• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conductive polymer hydrogel-coated nanopipette sensor with tunable size

    2022-02-01 01:47:20LinLiFengZhouandQiannanXue
    納米技術與精密工程 2022年4期
    關鍵詞:原種場張羅隨縣

    Lin Li, Feng Zhou, and Qiannan Xue,2,a)

    ABSTRACT Nanopipette-based sensors are one of the most effective tools for detecting nanoparticles,bioparticles,and biomolecules.Quantitative analysis of nanoparticles with different shapes and electrical charges is achieved through measurement of the blockage currents that occur when particles pass through the nanopore.However,typical nanopipette sensors fabricated using a conventional needle-pulling method have a typical pore-diameter limitation of around 100 nm.Herein,we report a novel conductive hydrogel-composited nanopipette sensor with a tunable inner-pore diameter.This is made by electrodepositing poly(3,4-ethylenedioxythiophene)polystyrene sulfonate onto the surface of a nanopipette with a prefabricated sacrificia copper layer.Because of the presence of copper ions,the conductive polymer can stably adhere to the tip of the nanopipette to form a nanopore;when nanoparticles pass through the conductive nanopore,more distinct blocking events are observed.The size of the nanopore can be changed simply by adjusting the electrodeposition time.In this way,suitable nanopores can be obtained for highly sensitive screening of a series of particles with diameters of the order of tens of nanometers.

    KEYWORDS Nanopipette,Conductive polymer,Electrodeposition,Nanoparticles

    I.INTRODUCTION

    The word“nanopipette”usually refers to a borosilicate glass pipette with a pore diameter of less than 200 nm and a needle geometry.1Nanopipettes are usually used for biochemical sensing,2,3single-cell monitoring,4,5and scanning probe microscopy.6,7As an important type of nanopore sensor,nanopipettes can be used to test the material exchange in the deep parts of samples such as vesicles8and cells.9,10This is because of their probe-type structure,which allows for very flexibl testing in different scenarios.

    There are two main strategies that are used to fabricate nanopipettes:pulling a heated capillary tube11,12and externally penetrating a nanocavity enclosed in the terminal of a capillary pipette.13–15Most nanoprobes are currently made from borosilicate glass or quartz.16Generally,borosilicate glass capillaries are used for the preparation of nanopipettes using a laser pipette puller.By changing various parameters of this puller(laser intensity,processing time,tensile force,etc.),17the same glass tube can be transformed into nanopores with different apertures at their tips.Borosilicate glass capillaries are soft and easy to fabricate,but it is difficul to use them to create a nanopipette with a pore diameter less than 100 nm.8

    The preparation of nanopipettes using borosilicate capillaries is favored because of its simplicity and consistency,and the resulting nanopipettes can be further modifie to achieve various functions.For example,Ying et al.18used a nanopipette to probe into a cell to monitor its biochemical reactions.Nanopipettes can also be used to filte ions or detect molecules by attaching various molecules to their inner walls;these interact with ions or molecules passing through the nanopores.19A nanopore sensor can be used to distinguish the category of a measured object by detecting transient changes in conductance signals caused by the object passing through the pore.20Nanopipettes are generally suitable for the detection of larger biological particles such as exosomes,virus particles,and other particles above the 100 nm scale.21However,because of the excessive size of their apertures,the signals from nanopipettes are weak when attempting to identify particles with scales of the order of tens of nanometers.When facing the measured nanoparticles with dozens of nanometers,a simple fabrication method is highly desirable.In addition,if conductive materials can be used to form these nanopores,22this could be expected to result in the measured object causing larger transient changes in electrical signals,and this would be conducive to improving the detection resolution.

    In this paper,a new method for preparing nanopores from conductive polymers is proposed,in which the pore size can be adjusted and controlled according to the size of the target particles.In this technique,poly(3,4-ethylenedioxythiophene)polystyrene sulfonate(PEDOT:PSS)gel is applied to the tip of a nanopipette as the framework,forming a conductive polymer nanopore by electrodeposition.This design allows nanoparticles of different sizes to pass through the nanopore while resulting in different transient current responses.This method has the following advantages.(i)Conductive polymers have good conductivity and better response sensitivity than quartz nanopores.(ii)PEDOT:PSS is electrodeposited on a copper layer,and the anode oxidizes this copper into copper ions for doping the PEDOT:PSS.This causes the conductive polymer to crosslink into a gel state and more firml adhere to the nanopipette around the nanopore.(iii)Using direct electrodeposition,the pore size can be changed by adjusting the deposition time.This allows a series of transient-current spectra to be obtained and more information to be collected for the identificatio of mixed particles.

    FIG.1.(a)Schematic ofthe process used to produce the PEDOT:PSS conductive polymer nanopore sensors in this study.(b)Detection principle ofthese sensors.

    II.NANOPORE SENSOR FABRICATION

    A.Preparation and processing of nanopores

    A schematic of the process used to produce the nanopores in this study is shown in Fig.1(a).First,the nanopipettes are fabricated from borosilicate glass capillaries using a laser-based micropipette puller system(P-2000,Sutter Instrument Company).The pulling follows a two-step process(Line 1:Heat 350,Fil 3,Vel 30,Del 200,Pul 0;Line 2:Heat 340,Fil 2,Vel 27,Del 160,Pul 250).In the pulling parameters,Heat is related to the power of the laser;Fil is associated with the scanning mode of the laser;Vel is related to the pulling velocity during laser heating;Del is related to the duration of laser heating;and Pul is related to the tensile force after laser heating.Using these parameters,the pore diameter of the nanopore devices was found to be 138.4±3 nm;a scanning electron microscope(SEM)photograph of a nanopipette produced using these parameter values is shown in Fig.2(a).

