金建華,張寶忠,劉 鈺,毛曉敏
基于有效含水量的土壤水分監(jiān)測點布設的空間分層采樣方法
金建華1,2,3,張寶忠1,4※,劉 鈺1,4,毛曉敏2
(1. 中國水利水電科學研究院流域水循環(huán)模擬與調控國家重點實驗室,北京 100038; 2. 中國農業(yè)大學水利與土木工程學院,北京 100083; 3. 天津農學院水利工程學院,天津 300384; 4. 國家節(jié)水灌溉北京工程技術研究中心,北京 100048)
為了優(yōu)化灌溉實踐,構建準確估計平均土壤水分的監(jiān)測點布設準則,該研究引入有效含水量(Available Water Capacity, AWC)作為輔助變量,結合經典統(tǒng)計學和地統(tǒng)計學構建了一種基于輔助變量空間自相關的分層采樣方法(Stratified Sampling method based on spatial autocorrelation of Auxiliary Variables,SSAV),克服直接以土壤水分為變量時受其強時空變異影響的弊端,并在田塊尺度進行試驗。結果表明:0~40和0~80 cm土層的AWC服從正態(tài)分布;在90%置信區(qū)間,采樣誤差為10%時研究區(qū)內0~40和0~80 cm土層的監(jiān)測點數(shù)目分別為7個和6個;基于SSAV布點法估計土壤水分的相對誤差變化范圍為–23.23%~35.15%,較簡單隨機布點(Simple Random Sampling,SRS)法減小了26.48%。標準差的平均值為4.78%,較SRS降低了17.30%?;赟SAV的0~40和0~80 cm 2個土層的估計值和觀測值之間的平均均方根誤差RMSE為0.010 4 cm3/cm3,基于SRS的RMSE為0.012 0 cm3/cm3,顯著性檢驗<0.001,SSAV顯著提高了對土壤水分的估計精度和準度。SSAV為獲得區(qū)域平均土壤水分提供了省時、省力、低成本的監(jiān)測點布設方案,為農業(yè)水資源管理和提升農業(yè)用水效率提供了保障。
土壤;水分;采樣;地統(tǒng)計學;有效含水量;空間相關性;空間變異性
土壤水分是水文、生態(tài)、環(huán)境過程和農業(yè)過程中的主導因素之一[1-2],其空間分布在水文、農業(yè)和氣候模擬與預測中具有重要應用[3]。尤其在干旱和半干旱地區(qū),平均土壤水分是地面灌溉條件下大田作物決定灌溉管理決策的關鍵指標。然而,目前尚無準確可靠的土壤水分的監(jiān)測方法,因此近年來土壤水分監(jiān)測成為研究熱點[4]。許多學者認為土壤水分具有很強的時空變異性[5],準確地估計土壤水分需要大量的高頻率采樣,因此,合理、經濟、高效的采樣策略成為解決問題的關鍵[6]。
土壤水分采樣策略的關鍵在于監(jiān)測點的數(shù)量和位置。目前土壤水分監(jiān)測點布置方法主要包括傳統(tǒng)統(tǒng)計特征采樣法、地統(tǒng)計采樣法和基于先驗知識的分層采樣法?;趥鹘y(tǒng)統(tǒng)計的采樣方法主要包括簡單隨機采樣(Simple Random Sampling,SRS)和規(guī)則采樣,傳統(tǒng)統(tǒng)計采樣方法基于“空間變量隨機分布”這一前提,監(jiān)測點的數(shù)目僅與樣本的變異系數(shù)的平方有關[6-7]。Brocca等[8- 9]利用該方法確定了監(jiān)測點的布設數(shù)量。事實上土壤水分變化并非完全隨機,在不同尺度上土壤水分均呈現(xiàn)出一定的空間結構[5,10],具有明顯的空間相關性[11]。Wang等[12]發(fā)現(xiàn)土壤水分在干旱條件下變程較大,濕潤條件較小。當監(jiān)測點間距離小于空間相關范圍時,不滿足空間變量隨機分布這一前提條件,所得出的合理取樣數(shù)目便不能完全代表土壤水分的實際信息,因此傳統(tǒng)統(tǒng)計采樣具有一定的缺陷。
