趙西坡,卞武勛,劉進(jìn)超,李俊成,李炫康,彭少賢
新材料技術(shù)
高直鏈淀粉材料改性及應(yīng)用研究進(jìn)展
趙西坡a,b,卞武勛a,劉進(jìn)超a,李俊成a,李炫康a,彭少賢a,b
(湖北工業(yè)大學(xué) a.材料與化學(xué)工程學(xué)院 b.綠色輕工材料湖北省重點(diǎn)實(shí)驗(yàn)室,武漢 430068)
高直鏈淀粉具有獨(dú)特的糊化特性和優(yōu)異的成膜性能,在可降解材料和包裝領(lǐng)域有較大的應(yīng)用前景,但高直鏈淀粉基可降解材料耐水性差,濕強(qiáng)度低是一直以來固有的缺陷,因而需要充分了解高直鏈淀粉基材料的廣泛應(yīng)用,深入探索高直鏈淀粉的改性方法。通過追蹤國內(nèi)外高直鏈淀粉相關(guān)的改性研究和應(yīng)用進(jìn)展,概述高直鏈淀粉的基本性質(zhì)和性能,重點(diǎn)分析高直鏈淀粉常用的改性方法,如物理改性、化學(xué)改性和酶改性對(duì)高直鏈淀粉微觀結(jié)構(gòu)和力學(xué)性能的影響,詳細(xì)介紹高直鏈淀粉在眾多領(lǐng)域的挑戰(zhàn)與機(jī)遇。通過物理改性、化學(xué)改性和酶改性等方法,可以實(shí)現(xiàn)高直鏈淀粉粒徑減小、糊化溫度降低、熱穩(wěn)定性提高等理化性質(zhì)的改善,拓寬了高直鏈淀粉在包裝、食品和醫(yī)用等領(lǐng)域的應(yīng)用范圍。
高直鏈淀粉;增塑;生物可降解
塑料作為石油化學(xué)衍生的產(chǎn)品,自20世紀(jì)問世以來,因其生產(chǎn)工藝簡(jiǎn)單,綜合性能優(yōu)良,已廣泛應(yīng)用于工業(yè)、農(nóng)業(yè)、交通運(yùn)輸和日常生活等領(lǐng)域[1—3]。塑料的大量使用和不當(dāng)處理所造成的環(huán)境污染問題日益凸顯[4—7],基于淀粉、殼聚糖、纖維素等可生物降解的天然高分子材料越來越受到研究人員的關(guān)注[8—12]。淀粉作為自然界中來源最豐富的可再生物質(zhì)之一,近年來,由于其成本低、可降解等特點(diǎn)[13—15],已廣泛應(yīng)用于制備淀粉基塑料。淀粉包含直鏈淀粉和支鏈淀粉等2種組分,其中直鏈淀粉由D-六環(huán)葡萄糖經(jīng)-1,4-糖苷鍵連接組成;支鏈淀粉的分支位置為-1,6-糖苷鍵連接,其余為-1,4-糖苷鍵鏈接,直鏈淀粉具有特殊的長(zhǎng)鏈螺旋結(jié)構(gòu),其分子內(nèi)部含有大量的—OH,導(dǎo)致直鏈淀粉分子之間容易結(jié)合形成氫鍵,使其淀粉糊易發(fā)生凝沉現(xiàn)象。
高直鏈淀粉指淀粉中直鏈淀粉的質(zhì)量超過50%的淀粉,高直鏈淀粉中直鏈淀粉和支鏈淀粉的比例是影響淀粉加工特性的主要因素之一,以玉米淀粉為例,高直鏈淀粉的結(jié)晶度要明顯低于蠟質(zhì)淀粉及普通淀粉。這說明隨著直鏈淀粉含量的增加,顆粒的結(jié)晶度卻下降,淀粉中更多的結(jié)晶部分由支鏈淀粉形成,支鏈淀粉緊密排列在一起的短支鏈相互靠近形成微晶“簇”,簇和簇相互靠近形成了微晶片層。隨著玉米淀粉中直鏈淀粉含量的增加,淀粉顆粒的平均粒徑會(huì)逐漸減小。不同直鏈淀粉含量的玉米淀粉的晶型結(jié)構(gòu)也存在差異,低直鏈淀粉含量玉米淀粉結(jié)晶結(jié)構(gòu)為A型,而高直鏈淀粉結(jié)晶結(jié)構(gòu)則為B型。