    Then,a layer of copper is evaporated onto the surface of the obtained nanopipettes using an electron beam evaporation method.The nanopipettes are then immersed in PEDOT:PSS solution(0.13 wt.%)for deposition.The copper layer is taken as the working electrode,a platinum electrode(10×10 mm2)is used as a counter electrode,and a calomel electrode is used as a reference electrode.A positive bias voltage is applied between the working electrode and the counter electrode,and the metallic copper layer of the working electrode is oxidized to form copper ions.These copper ions diffuse around the nanopipette and induce the PEDOT:PSS to become locally gelatinous.23As shown in the inset diagrams of Fig.1(a),the PEDOT:PSS is initially in a colloidal dispersion in the buffer.When the copper layer is oxidized to Cu2+,the electrostatic repulsion between the dispersed PEDOT:PSS particles disappears because of the introduction of copper ions,and they thus cross-link with each other and form a gel state.The instruments and materials required for this preparation process are listed in Table S3.

    B.Optimization of nanopore processing parameters

    We further optimized the parameters used to produce the nanopores.When the Pul parameters of lines 1 and 2 were 0 and 240,respectively,the pore diameter was found to be 189.4 nm[Fig.2(b)].When the Vel parameters of lines 1 and 2 were 27 and 24,respectively,the pore diameter was 109.3 nm[Fig.2(c)].When the Heat parameters of lines 1 and 2 were 340 and 330,respectively,the pore diameter was 219.5 nm[Fig.2(d)].When the Del parameters of lines 1 and 2 were 190 and 150,respectively,the pore diameter was 151.5 nm[Fig.2(e)].As shown in Fig.2(c),the nanopipette was not straight when the aperture was reduced to 109.3 nm.Therefore,we took the parameters used to prepare the nanopipette shown in Fig.2(a)as the optimum values.

    FIG.2.Nanopores produced using different processing parameters.(a)Nanopores obtained following the two-step process(scale bar is 500 nm).(b)–(e)Nanopores obtained after changing the processing parameters.(f)Comparison ofadjusted parameters and corresponding nanopore diameters(units:nm).

    FIG.3.Optical microscope images of nanopipettes:(a)as initially prepared;(b)after copper deposition;(c)after formation of a PEDOT:PSS conductive polymer layer.SEM images of nanopipettes:(d)as initially prepared;(e)with a PEDOT:PSS conductive polymer layer.(f)SEM image showing enlarged section of PEDOT:PSS gel.The scale bars in(a)–(e)are 500 nm long;the scale bar in(f)is 200 nm long.

    C.Characterization of nanopores

    The morphology of the nanopipettes after each preparation step was observed with an optical microscope.It can be seen from Figs.3(a)and 3(b)that the metal copper layer was deposited on the outside of the nanopipette to form a good level of cover.Figure 3(c)demonstrates that the deposited PEDOT:PSS can be uniformly attached to the outer wall of a nanopipette with a diameter of only 100 nm.To demonstrate that the copper ions are conducive to the stable deposition of PEDOT:PSS,we prepared nanopipettes with evaporated gold layers under the same conditions.Figure S1 shows that in these conditions,it is difficul to form a perfect polymer layer on the gold surface.This is because copper ions are oxidized by applying a forward bias to the copper layer;the addition of copper ions causes the slightly negatively charged dispersed PEDOT:PSS particles near the copper layer to become crosslinked with each other,and a stable conductive polymer nanopore is formed at the tip of the nanopipette.If the copper is replaced with gold,it is difficul for the PEDOT:PSS to adhere to the outside of the nanoscale-diameter tubes because there is no metal cation involved.

    We observed the nanopipettes before and after deposition by SEM.Figure 3(e)clearly shows that the PEDOT:PSS is wrapped over the outer walls of the nanopipettes,and the layer is relatively fla and uniform.Figure 3(f)shows a more uniform and flatte PEDOT:PSS gel polymer layer on a nanopipette.Compared with the control group with a gold layer,the sacrificia copper layer helps to obtain a stable conductive polymer layer at the tip of the nanopipette.

    D.Experimental process

    The PEDOT:PSS conductive polymer was electrodeposited on the outside of the tube wall using the nanopipette as the anode.The constant-current method was adopted,and the current was set to 30μA.The nanopores formed by the conductive polymer under four deposition conditions were compared.After the preparation of these four kinds of nanopore,we used a solution of 80 nm-diameter polystyrene spheres(0.1 nM,in 1M KCl,pH=7.4)as standard objects to test each in turn.As shown in Fig.1(b),the polystyrene nanoparticle solution was injected into the nanopipette,a silver probe was inserted into the nanopipette close to the nanopore,and the nanopipette was then put into a test cell with KCl solution(1M KCl,pH=7.4).An Ag/AgCl electrode was also placed in the test cell,and a bias voltage of 1 V was applied between the silver probe and the Ag/AgCl electrode.High-definitio current data were recorded using a patch clamp amplifie(HEKA Elektronik,GmbH).