地統(tǒng)計采樣法考慮了變量的空間結構和變異,克服了樣本獨立的缺陷[13-14],尤冬梅[15]利用地統(tǒng)計方法研究了農田土壤重金屬污染監(jiān)測及空間估值。趙倩倩等[16]將地統(tǒng)計學與GIS相結合,對縣域土壤養(yǎng)分空間變異特征及合理監(jiān)測點數(shù)進行了研究。但是,地統(tǒng)計采樣法以半方差函數(shù)和克里格插值為基本工具[16],而半方差函數(shù)的確定需要事先進行大量的土壤取樣以獲取土壤信息。如果不具備豐富的先驗知識,則難以利用地統(tǒng)計學進行采樣設計[17]。因此基于地統(tǒng)計法的采樣在實際應用中存在一定的困難[6]。
分層采樣是目前較為精確的抽樣方法之一。近年來分層采樣被廣泛應用于土壤屬性調查與監(jiān)測[18]、作物種植面積估算[19-20]、農業(yè)統(tǒng)計等方面。相關研究還指出分層的關鍵在于,應使層內方差盡量小,層間方差盡量 大[21],以提高對目標變量的估計精度。具有空間相關性的地理對象的分層抽樣估計精度取決于先驗知識的空間相關性特征和豐富程度[22]。
有效含水量(Available Water Content,AWC)是指介于田間持水量和凋萎含水量之間的能被植物吸收利用的土壤水分,與植被恢復和作物生長關系密切,是土壤的固有屬性,反映了土壤對植物的供水能力。AWC主要與土壤特性有關,空間分布模式較土壤水分穩(wěn)定。此外,AWC與土壤水分均受土壤質地、地形、植被覆蓋等因素的影響,二者在時空分布上具有較強的相關性。高曉東等[23-24]發(fā)現(xiàn)AWC和土壤水分具有相似的時間變異趨勢和很強的空間相關性。然而,目前AWC沒有被引入作為輔助變量研究土壤水分監(jiān)測點的布設。因此若考慮引入AWC為先驗知識,輔助土壤水分監(jiān)測點的布設,則有助于克服直接以土壤水分為變量時受其強時空變異性影響的弊端。
基于以上分析,本文提出構建一種以AWC為輔助變量,結合經典統(tǒng)計法、地統(tǒng)計學方法的分層采樣的土壤水分監(jiān)測點優(yōu)化布設方法(Stratified Sampling method based on spatial autocorrelation of Auxiliary Variables,SSAV),以降低采樣成本,提高監(jiān)測點的代表性和對土壤水分估計的精度,提高農業(yè)用水效率。
本試驗在國家節(jié)水灌溉北京工程技術研究中心大興試驗基地(N39°37.25',E116°25.51')周邊開展。研究區(qū)地處北京南部,屬于永定河沖積平原,海拔在15~45 m間,地形平坦。研究區(qū)氣候屬于暖溫帶半濕潤大陸性季風氣候,冬春季寒冷干燥,夏秋季溫暖濕潤,雨熱同期,年均氣溫為11.6℃,年均降水量556.4 mm,降水年內分布不均,多集中在7–9月份。土壤類型為潮土。
試驗區(qū)面積為3.645 km2,南北長2 700 m,東西寬 1 350 m,采用格網法布設取樣點,格網大小為150 m×150 m,共162個,借助GPS記錄采樣點坐標。供試作物為夏玉米,每年6月上旬播種,9月下旬收獲。每個生育期的起止時間為每年的6月上旬至9月下旬,并于每個生育期內的拔節(jié)(7月中旬—8月上旬)、灌漿(8月下旬—9月上旬)、成熟(9月中旬—9月下旬)階段各測定一次土壤水分。2016—2018年,3個生育期內,共測土壤水分9次,每次所測研究區(qū)土壤含水率的最大值、最小值、均值如圖1所示。
0~80 cm為玉米根系的主要分布區(qū)和耗水區(qū)域,所以測定深度確定為0~80cm,土壤分層取樣,每20 cm一層,共分為4層(0~20、>20~40、>40~60、>60~80 cm)。0~40 cm代表耕作層,苗期根系分布在0~40 cm土層中,開花和蠟熟期在0~40 cm土層根系分別占總根量的80%和55%左右,即在垂直方向上玉米的主體根系分布在0~40 cm土層中。0~40 cm土層受人類活動和根系分布等影響劇烈,土壤水分和AWC空間變異程度較0~80 cm土層高,因此兩土層的監(jiān)測點數(shù)量不同;同時,土壤水分和AWC的空間分布也存在差異。因此本文分0~40、0~80 cm 2個土層考慮監(jiān)測點的布設。