與普通淀粉相比,高直鏈淀粉可生物降解膜顯示出比普通淀粉膜更好的力學(xué)性能[16—19]。目前,高直鏈淀粉在抗性食品、包裝材料、醫(yī)療保健和降解材料等多個(gè)產(chǎn)業(yè)中占有重要地位[20],高直鏈淀粉具有異于普通淀粉的特殊理化性質(zhì),如糊化溫度的提高,結(jié)晶形貌的改變,更好的成膜性能等。近年來,以高直鏈淀粉制備可降解塑料日益成為研究的熱點(diǎn),這種材料有望大量應(yīng)用于包裝及塑料薄膜加工業(yè)。文中將圍繞高直鏈淀粉改性及應(yīng)用進(jìn)行綜述,著重闡述高直鏈淀粉在包裝、生物可降解材料和醫(yī)藥等領(lǐng)域的研究現(xiàn)狀,為高直鏈淀粉研究提供一定的理論參考。
從可再生自然資源中獲得的可生物降解聚合物,因其具有替代傳統(tǒng)石油基塑料制品的巨大潛力而受到越來越多的關(guān)注。高直鏈淀粉具有可再生性、生物降解性及豐富的—OH化學(xué)性質(zhì)等優(yōu)點(diǎn),作為一種原料已經(jīng)得到了大量的研究,并引起了商業(yè)興趣,直鏈、支鏈淀粉分子結(jié)構(gòu)見圖1[21]。理論上高直鏈淀粉在增塑劑的作用下具有無限改性的可能性和熔融加工性。由于高直鏈淀粉的親水性、難糊化和脆性限制了其在工業(yè)聚合物應(yīng)用中的廣泛使用,因此,需要改變淀粉的物理和化學(xué)性質(zhì),以減少上述限制,獲得其在工業(yè)材料應(yīng)用中所需的性能[22],幾種常見淀粉的性質(zhì)參數(shù)見表1。目前,常見的對(duì)高直鏈淀粉進(jìn)行改性的方式有物理改性、化學(xué)修飾和酶法改性。
圖1 直鏈淀粉和支鏈淀粉分子結(jié)構(gòu)
在物理改性中,基于尺寸縮小和分子結(jié)構(gòu)變化的方法被廣泛應(yīng)用于淀粉顆粒的改性。近年來,糊化、研磨、納米沉淀、高壓均質(zhì)與超聲處理等方法已被用于改性淀粉,其中部分改性方法還被應(yīng)用于改性高直鏈淀粉。
納米沉淀法是制備納米淀粉顆粒的一種簡(jiǎn)單方法。此方法的優(yōu)點(diǎn)在于不需要使用復(fù)雜的設(shè)備和工藝,可以生產(chǎn)出納米淀粉顆粒。為了形成納米淀粉顆粒沉淀,將有機(jī)溶劑(如乙醇,甲醇,或丙酮)作為抗溶劑混合到糊化淀粉溶液中[30]。在逐滴添加抗溶劑的過程中,溶液中淀粉的過飽和度增加,導(dǎo)致成核,顆粒生長(zhǎng),最后沉淀出納米級(jí)淀粉顆粒[31]。Ge等[32]通過納米沉淀法利用不同來源的淀粉(玉米、甘薯和木薯淀粉)來生產(chǎn)納米淀粉顆粒,納米淀粉顆粒大?。?00~220 nm)與天然顆粒淀粉的大小呈正相關(guān),當(dāng)?shù)矸垲w粒直徑越小,產(chǎn)生的納米淀粉顆粒越微小。通過納米沉淀法改性高直鏈淀粉還有待進(jìn)行深入的研究。
表1 幾種常見淀粉的直鏈淀粉含量、平均粒徑和結(jié)晶度
研磨法已被用于生產(chǎn)改性高直鏈淀粉,通過研磨高直鏈淀粉可以得到納米淀粉顆粒。球磨是通過在淀粉顆粒上施加剪切力,以及在磨球和容器壁之間的摩擦和碰撞來實(shí)現(xiàn)[33]。Lu等[34]研究了直鏈淀粉對(duì)不同來源的玉米淀粉(普通玉米、高直鏈玉米、糯玉米淀粉)碾磨淀粉顆粒粒徑的影響,高直鏈玉米淀粉會(huì)產(chǎn)生較大的碾磨顆粒,原因是在研磨過程中,直鏈淀粉起機(jī)械增塑劑的作用,從而增加了淀粉顆粒在研磨狀態(tài)下對(duì)剪切力的抵抗能力,使淀粉顆粒不易破碎。綜上所述,通過控制直鏈淀粉含量可以生產(chǎn)出指定的淀粉粒度。