    III.RESULTS AND DISCUSSION

    A.Optimization of electrodeposition time

    We selected four kinds of nanopores prepared with different electrodeposition durations:0,180,360,and 600 s.As can be seen from Fig.4(a),as the deposition time increases,the average response current of the prepared conductive polymer nanopores when detecting nanoparticles decreases.It can be considered that under the test framework shown in Fig.1(b),the Ag probe and Ag/AgCl electrode are connected by ionic solution through the nanopores,forming an ionic conductivity,g.This conforms to the relationship g=Ig/Vr,where Vris the bias voltage applied between the silver probe and the control electrode and Igis the current obtained from the test.With increasing deposition time,the conductivity inside and outside the nanopores decreases,indicating that the pore size of the conductive polymer nanopores decreases gradually.

    The pore diameter of the nanopores dtipcan be calculated using24

    FIG.4.The current signals from the nanopipettes in response to 80 nm nanoparticles were tested with a patch clamp.(a)Average response currents of the nanopipettes under the four deposition times,0,180,360,and 600 s,labeled as 1#,2#,3#,and 4#,respectively;panels(b)–(e)show plots of the respective currents of the nanopipettes over time.

    It is difficul to characterize the sizes of the pores using images,and the purpose of this study was to test nanoparticles with scales of the order of tens of nanometers using an electrical method.This is the reason that 80 nm-diameter polystyrene nanoparticles were used as the test object to observe the changes in transient current signals.Figures 4(b)–4(d)show the real-time current results from the four kinds of nanopores.When the nanopipette without any deposited conductive polymer was tested,no translocations were observed[Fig.4(b)].This shows that the nanoparticles were able to pass through the nanopore.Because the particle size is much smaller than the nanopore size,the particles will not cause single-particle translocation.

    For a single particle to be observed using a nanopore,the ratio of the pore diameter to the particle diameter needs to be within a certain range.25When a nanopore prepared with a deposition time of 180 s was used to test the nanoparticles,only a very small transient current peak occurred[Fig.4(c)].This is because the nanopore size has been reduced,and it is possible for the nanoparticles to cause a blockage.However,since the pore size is still relatively larger than the particle size,few translocation events can be observed.When the nanopore prepared with a deposition time of 360 s was used to test the nanoparticles,the results showed regular transient current signals[Fig.4(d)].This is because in this case,the size of the nanoparticles is well matched with the pore size;therefore,when the nanoparticles pass through the nanopore one by one,there will be a parallel current with a peak value.When a nanopore prepared with a deposition time of 600 s was used to test the nanoparticles,there were no transient currents observed[Fig.4(e)].Under such deposition conditions,the size of the prepared nanopore is too small to allow 80 nm particles to pass through.These electrical test results are consistent with the calculated apertures,and this preliminarily demonstrates that the experimental assumptions are appropriate.Based on these results,a deposition time of 360 s was selected as the optimal preparation conditions for the modifie conductive polymer PEDOT:PSS.

    FIG.5.Transientcurrent signals under bias voltages of:(a)0.5 V;(b)0.75 V;(c)1 V.(d)–(f)Respective counts of currentpeaks with these three values of bias voltage.(g)–(i)Respective dwelltimes and currentpeaks for each single-particle translocation event.

    B.Optimization of testing conditions for conducting polymer nanopores

    Again using 80 nm-diameter polystyrene nanoparticles as the test object,the bias voltage was optimized to fin an appropriate value for examining the translocation events.The silver probe in the nanopore was used as the anode,and the silver chloride electrode in the solution was used as the cathode.Considering the upper limit of the system voltage,the bias voltage was set to test values of 0.5,0.75,and 1 V.Here,the nanopipette was prepared by drawing,evaporating a copper layer,and electrodeposition(constant current:30μA,360 s).Each nanoparticle passing through the conductive polymer nanopore will cause a single particle-translocation event,and this will result in a transient falling peak in the real-time current curve.

    Figures 5(a)–5(c)show the transient-current signals under the three values of bias voltage.Correspondingly,Figs.5(d)–5(f)show counts of the numbers of current peaks.These results show that the current peaks increase significantl with increasing bias voltage:the number of current peaks is the highest under a bias voltage of 1 V.Figures 5(g)–5(i)show the dwell times under the three respective values of bias voltage;the longest average dwell times were observed with a bias voltage of 1 V.The tested polystyrene nanoparticles have negatively charged sulfonic-acid groups on their surfaces,so when they pass through a nanopore with a positive bias,the dwell time will increase with the bias voltage.The most translocation events occurred with a bias of 1 V,and they had the longest dwell times.

    FIG.6.Real-time current curves of:(a)80 nm and(b)50 nm nanoparticles detected by nanopores deposited for 360 s;(c)80 nm and(d)50 nm nanoparticles detected by nanopores deposited for 600 s.(e)–(h)Counts ofcurrentpeaks in the four tests,corresponding to the current signals in(a)–(d),respectively.(i)–(l)Dwelltimes and current peaks for each single-particle translocation event in the four tests,corresponding to the currentcurves in(a)–(d),respectively.