對于每個取樣點,采集原狀和擾動土壤樣品以測定土壤水分、土壤容重、田間持水量和土壤水分特征曲線。田間持水量采用wilcox[25]法測定;土壤水分特征曲線采用離心機(Hitachi CR22GIII,日立,日本)法測定(壓力為0.1,0.3,0.5,0.7,1,2,3,5,9,12和15bar);凋萎點含水量通過土壤水分特征曲線獲得,凋萎系數(shù)為一個常數(shù)[24-25],對應的土壤水勢為–1 500 kPa;土壤質量含水率通過土鉆取土,用烘箱在105℃條件下烘8~12 h確定,然后通過土壤容重換算為體積含水率。
1.4.1 AWC
本文采用AWC作為輔助參量,用于確定土壤水分監(jiān)測點的布設數(shù)量和位置,其計算公式如下:
AWC=FC–PWP (1)
式中AWC為土壤有效含水量,cm3/cm3;FC為田間持水量,cm3/cm3;PWP為永久萎蔫系數(shù),cm3/cm3。
1.4.2 監(jiān)測點布設數(shù)量的確定
很多學者采用傳統(tǒng)統(tǒng)計法確定監(jiān)測點的數(shù)量[26-27],當采樣點的AWC相互獨立且服從正態(tài)分布時,具體計算公式如下:
(2)
變異系數(shù)CV的計算公式如下:
(4)
1.4.3 AWC的空間變異分析
本文采用地統(tǒng)計學中的半方差函數(shù)分析AWC的空間相關性。計算公式如下:
式中()為變量間距為的半方差,此處為AWC;()和(+)坐標為和+處的AWC;()為被距離相隔的試驗樣本點的對數(shù)。
常見的理論變異函數(shù)模型分別是球形模型、指數(shù)模型、高斯模型,本文中使用的模型有指數(shù)模型和高斯模型。變程是半方差函數(shù)中的重要參數(shù),代表了變量的空間自相關范圍,可以通過地統(tǒng)計學軟件求得。本文利用變程輔助確定監(jiān)測點的位置。
1.4.4 監(jiān)測點布設位置確定及土壤水分估計
土壤水分監(jiān)測點位置的確定分0~40和0~80 cm 2個土層進行考慮。2個土層所需的監(jiān)測點數(shù)量按公式(2)計算。
1)簡單隨機采樣(SRS)
在研究區(qū)域內隨機抽取個監(jiān)測點?;诓蓸狱c的實測土壤水分值利用普通克里格插值繪制土壤水分等值線圖,利用土壤水分等值線圖確定個監(jiān)測點的土壤水分。個監(jiān)測點的土壤水分的均值作為土壤水分的估計值。
2)基于AWC的空間相關性的分層采樣(SSAV)
根據(jù)研究區(qū)域實測的AWC數(shù)值及取樣點的坐標,利用克里格空間插值獲得研究區(qū)AWC的空間分布圖。為了保證空間分布圖的可靠性,取樣點采用格網法布設,以保證取樣點對研究區(qū)覆蓋的均勻性和完整性。將取樣點實測的AWC值從小到大排列,根據(jù)取樣點數(shù)等分的原則劃分為段,且根據(jù)每段的數(shù)值范圍將研究土層劃分為層。在本文中取因此每層布置1個監(jiān)測點,要求任意2個監(jiān)測點間的距離大于該土層AWC的變程,以確保監(jiān)測點間相互獨立?;诓蓸狱c的實測土壤水分利用普通克里格插值繪制實測土壤水分空間分布圖,利用土壤水分等值線圖確定個監(jiān)測點的土壤水分。
Manly[29]建議自助采樣實際應用中的重復采樣次數(shù)應不少于1 000次。抽樣次數(shù)的增加有助于更好地反應監(jiān)測點布設方法的穩(wěn)定性。為了分析SRS和SSAV兩種采樣方法估計土壤水分的效果,提高結果的代表性并降低抽樣誤差影響,本文確定抽樣次數(shù)為10 000次,每種監(jiān)測點布設方法均進行10 000次抽樣,最終獲得10 000組監(jiān)測點。
本文中利用均方根誤差(RMSE),平均相對誤差(δ),相對誤差標準差(σ)評價土壤水分的估計效果。
1)平均相對誤差δ
δ為10 000組監(jiān)測點在時間估計土壤水分的平均相對誤差,計算公式如下:
式中(=10 000)是監(jiān)測點的組數(shù);P為第組監(jiān)測點在時間的土壤水分的估計值,cm3/cm3;O為時間時實測土壤水分的平均值,cm3/cm3,本文以162個采樣點的實測土壤水分平均值作為時間時實測土壤水分的平均值。δ用來判定監(jiān)測點的土壤水分估計值與實測值的接近程度,其值越小表明估計值與實測值越接近。
式中為土壤水分的實際測定次數(shù)。
式中′為第組監(jiān)測點在時間的修正后的土壤水分估計值,cm3/cm3。
2)標準差(σ)
σ為10 000組監(jiān)測點在時間時對研究區(qū)土壤水分進行估計時的相對誤差的標準偏差,計算公式如下:
標準差σ反映了監(jiān)測點的土壤水分估計值與均值的偏離程度,其值越小相對均值的偏離程度越小,預測的精度越高。
表1為0~40和0~80 cm土層AWC描述性統(tǒng)計特征。可以看出0~40和0~80 cm土層均為中等程度變異。其中0~40比0~80 cm土層的變異系數(shù)大,主要是因為0~40 cm土層為作物根系的主要分布區(qū)和耕作區(qū),試驗區(qū)農戶耕作管理的差異性,加上作物根系分布的不均勻性增加了AWC的空間變異。采用Kolmogorov-Smirnov法對AWC進行正態(tài)分布檢驗,通過正態(tài)分布檢驗,值均大于0.05,檢驗結果如表1所示,。進行正態(tài)分布檢驗的目的是確保分布可以有效應用于監(jiān)測點數(shù)量的計算,以及可以利用半方差函數(shù)分析AWC的空間變異情況[32]。2016—2018年的夏玉米實測土壤水分也服從正態(tài)分布。
表1 有效含水量(AWC)描述性統(tǒng)計特征
應用地統(tǒng)計學方法對AWC作半方差函數(shù)分析,得出2個土層的變程均為366 m,變程代表了AWC的空間自相關范圍[33],變程越大,空間自相關范圍越大;反之則越小。在變程范圍內監(jiān)測點存在相關性而非相互獨立,而利用公式(2)計算監(jiān)測點數(shù)目時,認為監(jiān)測點間是相互獨立的,因此變程為確定監(jiān)測點的間距提供了依據(jù)[34]。在確定監(jiān)測點位置時,使任意2個監(jiān)測點之間的距離大于366 m,可保證監(jiān)測點相互獨立,滿足公式(2)的前提。
根據(jù)AWC的變異系數(shù),采用公式(2)計算0~40和0~80 cm土層的合理監(jiān)測點布設數(shù)量。計算結果表明,在90%置信區(qū)間,采樣誤差為10%時,0~40和0~80 cm土層監(jiān)測點數(shù)分別為7和6個。
由圖2可知,SSAV布點方法δ的變化范圍為–0.67%~6.31%,0~40和0~80 cm土層的δ的平均值分別為2.22%和2.12%。SRS布點條件下δ的平均值分別為1.86%和1.55%。這說明2種布點方法均高估監(jiān)測點土壤水分[31],在這種情況下可以利用式(8)對土壤水分進行修正[30]。王珊等[41]提出了在AWC的等值線上布設監(jiān)測點來估計平均土壤水分,其布設的一組監(jiān)測點估計土壤水分的相對誤差范圍為1.56%~8.95%,其相對誤差的范圍與本文SSAV布點法δ(–0.67%~6.31%)的范圍相近。SRS和SSAV方法下,0~40和0~80 cm 2個土層9次觀測值和估計值之間的平均RMSE分別為0.012 0和 0.010 4 cm3/cm3,顯著性檢驗<0.001,具有顯著性差異(表2、表3)。圖3為兩種布點方法下土壤含水率的估計值與實測值的對比圖,由圖可知SSAV布點法下兩個土層的2值均大于SRS布點法,RMSE值均小于SRS布點法,因此基于SSAV布設的土壤水分監(jiān)測點對平均土壤水分的估計值與實測值更為接近。
注:SRS為簡單隨機布點法,SSAV為基于輔助變量空間自相關的分層采樣方法。下同。
Note: SRS is simple random sampling method, SSAV is stratified sampling method based on spatial autocorrelation of auxiliary variables. Same as below.