超聲波處理法也已經(jīng)用于生產(chǎn)納米淀粉顆粒,這一過程是利用聲波通過空化現(xiàn)象對(duì)淀粉造成結(jié)構(gòu)破壞。Minakawa等[35]開發(fā)了一種基于超聲波制備納米淀粉顆粒的方法,在不使用任何化學(xué)添加劑的情況下,該方法能夠生產(chǎn)小于68 nm的淀粉顆粒。利用高功率超聲波處理不同直鏈淀粉含量的玉米淀粉糊,隨著超聲處理時(shí)間的增加,粘度和流體力學(xué)半徑均顯著降低。此外,高直鏈淀粉糊由于其容易聚集而更耐超聲波處理,此結(jié)果也通過對(duì)具有不同直鏈淀粉含量的大米淀粉糊進(jìn)行超聲波處理的類似研究得到了證實(shí)[36]。采用短時(shí)微波輻射處理水分含量為30%的高直鏈玉米淀粉(HACS),隨著短時(shí)間的微波處理,HACS的粘度和消化率降低,進(jìn)一步的微波處理導(dǎo)致粘度增加和消化水解,在短時(shí)間微波處理下可以產(chǎn)生更具抗性和穩(wěn)定性的結(jié)構(gòu)[37]。
化學(xué)改性是將某種官能團(tuán)引入淀粉分子中,使淀粉的物理化學(xué)性質(zhì)發(fā)生明顯改變,淀粉分子鏈中存在著大量可反應(yīng)的羥基,為淀粉的化學(xué)改性提供了結(jié)構(gòu)上的基礎(chǔ)。改性高直鏈淀粉的化學(xué)方法主要包括酯化、羥丙基化、酰化、氧化、交聯(lián)和酸堿處理。
Lopez-silva等[38]研究了直鏈淀粉含量對(duì)辛基琥珀酸(OSA)酯化玉米淀粉性能的影響,OSA酯化處理提高了淀粉的水溶性、保水能力和乳化能力,且直鏈淀粉含量與OSA酯化處理效果呈正相關(guān),說明OSA酯化反應(yīng)對(duì)直鏈淀粉的影響較大,而對(duì)支鏈淀粉的影響較小。淀粉與脂肪酸氯化物的酯化反應(yīng)會(huì)產(chǎn)生兩親性大分子,該兩親性大分子包含親水性主鏈和疏水性側(cè)鏈。這些側(cè)鏈對(duì)分散油相的親和力比天然淀粉更大,從而在油和顆粒界面產(chǎn)生高能相互作用,可用于穩(wěn)定乳液[39]。Goswami等[40]報(bào)道了高直鏈淀粉與馬來酸酐(MAH)在離子溶液([C4MIM]Cl)中的無催化劑酯化反應(yīng),離子溶液中的高直鏈玉米淀粉與馬來酸酐在短時(shí)間內(nèi)(10 min,80 ℃)發(fā)生了反應(yīng),生成了較高取代度(DS=1.17)的酯化淀粉。酯化淀粉中雙鍵作為交聯(lián)位點(diǎn)的存在和羧基的高可用性有利于催化淀粉馬來酸酯與聚酯的反應(yīng),對(duì)于這樣的應(yīng)用,高直鏈淀粉的存在是有益的,由于其可以容納馬來酸酯基團(tuán),與蠟質(zhì)淀粉和普通淀粉相比,高直鏈淀粉與聚酯反應(yīng)具有更高的游離羧基利用率和產(chǎn)率。