    C.Conductive polymer nanopores with adjustable pore size

    Using the technique proposed in this paper,nanopores of different sizes can be prepared simply by adjusting the electrodeposition conditions.To demonstrate this,PEDOT:PSS conductive polymer layers were electrodeposited on the tips of nanopipettes with a copper sacrificia layer(constant current:30μA)using two different deposition durations:360 and 600 s.The results in Fig.4 indicate that the diameters of nanopores prepared with a 360 s deposition time should be slightly greater than 80 nm;with a 600 s deposition time,the nanopore diameter should be less than 80 nm.These two kinds of nanopore were used to test polystyrene nanoparticles with particle sizes of 80 and 50 nm to establish whether a differentiated response could be observed.From the real-time current curve for the nanopore prepared with a deposition time of 360 s,it can be seen that there are obvious current spikes in the test with 80 nm nanoparticles[Fig.6(a)],and there were 69 translocation events within a period of 4 s[Fig.6(e)].When the same nanopore was used to test 50 nm nanoparticles,it can be seen that the peaks become very small,and there are significantl fewer than with the 80 nmnanoparticles[Figs.6(e)and 6(f)].These results show that with a deposition time of 360 s,the diameter of the prepared nanopores is only slightly larger than 80 nm.When testing particles with 50 nm size,they cannot produce a response because of the large size difference.This demonstrates that the conductive polymer nanopores prepared under this condition are selective to 80 nm particles.

    2016—2017年在襄陽市襄州區(qū)古驛鎮(zhèn)張羅崗原種場、隨州市隨縣農(nóng)業(yè)科學研究所進行生產(chǎn)試驗,表現(xiàn)分蘗力強、穗多、穗大、穗層整齊,抗倒性好,綜合抗病性較好,每公頃產(chǎn)量分別為7680、7005kg/hm2。

    Nanopores prepared with a deposition time of 600 s were also used for the testing of 80 and 50 nm-diameter nanoparticles.From Figs.6(c)and 6(d),it can be seen that these nanopores provide no response for the 80 nm nanoparticles.The test with 50 nm nanoparticles resulted in regular current-peak signals,and there were 51 translocation events within a period of 4 s[Fig.6(h)].Figures 6(i)–6(l)show the dwell times for the two kinds of nanopores tested with the two sizes of nanoparticle.It can be seen that the nanopore prepared with a deposition time of 600 s has a selective response to 50 nm-diameter nanoparticles.

    The above results demonstrate that by simply changing the deposition time,the selective identificatio of nanoparticles of different sizes can be realized.These nanopore devices can work for more than 180 min under a 1 V bias voltage.The prepared nanopores respond sensitively and can identify single-particle translocation events stably and in real time.

    IV.CONCLUSIONS

    In this paper,a method for preparing nanopores based on electrodeposition of conductive polymers is proposed to meet the test requirements of nanoparticles with scales of the order of tens of nanometers,such as exosomes and virus particles.The nanopores prepared using conductive polymers have good conductivity,so they have better response sensitivity than nanopores prepared with borosilicate glass alone.To solve the problem of securely adhering the conducting polymers to the tips of the nanopipettes,copper ions were introduced,and this caused the polymers to become crosslinked into a gel state during electrodeposition.Stable attachment to the nanopipette tip and the formation of conductive polymer nanopores was successfully achieved.The size of the nanopores can be changed by simply changing the duration of electrodeposition,and this was demonstrated by obtaining a series of transient-current spectra with two kinds of nanoparticles.This method provides a new approach for identificatio of multiple particles at scales of the order of tens of nanometers.

    SUPPLEMENTARY MATERIAL

    See the supplementary material for more details about the deposition of PEDOT:PSS on the gold-plated nanopipette and the instruments and materials used in the experiments.

    AUTHOR DECLARATIONS

    Conflict of Interest

    The authors have no conflict to disclose.

    Author Contributions

    L.L.and F.Z.contributed equally to this work.

    ACKNOWLEDGMENTS

    The authors gratefully acknowledge financia support from the National Natural Science Foundation of China(Grant No.62174119),the National Key R&D Program of China(Grant No.2021YFC3002202),the 111 Project(Grant No.B07014),and the Scientifi Research Transformation Foundation of Wenzhou Safety(Emergency)Institute of Tianjin University.The authors gratefully acknowledge Wenlan Guo,Quanning Li,Chongling Sun,Chen Sun,Xuejiao Chen,and Bohua Liu for their help.

    DATA AVAILABILITY

    The data that support the finding of this study are available within the article and its supplementary material.