圖2 不同采樣方法下的土壤水分估計結果
Fig.2 Soil moisture estimation results obtained by different sampling methods
表2 0~40 cm土層相對誤差范圍、、RMSE的顯著性檢驗
表3 0~80 cm土層相對誤差范圍、、RMSE的顯著性檢驗
圖3 不同采樣方法下土壤含水率估計值和實測值對比
土壤水分監(jiān)測點的合理布設對于農田土壤灌溉管理至關重要,本文構建了考慮有效含水量(Available Water Capacity,AWC)基于輔助變量空間自相關的分層采樣方法(Stratified Sampling method based on spatial autocorrelation of Auxiliary Variables,SSAV),并于2016—2018年進行了田間試驗,對其估計效果進行了分析,得出以下結論:
1)0~40和0~80 cm土層均為中等變異,監(jiān)測點的布設數(shù)量分別為7個和6個。
SSAV法為獲取區(qū)域平均土壤含水量數(shù)據(jù)提供了省時、省力、低成本的監(jiān)測點布設方案,可為農業(yè)水資源管理和提升農業(yè)用水效率提供保障。
[1] Gao L, Shao M A. Temporal stability of soil water storage in diverse soil layers[J]. Catena, 2012, 95: 24-32.
[2] Penna D, Brocca L, Borga M, et al. Soil moisture temporal stability at different depths on two alpine hillslopes during wet and dry periods[J]. Journal of Hydrology, 2013, 477: 55-71.
[3] Brocca L, Tullo T, Melone F, et al. Catchment scale soil moisture spatial-temporal variability[J]. Journal of Hydrology, 2012, 422: 63-75.
[4] Jia X X, Shao M A, Wei X X, et al. Hillslope scale temporal stability of soil water storage in diverse soil layers[J]. Journal of Hydrology, 2013, 498: 254-264.
[5] Famiglietti J S, Ryu D, Berg A A, et al. Field observations of soil moisture variability across scales[J]. Water Resource Research, 2008, 44: W01423.
[6] 王春梅,占玉林,魏香琴,等. 非均質中低分辨率像元土壤含水量地面采樣方法研究進展[J]. 中南大學學報:自然科學版,2016,47(4):1414-1419.
Wang Chunmei, Zhan Yulin, Wei Xiangqin, et al. Ground sampling strategy for surface soil moisture in heterogeneous remote sensing pixels[J]. Journal of Central South University: Science and Technology, 2016,47(4): 1414-1419. (in Chinese with English abstract)
[7] 陳天恩,陳立平,王彥集,等. 基于地統(tǒng)計的土壤養(yǎng)分采樣布局優(yōu)化[J]. 農業(yè)工程學報,2009,25(增刊2):49-55.
Chen Tian’en, Chen Liping, Wang Yanji, et al. Optimal arrangement of soil nutrient sampling based on geo-statistics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25 (Supp.2): 49-55. (in Chinese with English abstract)
[8] Brocca L, Melone F, Moramarco T, et al. Spatial-temporal variability of soil moisture and its estimation across scales[J]. Water Resource Research, 2010, 46(2): W02516.
[9] Wang C M, Zuo Q, Zhang R D, Estimating the necessary sampling size of surface soil moisture at different scales using a random combination method[J]. Journal of Hydrology, 2008, 352: 309-321.
[10] Korres W, Reichenau T G, Schneider K. Patterns and scaling properties of surface soil moisture in an agricultural landscape: An ecohydrological modeling study[J]. Journal of Hydrology, 2013, 498: 89-102.
[11] Pachepsky Y, Radcliffe D, Selim H M. Scaling methods in soil physics[M]. New York: CRC Press LLC, 2002: 102?103.
[12] Wang J, Fu B J, Chen L D, et al. Geostatistical analysis of soil moisture variability on Da Nangou catchment of the loess plateau, China[J]. Environmental Geology 2001, 41: 113-120.