Kim等[41—42]探究了羥丙基化對(duì)HACS理化性質(zhì)的影響,通過增大醚化劑用量可以提高羥丙基淀粉取代度,同時(shí)能夠增強(qiáng)羥丙基高直鏈淀粉的水溶性及抗凝沉性。羥丙基化在減少淀粉鏈之間的分子間相互作用方面起著重要作用,就像內(nèi)部增塑劑一樣,有效地增加了薄膜的柔韌性。羥丙基化后,僅添加少量的增塑劑就能夠獲得具有良好柔韌性的HACS薄膜。羥丙基改性能有效地提高高直鏈淀粉的抗凝沉性。Colussi等[43]研究了乙酰化對(duì)不同直鏈淀粉含量大米淀粉薄膜性能的影響,對(duì)高直鏈大米淀粉用乙酸酐乙?;髽O大地改善了膜的性能,用乙?;咧辨湹矸壑苽涞谋∧け憩F(xiàn)出更好的連續(xù)性、更高的伸長(zhǎng)率和更強(qiáng)的抗熱降解性。然而乙?;幚碓谠黾痈咧辨湹矸鬯苄缘耐瑫r(shí),還降低了材料的拉伸強(qiáng)度。Sun等[44]評(píng)估了乙?;瘜?duì)高直鏈玉米淀粉的影響,乙?;梢越档虷ACS的回生,并且能夠明顯提高HACS的熱穩(wěn)定性,但HACS的結(jié)晶區(qū)幾乎不受乙酰化影響。Zhu等[45]研究了丙?;煌敝П鹊矸蹖?duì)淀粉結(jié)構(gòu)和熱穩(wěn)定性的影響,與丙?;蟮钠胀ㄓ衩椎矸巯啾?,丙酰化之后的高直鏈玉米淀粉顯示出更有序的區(qū)域,有序區(qū)域的限制降低了大分子鏈的熱運(yùn)動(dòng),從而提高了熱穩(wěn)定性。隨著直鏈淀粉含量的增加,這種作用更加明顯。
Tavares等[46]評(píng)估了酸和氧化改性對(duì)不同直鏈淀粉含量米粉膨脹特性的影響,酸處理后用過氧化氫再次氧化處理,促進(jìn)了直鏈淀粉和支鏈淀粉分子的解聚,在低直鏈淀粉含量的大米淀粉中比在高直鏈淀粉和中直鏈淀粉含量的大淀粉中產(chǎn)生了更多的羰基和羧基,提高了烘焙膨脹的能力。Zi[47]研究了交聯(lián)劑用量對(duì)交聯(lián)高直鏈玉米淀粉及交聯(lián)高直鏈玉米淀粉膜性質(zhì)的影響,交聯(lián)反應(yīng)對(duì)淀粉的結(jié)晶結(jié)構(gòu)沒有造成破壞,在偏光顯微鏡下仍能觀察到偏光十字,但淀粉顆粒的結(jié)晶區(qū)遭到了破壞,交聯(lián)對(duì)淀粉顆粒的膨脹起到較大的抑制作用,使淀粉在熱水中難以溶脹,交聯(lián)度過高將導(dǎo)致高直鏈淀粉無法糊化成膜。Luo等[48]報(bào)道了醇條件下酸水解對(duì)不同來源淀粉(普通、蠟質(zhì)和高直鏈玉米淀粉)理化性質(zhì)的影響,酸-醇處理增加了3種玉米淀粉的溶解度,降低了膨脹力和糊化粘度。淀粉糊的粘度主要是支鏈淀粉的一種特性,表明在酸-醇處理后支鏈淀粉降解為低分子量分子。當(dāng)?shù)矸塾盟訜釙r(shí),支鏈淀粉的降解會(huì)導(dǎo)致破壞顆粒結(jié)構(gòu)和增加浸出,因此,可觀察到高的淀粉溶解度。Cai等[49]探究了堿處理高直鏈淀粉大米淀粉的結(jié)構(gòu)和功能特性,氫氧化鈉水溶液(溶液中氫氧化鈉質(zhì)量占比為0.4%)處理導(dǎo)致直鏈淀粉從淀粉顆粒中浸出,伴隨著結(jié)構(gòu)性質(zhì)的一些變化,如顆粒形態(tài)和晶體與無定形片層之間的電子密度,以及淀粉功能性的顯著變化,特別是增加了PPA(豬胰腺-淀粉酶)和AAG(黑曲霉淀粉轉(zhuǎn)葡糖苷酶)對(duì)堿處理淀粉的水解。