    猜你喜歡
    原種場張羅隨縣
    張羅姣作品
    兩種輕型汽車能耗及續(xù)駛里程試驗方法對比
    隨縣第三次林業(yè)有害生物普查結(jié)果及分析
    綠色科技(2020年13期)2020-12-15 06:56:08
    賀家山原種場深兩優(yōu)867再生稻示范總結(jié)
    綠殼蛋雞種群禽白血病凈化技術研究
    靳局長的牽掛
    資源導刊(2019年8期)2019-09-10 07:22:44
    隨縣苗圃主要林業(yè)有害生物
    龍巖市地方優(yōu)良種禽原種場禽白血病p27抗原檢測與分析
    億元土地糾紛牽出多少貪腐黑幕
    新傳奇(2016年31期)2016-10-12 03:32:34
    “小香菇”開創(chuàng)“大產(chǎn)業(yè)”
    支點(2016年1期)2016-01-29 18:50:40
    少妇被粗大猛烈的视频| 爱豆传媒免费全集在线观看| 亚洲成人手机| 欧美成人精品欧美一级黄| av视频免费观看在线观看| 免费av不卡在线播放| 亚洲精品亚洲一区二区| 各种免费的搞黄视频| 99久久综合免费| 青春草国产在线视频| 99久久精品一区二区三区| 久久人妻熟女aⅴ| 视频区图区小说| 天堂8中文在线网| 最近2019中文字幕mv第一页| 免费看不卡的av| 纵有疾风起免费观看全集完整版| 国产精品三级大全| 国产片特级美女逼逼视频| 高清在线视频一区二区三区| 欧美最新免费一区二区三区| 日韩制服骚丝袜av| av卡一久久| 如何舔出高潮| 女性生殖器流出的白浆| 极品人妻少妇av视频| 久久97久久精品| 超碰97精品在线观看| 午夜视频国产福利| 免费高清在线观看视频在线观看| 校园人妻丝袜中文字幕| 丝袜在线中文字幕| 伊人久久精品亚洲午夜| 亚洲欧洲国产日韩| 好男人视频免费观看在线| 欧美 日韩 精品 国产| 中国美白少妇内射xxxbb| 亚洲精品视频女| 免费久久久久久久精品成人欧美视频 | 涩涩av久久男人的天堂| 欧美日韩一区二区视频在线观看视频在线| av免费在线看不卡| 国产精品熟女久久久久浪| 国产高清三级在线| 欧美精品一区二区大全| 九九久久精品国产亚洲av麻豆| 在线观看美女被高潮喷水网站| 久久人人爽人人片av| 久久婷婷青草| 在线观看免费日韩欧美大片 | 国产精品一区二区三区四区免费观看| 日本wwww免费看| 91精品国产国语对白视频| 国产精品一二三区在线看| 亚洲丝袜综合中文字幕| 亚洲国产精品一区二区三区在线| 中文精品一卡2卡3卡4更新| 18禁在线无遮挡免费观看视频| 妹子高潮喷水视频| 日本黄色日本黄色录像| 91aial.com中文字幕在线观看| 一边亲一边摸免费视频| 亚洲欧美清纯卡通| 欧美一级a爱片免费观看看| 国产av精品麻豆| 日本wwww免费看| 国产成人a∨麻豆精品| 美女视频免费永久观看网站| 女人久久www免费人成看片| 日本色播在线视频| 91精品国产国语对白视频| 亚洲精品中文字幕在线视频| 99re6热这里在线精品视频| 亚洲精品久久久久久婷婷小说| 久久久国产一区二区| 亚洲av免费高清在线观看| 97在线人人人人妻| 肉色欧美久久久久久久蜜桃| xxx大片免费视频| 美女内射精品一级片tv| 少妇人妻精品综合一区二区| 久久精品久久久久久久性| 97精品久久久久久久久久精品| 狂野欧美白嫩少妇大欣赏| 乱人伦中国视频| 国产高清三级在线| 日韩精品免费视频一区二区三区 | 狂野欧美激情性xxxx在线观看| 国产视频首页在线观看| 久久国产亚洲av麻豆专区| 一本久久精品| 久久精品国产亚洲网站| 精品99又大又爽又粗少妇毛片| 日日啪夜夜爽| 久久毛片免费看一区二区三区| 欧美日本中文国产一区发布| 精品国产露脸久久av麻豆| a级毛片在线看网站| 国产精品秋霞免费鲁丝片| 成年人免费黄色播放视频| 久久精品国产自在天天线| 久久影院123| 在线免费观看不下载黄p国产| 大又大粗又爽又黄少妇毛片口| 久久99一区二区三区| 国产成人精品婷婷| 少妇熟女欧美另类| 久热这里只有精品99| 交换朋友夫妻互换小说| 精品少妇久久久久久888优播| 国产精品久久久久久精品古装| 日日摸夜夜添夜夜添av毛片| 精品久久久久久久久亚洲| 日本av手机在线免费观看| 久久久久精品性色| 亚洲在久久综合| 午夜av观看不卡| 日日爽夜夜爽网站| videos熟女内射| 高清黄色对白视频在线免费看| 伦理电影免费视频| 国产深夜福利视频在线观看| 边亲边吃奶的免费视频| 国产黄片视频在线免费观看| 亚洲精品第二区| 国产一级毛片在线| 卡戴珊不雅视频在线播放| 激情五月婷婷亚洲| 99久久综合免费| 亚洲欧美日韩另类电影网站| 