[13] 李子忠,龔元石. 農田土壤水分和電導率空間變異性及確定其采樣數(shù)的方法[J]. 中國農業(yè)大學學報,2000,5(5):59-66.
Li Zizhong, Gong Yuanshi. Spatial variability of soil water content and bulk soil electrical conductivity and determination of sampling number in field[J]. Journal of China Agricultural University, 2000, 5(5): 59-66. (in Chinese with English abstract)
[14] 薛正平,楊星衛(wèi),段項鎖,等. 土壤養(yǎng)分空間變異及合理取樣數(shù)研究[J]. 農業(yè)工程學報,2002,18(4):6-9.
Xue Zhengping, Yang Xingwei, Duan Xiangsuo, et al. Spatial variability of soil nutrient and reasonable sampling number[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(4): 6-9. (in Chinese with English abstract)
[15] 尤冬梅. 農田土壤重金屬污染監(jiān)測及其空間估值方法研究[D]. 北京:中國農業(yè)大學,2014.
You Dongmei. Monitoring and Spatial Estimation of Contents of Soil Heavy Metals[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract)
[16] 趙倩倩,趙庚星,姜懷龍,等. 縣域土壤養(yǎng)分空間變異特征及合理采樣數(shù)研究[J]. 自然資源學報,2012,27(8):1382-1391.
Zhao Qianqian, Zhao Gengxing, Jiang Huailong, et al. Study on spatial variability of soil nutrients and reasonable sampling number at county scale[J]. Journal of Natural Resources, 2012, 27(8): 1382-1391. (in Chinese with English abstract)
[17] 陳偉杰. 土壤特性的優(yōu)化采樣策略及空間離群樣點監(jiān)測算法研究[D]. 哈爾濱:東北農業(yè)大學,2019.
Chen Weijie. Research on the Sampling Strategies for Soil Properties and A Method for Spatial Local Outlier Detection[D]. Harbin: Northeast Agricultural University, 2019. (in Chinese with English abstract)
[18] 陳飛香,戴慧,胡月明,等. 區(qū)域土壤空間抽樣方法研究[J]. 地理與地理信息科學,2012,28(6):53-56.
Chen Feixiang, Dai Hui, Hu Yueming, et al. Study on regional soil spatial sampling method[J]. Geography and Geo-Information Science, 2012, 28(6): 53-56. (in Chinese with English abstract)
[19] 朱爽,張錦水. 面向省級農作物種植面積遙感估算的分層方法[J]. 農業(yè)工程學報,2013, 29(2):184-191.
Zhu Shuang, Zhang Jinshui. Provincial agricultural stratification method for crop area estimation by remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(2): 184-191. (in Chinese with English abstract)
[20] 曹志冬,王勁峰, 李連發(fā),等. 地理空間中不同分層抽樣方式的分層效率與優(yōu)化策略[J]. 地理科學進展,2008,27(3):152-160.
Cao Zhidong, Wang Jinfeng, Li Lianfa, et al. Strata efficiency and optimization strategy of stratified sampling on spatial population[J]. Progress in Geography, 2008, 27(3): 152-160. (in Chinese with English abstract)
[21] Cochran W G. Sampling Techniques (3rd editioned)[M]. New York: John Wiley & Sons, 1977.
[22] Dunn R, Harrison A R. Two-dimensional systematic sampling of land use[J]. Applied Statistics, 1993, 42(4): 585-601.
[23] 高曉東. 黃土丘陵區(qū)小流域土壤有效水時空變異與動態(tài)模擬研究[D]. 北京:中國科學院大學,2013.
Gao Xiaodong. Catchment-Scale Available Soil Moisture Spatial-Temporal Variability in the Hilly Areas of the Loess Plateau[D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese with English abstract)
[24] 高曉東,吳普特,張寶慶,等. 黃土丘陵區(qū)小流域土壤有效水空間變異及其季節(jié)性特征[J]. 土壤學報,2015,52(1):57-67.
Gao Xiaodong, Wu Pute, Zhang Baoqing, et al. Spatial variability of available soil moisture and its seasonality in a small watershed in the hilly region of the Loess Plateau[J]. Acta Pedologica Sinica, 2015, 52(1): 57-67. (in Chinese with English abstract)
[25] Zhao W X, Li J S, Yang R M, et al. Determining placement criteria of moisture sensors through temporal stability analysis of soil water contents for a variable rate irrigation system[J]. Precision Agric, 2018, 19: 648-665.