酶法改性是利用每種淀粉酶對(duì)淀粉分子的特異性修飾,以改變淀粉的分子結(jié)構(gòu),從而改善天然淀粉的某些物化性能[50]。酶改性大多采用單一的淀粉水解酶或一種轉(zhuǎn)苷酶(2種或2種以上的酶)對(duì)淀粉分子進(jìn)行降解。與物理改性和化學(xué)改性方法相比,酶法改性具有反應(yīng)條件溫和,且反應(yīng)產(chǎn)物專一等優(yōu)點(diǎn)[51]。
Liu等[52]利用淀粉脫支酶(普魯蘭酶)對(duì)高直鏈淀粉進(jìn)行脫支處理,高直鏈淀粉在脫支改性后,纏結(jié)濃度和分子纏結(jié)強(qiáng)度低于未改性的高直鏈淀粉溶液,直鏈淀粉與線性短直鏈淀粉之間的分子相互作用弱于直鏈淀粉與支鏈淀粉之間的分子相互作用。高直鏈淀粉水凝膠網(wǎng)絡(luò)更致密,更像固體,由于強(qiáng)烈的分子相互作用,更多的游離水從網(wǎng)絡(luò)中滲出。脫支后,直鏈淀粉和線性短直鏈淀粉在較低濃度下發(fā)生分子纏結(jié)。在脫支高直鏈淀粉凝膠中,凝膠網(wǎng)絡(luò)和晶體結(jié)構(gòu)中含有更多的水,從而增加了抗性淀粉的含量。脫支高直鏈淀粉在食品工業(yè)中作為低血糖膠凝和混濁成分,在制備穩(wěn)定水凝膠方面具有巨大的潛力。
淀粉作為一種天然可再生、可自然降解的環(huán)境友好材料,在可降解材料、食品、化工、造紙、醫(yī)藥、紡織等領(lǐng)域應(yīng)用廣泛。相較于普通淀粉,高直連淀粉在材料、包裝、醫(yī)藥等領(lǐng)域存在諸多特殊應(yīng)用。
近年來,諸多學(xué)者對(duì)高直鏈淀粉基可降解、可食用薄膜材料進(jìn)行了深入的研究。不同高直鏈淀粉薄膜的性能特征見表2,高直鏈淀粉作為最理想的生物聚合物之一,與普通淀粉相比示出優(yōu)異的形成透明、無嗅和無味的膜基質(zhì)能力,具有良好的力學(xué)和阻隔性能[16—17, 41],非常適合用來制作包裝薄膜。高直鏈淀粉薄膜脆性較大,為克服這一缺陷,可以對(duì)高直鏈淀粉進(jìn)行物理共混改性。通常是在高直鏈淀粉膜的制備過程中加入增塑劑,增塑劑種類較多,其中最常見的是甘油、聚乙二醇和山梨醇[53—54]。增塑劑可以減小淀粉分子間的相互作用力,增加高直鏈淀粉在熱加工狀態(tài)下的流動(dòng)性,從而減小高直鏈淀粉材料的結(jié)晶度,賦予高直鏈淀粉材料良好的彈性、柔韌性和可加工性,并且可改善高直鏈淀粉薄膜材料的阻隔性能[55]。到目前為止,以高直鏈淀粉或其衍生物制備高性能和功能性高直鏈淀粉基材料的途徑得到了廣泛的研究。
Zou等[17]研究了魔芋葡甘聚糖(KGM)的引入對(duì)高直鏈玉米淀粉(HACS)/甘油復(fù)合膜性能的影響,加入KGM后薄膜的微觀形貌呈現(xiàn)出更加均勻的紋理,且薄膜的拉伸強(qiáng)度、斷裂伸長(zhǎng)率和耐水性均顯著提高。Colussi等[43]利用不同直鏈淀粉含量的天然淀粉和乙?;矸壑苽淇缮锝到獾膹?fù)合薄膜,實(shí)驗(yàn)結(jié)果顯示,乙酰化高直鏈淀粉制成的薄膜比高直鏈淀粉薄膜具有更高的含水量和水溶性,及更低的分解溫度和更高的熱穩(wěn)定性,且乙酰化明顯提高了高直鏈淀粉薄膜的斷裂伸長(zhǎng)率,與高直鏈淀粉膜相比,乙?;咧辨湹矸勰そ到飧?。Qu等[56]研究了不同配比的HACS與羥丙基甲基纖維素(HPMC)對(duì)可食性復(fù)合膜性能的影響,隨著HPMC比例增大,HACS與HPMC之間的氫鍵作用減弱,復(fù)合膜的水溶性增大,連續(xù)相由HACS轉(zhuǎn)變?yōu)镠PMC,但HACS與HPMC的相容性變差。HPMC可有效地降低可食性膜的結(jié)晶程度,并抑制其在儲(chǔ)藏過程中的老化,然而HPMC的加入會(huì)降低HACS膜的透光性。
