 黄色丝袜av网址大全| 男女之事视频高清在线观看| 狠狠精品人妻久久久久久综合| 欧美大码av| 99国产精品一区二区蜜桃av | 国产av精品麻豆| 999精品在线视频|