[26] Jacobs J M, Mohanty B P, Hsu E, et al. SMEX02: Field scale variability, time stability and similarity of soil moisture[J]. Remote Sensing of Environment, 2004, 92: 436-446.
[27] Miyamoto S, Chacon A, Hossain M, et al. Soil salinity of urban turf areas irrigated with saline water: I. spatial variability[J]. Landsc Urban Plan, 2005, 71: 233-241.
[28] Hupet F, Vanclooster M. Sampling strategies to estimate ?eld real evapotranspiration ?uxes with a soil water balance approach[J]. Journal of Hydrology, 2004, 292: 262-280.
[29] Manly B F J. Randomization, Bootstrap and Monte Carlo Methods in Biology (2nd editioned)[M]. London: Chapman & Hall Press, 1997, 56-60.
[30] Zhang P P, Shao M A. Temporal stability of surface soil moisture in a desert area of northwestern China[J]. Journal of Hydrology, 2013,505: 91-101.
[31] 朱緒超,邵明安,朱軍濤,等.高寒草甸生態(tài)系統(tǒng)表層土壤水分時間穩(wěn)定性研究[J]. 農業(yè)機械學報,2017,48(8):212-218.
Zhu Xuchao, Shao Ming’an, Zhu Juntao, et al. Temporal stability of surface soil moisture in alpine meadow ecosystem on northern tibetan plateau[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 212-218. (in Chinese with English abstract)
[32] Shi Z, Wang K. Sampling strategies for mapping soil phosphorus and soil potassium distributions in cool temperate grassland[J]. Precision Agriculture, 2000, 2: 347-357.
[33] Petrone R M, Price J S, Carey S K. Statistical characterization of the spatial variability of soil moisture in a cutover peatland[J]. HydrologicalProcessed 2004, 18: 41-52.
[34] Webster R. Quantitative spatial analysis of soil in the field[J]. Advance in Soil Science, 1985, 3: 1-70.
[35] 李民贊.基于可見光光譜分析的土壤參數(shù)分析[J].農業(yè)工程學報,2003,19(5):109-113.
Li Minzan. Evaluating soil parameters with visible spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(5): 109-113. (in Chinese with English abstract)
[36] 連健,李小娟,宮輝力,等. GIS支持下的空間分層抽樣方法研究——以北京市人均農業(yè)總產值抽樣調查為例[J]. 地理與地理信息科學,2008,24(6):30-38.
Lian Jian, Li Xiaojuan, Gong Huili, et al. Research of spatial stratified sampling techniques based on GIS: Take the per capita agricultural total output value sampling survey of Beijing as an example[J]. Geography and Geo- Information Science, 2008, 24(6): 30-38. (in Chinese with English abstract)
[37] De Gruijter J J, Brus D J, Bierkens M F P, et al. Sampling for natural resource monitoring[M]. Springer: Netherlands, 2006.
[38] Haining R P. Spatial Data Analysis: Theory and Practice[M]. Cambridge: Cambridge University, 2003.
[39] 仲格吉. 空間相關性和變異性對農作物面積空間抽樣效率的影響研究[D]. 北京:中國農業(yè)科學院,2019.
Zhong Geji. Impacts of Spatial Correlation and Variability on the Spatial Sampling Efficiency for Crop Acreage Estimation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese with English abstract)
[40] Falk M G, Denham R J. Mengersen K L. Spatially stratified sampling using auxiliary information for geostatistical mapping[J]. Environmental And Ecological. Statistics. 2011, 18: 93-108.
[41] 王珊,胡振華,張寶忠,等. 基于有效最大含水量的土壤水分監(jiān)測優(yōu)化布設方法[J]. 中國農村水利水電, 2018(5): 1-5.