国产深夜福利视频在线观看| 少妇被粗大的猛进出69影院 | 另类精品久久| 国产淫语在线视频| 亚洲人成77777在线视频| 成人黄色视频免费在线看| 大片电影免费在线观看免费| 黄色怎么调成土黄色| 亚洲国产精品成人久久小说| 三级国产精品片| 国产成人精品一,二区| 黄色一级大片看看| 18在线观看网站| 亚州av有码| 亚洲精品国产av成人精品| 99热这里只有精品一区| 99国产精品免费福利视频| 人妻夜夜爽99麻豆av| 亚洲av男天堂| 国产av国产精品国产| 中文字幕免费在线视频6| 欧美最新免费一区二区三区| 一区二区av电影网| 搡老乐熟女国产| 精品一区二区三区视频在线| 久久久久久久大尺度免费视频| 亚洲精品久久成人aⅴ小说 | 国产一区二区在线观看av| 免费观看性生交大片5| 男人舔女人的私密视频| 露出奶头的视频| 国产成人av教育| 9色porny在线观看| 国产精品1区2区在线观看. | 午夜两性在线视频| 成年动漫av网址| 国产免费福利视频在线观看| 色婷婷av一区二区三区视频| 91精品国产国语对白视频| 不卡一级毛片| 欧美日韩亚洲综合一区二区三区_| 女人精品久久久久毛片| 午夜日韩欧美国产| 亚洲欧美日韩另类电影网站| 久久人妻熟女aⅴ| 波多野结衣一区麻豆| 美女主播在线视频| 日日夜夜操网爽| 不卡一级毛片| 男女床上黄色一级片免费看| 天堂中文最新版在线下载| 午夜老司机福利片| 啦啦啦中文免费视频观看日本| 欧美日韩av久久| 亚洲伊人色综图| 99精品欧美一区二区三区四区| 母亲3免费完整高清在线观看| 成人国语在线视频| 香蕉久久夜色| 国产在线一区二区三区精| 国产精品.久久久| 久久九九热精品免费| 伦理电影免费视频| 国产精品1区2区在线观看. | 国产精品久久久久久精品电影小说| 国产一区有黄有色的免费视频| 叶爱在线成人免费视频播放| 亚洲第一欧美日韩一区二区三区 | 欧美在线黄色| 操出白浆在线播放| 亚洲精品一卡2卡三卡4卡5卡| 国产三级黄色录像| 欧美国产精品一级二级三级| 精品亚洲成a人片在线观看| 麻豆av在线久日| 啦啦啦中文免费视频观看日本| 丁香欧美五月| 久久久精品国产亚洲av高清涩受| 黄网站色视频无遮挡免费观看| 亚洲熟妇熟女久久| 在线观看免费午夜福利视频| 宅男免费午夜| 亚洲国产精品一区二区三区在线| 国产成人欧美在线观看 | 一区在线观看完整版| 中文字幕最新亚洲高清| 黄色成人免费大全| 国产xxxxx性猛交| 午夜免费成人在线视频| 欧美激情极品国产一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 我的亚洲天堂| 亚洲成人免费电影在线观看| kizo精华| 桃红色精品国产亚洲av| 久久久久精品国产欧美久久久| 女同久久另类99精品国产91| 1024香蕉在线观看| 亚洲国产欧美一区二区综合| 欧美成人免费av一区二区三区 | 成人永久免费在线观看视频 | 午夜91福利影院| 国产精品国产av在线观看| 亚洲国产av新网站| 搡老熟女国产l中国老女人| 女人精品久久久久毛片| 精品国产一区二区三区久久久樱花| 香蕉国产在线看| 正在播放国产对白刺激| 亚洲专区国产一区二区| 免费在线观看完整版高清| 69精品国产乱码久久久| 成人影院久久| 久久精品国产综合久久久| 中文字幕制服av| 日本黄色日本黄色录像| 美女主播在线视频| 免费一级毛片在线播放高清视频 | 亚洲第一av免费看| 亚洲中文av在线| 日韩有码中文字幕| 国产成人免费无遮挡视频| 日韩免费av在线播放| 国产三级黄色录像| 99久久精品国产亚洲精品| 精品国产国语对白av| 精品亚洲乱码少妇综合久久| 日韩视频一区二区在线观看| 成人国语在线视频| 建设人人有责人人尽责人人享有的| 黄频高清免费视频| 日日爽夜夜爽网站| 人人妻人人爽人人添夜夜欢视频| 亚洲国产中文字幕在线视频| 搡老岳熟女国产| 国产精品美女特级片免费视频播放器 | 久久久久精品人妻al黑| 久久影院123| 免费少妇av软件| 亚洲色图 男人天堂 中文字幕| 国产精品国产高清国产av | 亚洲伊人久久精品综合| 悠悠久久av| 最近最新免费中文字幕在线| 国产老妇伦熟女老妇高清| 亚洲熟妇熟女久久| 人人妻人人添人人爽欧美一区卜| 久久狼人影院| 中文字幕色久视频| 大型黄色视频在线免费观看| 国产黄频视频在线观看| 国产精品免费视频内射| 母亲3免费完整高清在线观看| 亚洲欧美一区二区三区久久| 成人免费观看视频高清| 性少妇av在线| 亚洲精品av麻豆狂野| 日本一区二区免费在线视频| 狂野欧美激情性xxxx| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲伊人久久精品综合| 