為實(shí)現(xiàn)實(shí)時(shí)檢測(cè)食品新鮮程度的目的,Chen等[57]利用HACS(直鏈淀粉質(zhì)量分?jǐn)?shù)為70%)和聚乙烯醇(PVA)為主要原料,通過負(fù)載pH響應(yīng)指示劑的方式制得高直鏈淀粉基pH響應(yīng)食品包裝材料(HASF),HASF指示材料可適用于食品包裝材料,由于HASF 指示材料可通過顏色轉(zhuǎn)變對(duì)食品變質(zhì)產(chǎn)生的酸性氣體CO2進(jìn)行識(shí)別和指示,間接地判斷食品的新鮮程度,為實(shí)時(shí)檢測(cè)食品品質(zhì)提供了新的解決方案。Liu等[58]評(píng)估了納米TiO2對(duì)高直鏈淀粉基復(fù)合薄膜性能的影響,在薄膜中引入少量納米TiO2之后,不僅使薄膜的耐水性能和力學(xué)性能得到改善,還使薄膜呈現(xiàn)一定的抑菌能力,同時(shí)由于納米TiO2所導(dǎo)致的屏蔽光特性,使納米TiO2/高直鏈淀粉基復(fù)合薄膜可以滿足食品避光保存的需要。
Wang等[59]報(bào)道了高直鏈淀粉糊化度及濃度對(duì)高直鏈淀粉、明膠復(fù)合膜質(zhì)量的影響,高直鏈淀粉的加入可以提高明膠膜的機(jī)械強(qiáng)度,并且降低膜的溶解性和增加膜的完整性。這對(duì)含有在熱堿性介質(zhì)中糊化的淀粉膜尤其顯著,在該膜中可觀察到耐水性得到顯著提高,高直鏈淀粉的加入也增加了明膠膜的熱穩(wěn)定性。這主要?dú)w因于淀粉糊化后的交聯(lián)過程,及其與明膠分子的相互作用。有研究表明,高直鏈淀粉糊化困難、結(jié)晶破壞程度低,是高直鏈淀粉基薄膜透光性差和降解初期質(zhì)量損失率低的主要原因[60],且增塑劑的存在對(duì)高直鏈淀粉的水溶性也有較大影響。今后人們應(yīng)探索更適合高直鏈淀粉的糊化方法,以提高薄膜的透光性和降解性能。
目前,利用直鏈淀粉為原料制備的產(chǎn)品作為某一類石油基制品的替代品是完全可行的。Lacourse等[61]利用直鏈淀粉制成一種包裝充填物,其類似于聚苯乙烯泡沫塑料,體輕而松軟,被廣泛應(yīng)用于包裝工業(yè)。因該包裝充填物成分95%是直鏈淀粉,所以能在較短時(shí)間內(nèi)分解,解決了聚苯乙烯等污染環(huán)境的問題。直鏈淀粉包裝填充物不帶靜電,作為保護(hù)性包裝填充材料,如電子儀器儀表、電子元件等靈敏裝置的緩沖墊層,具有發(fā)泡聚苯乙烯無可比擬的優(yōu)勢(shì)。Sun等[62]以HACS(直鏈淀粉質(zhì)量分?jǐn)?shù)為60%)與二氧化碳樹脂共混塑煉制得全降解片材,探究了HACS與二氧化碳樹脂不同配比和添加劑的用量對(duì)材料力學(xué)性能的影響,隨著片材中HACS含量增加,片材的抗張強(qiáng)度和斷裂伸長(zhǎng)率都會(huì)有不同程度的下降,但通過調(diào)節(jié)聚乙二醇(PEG)和增塑劑鄰苯二甲酸二辛酯(DOP)的用量,可以將全降解片材的力學(xué)性能維持在較好水平。淀粉基生物可降解材料有望解決白色污染問題,實(shí)現(xiàn)包裝行業(yè)的可持續(xù)發(fā)展。