Wang Shan, Hu Zhenhua, Zhang Baozhong, et al. Optimum layout method of soil moisture monitoring on the basis of available maximum water content[J]. 2018(5): 1-5. (in Chinese with English abstract)
Spatial stratified sampling strategy for soil moisture based on available water capacity
Jin Jianhua1,2,3, Zhang Baozhong1,4※, Liu Yu1,4, Mao Xiaomin2
(1.100038;2.100083; 3.300384;4.100048)
Soil moisture has been a key limiting factor for crop growth during the surface process in many lands. It is very necessary to establish the placement criteria of monitoring sites for the soil moisture in optimum irrigation. The spatial and temporal distribution of Available Water Capacity (AWC) was strongly correlated with soil moisture. The AWC spatial distribution pattern was also related to soil characteristics, but it can be more stable than that of soil moisture. In this study, a spatially stratified sampling was proposed to relieve the strong temporal and spatial variability, when the soil moisture was used as a variable. The Stratified Sampling method based on spatial autocorrelation of Auxiliary Variables (SSAV) was also used to combine the classical statistics and geo-statistics, where the AWC was introduced as an auxiliary variable. The experiments were then carried out to verify at a field scale. The results showed that the AWC in the 0-40 and 0-80 cm soil layers followed the normal distribution, indicating a moderate variation. In the 90% confidence interval, the number of monitoring points in the 0-40 and 0-80 cm soil layers in the study area was 7 and 6, respectively, where the sampling error was 10%, indicating that the reducing number of monitoring points, and cost-saving monitoring of soil moisture. The geostatistical analysis demonstrated that the range of two soil layers (0-40 and 0-80 cm) was both 366 m in the semi-variance function of AWC. The relative errors of soil moisture estimated by the Simple Random Sampling (SRS) and SSAV were –27.03%-52.38%, and –23.23%-35.15%, respectively. The relative error of soil moisture estimated by the SSAV was reduced by 26.48%, compared with the SRS. The mean standard deviation was 4.78%, 17.30% lower than that of SRS. A paired-test indicated that the relative error and the mean standard deviation of soil moisture were 9 times in the two soil layers under two monitoring during 2016-2018. Thus, there were significant differences between the relative error range and the mean standard deviation under two monitoring (<0.001). Moreover, the uncertainty of SSAV was reduced significantly, whereas, the estimation accuracy was improved significantly, compared with the SRS. Among them, the uncertainty of SRS was attributed to the independent samples that followed the normal distribution. There was also a certain spatial change of soil characteristics at a certain scale, indicating a spatial correlation. Correspondingly, the larger deviation of estimation accuracy was attributed to the SRS model without considering the spatial autocorrelation of soil moisture. The Root Mean Square Error (RMSE) between the observed and estimated values was only 0.010 4 cm3/cm3, indicating significantly lower than that of the SRS (0.012 0 cm3/cm3). As such, the uncertainty of sampling was reduced according to the value range of AWC. The new sampling was fully considered the influence of the spatial structure of the target variable on the layout of monitoring points. Specifically, the distance between any two monitoring points was required to be greater than the range, where the monitoring points were independent of each other. Therefore, the estimation accuracy and precision of soil moisture were improved, compared with the SRS. Consequently, the SSAV can be widely expected to serve a time-, labor- and cost-saving monitoring scheme for the average soil moisture. The finding can provide a promising guideline for water resources management and water use efficiency in modern agriculture.
soils; moisture; sampling; geo-statistics; available water capacity; spatial autocorrelation; spatial variability
10.11975/j.issn.1002-6819.2021.21.012
S127
A
1002-6819(2021)-21-0100-08
金建華,張寶忠,劉鈺,等. 基于有效含水量的土壤水分監(jiān)測點布設的空間分層采樣方法[J]. 農業(yè)工程學報,2021,37(21):100-107.doi:10.11975/j.issn.1002-6819.2021.21.012 http://www.tcsae.org
Jin Jianhua, Zhang Baozhong, Liu Yu, et al. Spatial stratified sampling strategy for soil moisture based on available water capacity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 100-107. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.21.012 http://www.tcsae.org
2021-08-02
2021-10-23
國家自然科學基金項目(51822907,51979287);流域水循環(huán)模擬與調控國家重點實驗室自主研究項目(SKL2020TS08);天津市教委科研計劃項目(2018KJ189)
金建華,講師,研究方向為節(jié)水灌溉與水資源高效利用。Email:jinjh2010@163.com
張寶忠,博士,教授級高級工程師,研究方向為蒸散發(fā)尺度效應、現(xiàn)代灌區(qū)高效用水理論與技術研究。Email:zhangbz@iwhr.com