99热网站在线观看| 啦啦啦中文免费视频观看日本| 老司机在亚洲福利影院| 日本五十路高清| 夜夜爽天天搞| 免费在线观看日本一区| 韩国精品一区二区三区| 性色av乱码一区二区三区2| 亚洲国产中文字幕在线视频| 日韩一区二区三区影片| 另类亚洲欧美激情| 亚洲色图 男人天堂 中文字幕| 免费一级毛片在线播放高清视频 | 亚洲精品美女久久久久99蜜臀| 国产激情久久老熟女| 精品亚洲成a人片在线观看| 欧美日韩福利视频一区二区| 一区二区三区激情视频| 亚洲国产欧美一区二区综合| 精品福利观看| 啪啪无遮挡十八禁网站| 国产精品国产高清国产av | 久久久久视频综合| 国产亚洲精品第一综合不卡| 国产97色在线日韩免费| 日韩制服丝袜自拍偷拍| 国产成人av教育| 亚洲国产欧美日韩在线播放| 欧美成狂野欧美在线观看| 97人妻天天添夜夜摸| 亚洲av第一区精品v没综合| 真人做人爱边吃奶动态| 国产三级黄色录像| 真人做人爱边吃奶动态| 国产亚洲欧美在线一区二区| 少妇猛男粗大的猛烈进出视频| 午夜福利,免费看| av一本久久久久| 日韩 欧美 亚洲 中文字幕| 老司机午夜十八禁免费视频| 午夜视频精品福利| 青草久久国产| 日韩中文字幕欧美一区二区| 男女边摸边吃奶| 不卡av一区二区三区| 人人妻人人澡人人爽人人夜夜| 脱女人内裤的视频| 日韩三级视频一区二区三区| 精品少妇久久久久久888优播| 欧美激情 高清一区二区三区| 午夜成年电影在线免费观看| 久久国产精品男人的天堂亚洲| 欧美黄色淫秽网站| av线在线观看网站| 午夜精品久久久久久毛片777| 久久久久久免费高清国产稀缺| av超薄肉色丝袜交足视频| 两性午夜刺激爽爽歪歪视频在线观看 | 正在播放国产对白刺激| 少妇被粗大的猛进出69影院| 国产片内射在线| 午夜福利欧美成人| 2018国产大陆天天弄谢| 国产真人三级小视频在线观看| 女人精品久久久久毛片| 欧美精品高潮呻吟av久久| 亚洲伊人久久精品综合| 免费黄频网站在线观看国产| 日韩中文字幕视频在线看片| 欧美在线黄色| √禁漫天堂资源中文www| 国产不卡一卡二| 老司机午夜福利在线观看视频 | av福利片在线| 中文字幕制服av| 欧美人与性动交α欧美精品济南到| 成人特级黄色片久久久久久久 | 下体分泌物呈黄色| 亚洲精华国产精华精| 精品福利观看| 亚洲一区二区三区欧美精品| 国产视频一区二区在线看| 久久免费观看电影| 亚洲欧美精品综合一区二区三区| 母亲3免费完整高清在线观看| 美女国产高潮福利片在线看| 亚洲精华国产精华精| 一二三四在线观看免费中文在| 欧美精品人与动牲交sv欧美| 在线观看免费视频日本深夜| 青草久久国产| 少妇粗大呻吟视频| 国产精品美女特级片免费视频播放器 | 亚洲黑人精品在线| 国产精品免费视频内射| 桃红色精品国产亚洲av| 蜜桃国产av成人99| 无人区码免费观看不卡 | av网站在线播放免费| 国产一区有黄有色的免费视频| 精品一区二区三区四区五区乱码| 又紧又爽又黄一区二区| 国产伦人伦偷精品视频| 亚洲精品粉嫩美女一区| 国产在线免费精品| 欧美乱妇无乱码| 麻豆成人av在线观看| 久久天堂一区二区三区四区| 操出白浆在线播放| 国产精品99久久99久久久不卡| 欧美日韩亚洲综合一区二区三区_| 麻豆国产av国片精品| 午夜福利视频精品| 亚洲精品久久成人aⅴ小说| 亚洲黑人精品在线| 我要看黄色一级片免费的| 久久中文看片网| 一本—道久久a久久精品蜜桃钙片| 亚洲精品一卡2卡三卡4卡5卡| 久久久久精品人妻al黑| 国产激情久久老熟女| 美女视频免费永久观看网站| 在线天堂中文资源库| 性色av乱码一区二区三区2| 久久影院123| 极品少妇高潮喷水抽搐| 操出白浆在线播放| 亚洲精品国产区一区二| 欧美激情高清一区二区三区| 熟女少妇亚洲综合色aaa.| 美女国产高潮福利片在线看| 国内毛片毛片毛片毛片毛片| 9191精品国产免费久久| 91精品三级在线观看| 国产男女内射视频| 亚洲av成人不卡在线观看播放网| 超色免费av| www日本在线高清视频| 亚洲av日韩精品久久久久久密| 国产aⅴ精品一区二区三区波| 亚洲国产毛片av蜜桃av| 99热国产这里只有精品6| 中文亚洲av片在线观看爽 | www.自偷自拍.com| 久久久久久久精品吃奶| 久久午夜综合久久蜜桃| 精品亚洲成a人片在线观看| 国产色视频综合| 五月天丁香电影| 国产精品二区激情视频| 亚洲精品国产一区二区精华液| 少妇的丰满在线观看| 免费在线观看完整版高清| 亚洲国产欧美在线一区| www.自偷自拍.com| 一区在线观看完整版| 变态另类成人亚洲欧美熟女 | 天堂中文最新版在线下载| 免费一级毛片在线播放高清视频 | 99国产精品一区二区蜜桃av | 国产精品免费视频内射| 丝袜美腿诱惑在线| 国产成人免费无遮挡视频| 十八禁网站免费在线| 美女扒开内裤让男人捅视频| 国产精品久久久av美女十八| 女人精品久久久久毛片| 99久久人妻综合| 国产在线观看jvid| 久久九九热精品免费| 9热在线视频观看99| 久久久久久久精品吃奶| 丝袜美足系列| 老汉色av国产亚洲站长工具| 精品少妇久久久久久888优播| 18禁国产床啪视频网站| 高清在线国产一区| 国产又色又爽无遮挡免费看| 成人国产av品久久久| 久久天堂一区二区三区四区| 高清毛片免费观看视频网站 | 久久人妻熟女aⅴ| 日日夜夜操网爽| 美女主播在线视频| 麻豆成人av在线观看| 成年人免费黄色播放视频| 男女高潮啪啪啪动态图| 天天影视国产精品| 国产成人免费观看mmmm| 免费在线观看影片大全网站| 欧美精品人与动牲交sv欧美| av电影中文网址| 成年人免费黄色播放视频| 男女高潮啪啪啪动态图| 亚洲国产看品久久| 久久久久久亚洲精品国产蜜桃av| 另类精品久久| 欧美日韩亚洲综合一区二区三区_| 啦啦啦中文免费视频观看日本| 蜜桃在线观看..| 欧美日韩亚洲国产一区二区在线观看 | av天堂久久9| 另类亚洲欧美激情| 国产激情久久老熟女| 午夜福利乱码中文字幕| 国产精品免费大片| 日韩视频在线欧美| 精品午夜福利视频在线观看一区 | 男女之事视频高清在线观看| 国产亚洲精品一区二区www | 极品教师在线免费播放| 亚洲av成人一区二区三| 日韩熟女老妇一区二区性免费视频| 欧美精品av麻豆av| avwww免费| 亚洲免费av在线视频| 亚洲全国av大片| 国产欧美日韩一区二区精品| 五月天丁香电影| 性色av乱码一区二区三区2| av电影中文网址| 91成年电影在线观看| xxxhd国产人妻xxx| 亚洲男人天堂网一区| 最近最新中文字幕大全电影3 | 老司机午夜福利在线观看视频 | 国产精品偷伦视频观看了| 国产日韩欧美视频二区| 欧美精品一区二区免费开放| 12—13女人毛片做爰片一| 国产精品美女特级片免费视频播放器 | 可以免费在线观看a视频的电影网站| 新久久久久国产一级毛片| av福利片在线| 一边摸一边做爽爽视频免费| 欧美精品人与动牲交sv欧美| 无限看片的www在线观看| 日韩欧美免费精品| 午夜福利影视在线免费观看| 成在线人永久免费视频| 午夜91福利影院| 久久精品人人爽人人爽视色| 99国产精品99久久久久| 男女床上黄色一级片免费看| 91大片在线观看| 国产在线视频一区二区| 91国产中文字幕| 国产亚洲av高清不卡| 国产黄色免费在线视频| 久热爱精品视频在线9| 麻豆av在线久日| 成人特级黄色片久久久久久久 | 亚洲综合色网址| 亚洲伊人色综图| 国产97色在线日韩免费| 色在线成人网| 成人国产av品久久久| 国产福利在线免费观看视频| 欧美性长视频在线观看| 大陆偷拍与自拍| 久久国产亚洲av麻豆专区| 国产一区二区三区综合在线观看| 午夜免费鲁丝| 99在线人妻在线中文字幕 | 亚洲情色 制服丝袜| 久久av网站| 精品少妇久久久久久888优播| 久久中文看片网| 午夜成年电影在线免费观看| tube8黄色片| 一本色道久久久久久精品综合| 国产高清视频在线播放一区| 制服诱惑二区| 国产无遮挡羞羞视频在线观看| 色精品久久人妻99蜜桃| 9热在线视频观看99| 母亲3免费完整高清在线观看| 麻豆乱淫一区二区| 国产伦人伦偷精品视频| a级毛片黄视频| 国产黄色免费在线视频| 色婷婷久久久亚洲欧美| 电影成人av| av免费在线观看网站| 纵有疾风起免费观看全集完整版| 欧美激情久久久久久爽电影 | 欧美人与性动交α欧美精品济南到| 妹子高潮喷水视频| bbb黄色大片| 新久久久久国产一级毛片| 大码成人一级视频| 香蕉国产在线看| 国产老妇伦熟女老妇高清| 亚洲av欧美aⅴ国产| 亚洲av片天天在线观看| 国产精品久久久人人做人人爽| 精品一区二区三区四区五区乱码| tube8黄色片| 色综合欧美亚洲国产小说| 热99久久久久精品小说推荐| 人人妻人人添人人爽欧美一区卜| 亚洲男人天堂网一区| 免费一级毛片在线播放高清视频 | kizo精华| 啦啦啦中文免费视频观看日本| 欧美日本中文国产一区发布| 男男h啪啪无遮挡| 亚洲av日韩在线播放| 757午夜福利合集在线观看| a级毛片在线看网站| 国产一区二区三区视频了| 黄色片一级片一级黄色片| 新久久久久国产一级毛片| 国产成人啪精品午夜网站| 亚洲av美国av| 啦啦啦视频在线资源免费观看| 俄罗斯特黄特色一大片| 老熟妇乱子伦视频在线观看| 欧美日韩成人在线一区二区| 精品一区二区三区视频在线观看免费 | 免费观看av网站的网址| 丝袜美足系列| 亚洲国产精品一区二区三区在线| 亚洲精品成人av观看孕妇|