高直鏈淀粉因其粘合無毒,水溶性等特點(diǎn),可應(yīng)用于縫合線、藥劑、繃帶等醫(yī)療產(chǎn)品中。高直鏈淀粉是一類生物可降解性的天然高分子材料,具有良好的生物相容性,常作為藥物高分子載體。通過改變淀粉基載體的水解速度和分子結(jié)構(gòu),調(diào)控藥劑中活性藥物成分的溶解性和擴(kuò)散速度,可構(gòu)建具有緩釋功能特性的載體材料,降低藥物對(duì)胃腸等消化器官的毒副作用,從而提高活性藥物成分的生物利用度,例如以高直鏈玉米淀粉為原料的羧甲基淀粉(HASCA)具有顯著的藥物緩釋性能[65]。Wang等[66]采用密封控溫技術(shù)用直鏈淀粉包埋水楊酸,制備出直鏈淀粉、水楊酸包合物,直鏈淀粉能夠有效地包合水楊酸,提高載體的利用率,降低藥物的浪費(fèi)率。
Nabais等[67]以高直鏈羧甲基淀粉鈉(HASCA)制備的賦型劑(SD HASCA)作為藥物緩釋載體,制備了含水溶性藥物鹽酸曲馬多的SD HASCA片劑,當(dāng)SD HASCA片劑暴露在模擬胃腸道pH值變化的pH梯度和質(zhì)量分?jǐn)?shù)為40%的乙醇培養(yǎng)基中時(shí),片劑表面逐漸形成一種非常堅(jiān)硬的凝膠,提供可控的藥物釋放特性,即使在與酒精共服的情況下,也可最大限度地保證藥物的療效。利用氧化高直鏈淀粉制備而成的凝膠(OHASM)[68],具有對(duì)胃酸、膽鹽和消化酶顯著的pH響應(yīng)性和抗性,適用于封裝各種營(yíng)養(yǎng)物質(zhì),如疏水性和親水性生物活性物質(zhì),以及益生菌、-胡蘿卜素、茶多酚等,可以作為營(yíng)養(yǎng)物質(zhì)及藥物成分的新型遞送載體。Xiao等[69]報(bào)道了使用一步反應(yīng)熔融混合法制備淀粉基超吸收聚合物(SBSAPs),用于尿素肥料緩慢釋放的研究,基于高直鏈淀粉(直鏈淀粉質(zhì)量分?jǐn)?shù)為50%)的高吸水性樹脂比基于低直鏈淀粉的高吸水性樹脂具有更高的吸水性。利用反應(yīng)混合法制備的SBSAPs,實(shí)現(xiàn)了尿素在水中的緩慢釋放,為尿素緩釋技術(shù)的實(shí)現(xiàn)提供了一種經(jīng)濟(jì)有效的解決方案,具有廣闊的農(nóng)業(yè)應(yīng)用前景。
表2 不同高直鏈淀粉薄膜的力學(xué)性能
注:高直鏈淀粉薄膜增塑劑均為甘油
雖然高直鏈淀粉具有特殊的分子結(jié)構(gòu)和理化性質(zhì),但親水性、難糊化和脆性限制了其在材料領(lǐng)域的應(yīng)用,諸多學(xué)者對(duì)高直鏈淀粉的改性工作展開了大量研究,為高直鏈淀粉的工業(yè)化應(yīng)用打下了良好的基礎(chǔ)。目前,高直鏈淀粉的應(yīng)用主要存在以下兩大問題。
1)高直鏈淀粉基可降解材料耐水性差,濕強(qiáng)度低一直以來是其固有的缺陷,如何對(duì)高直鏈材料進(jìn)行低成本的耐水改性將是今后研究的重點(diǎn)之一。
2)由于淀粉在工業(yè)上的應(yīng)用大都在糊化的情況下進(jìn)行,高直鏈淀粉糊化困難極大地限制了其應(yīng)用,改善高直鏈淀粉的糊化性能同樣也是研究重點(diǎn)。
目前我國乃至全球“白色污染”都是一個(gè)突出的社會(huì)問題,隨著世界各大國家逐步限制生產(chǎn)和禁止使用塑料制品,可以預(yù)見,未來高直鏈淀粉基材料有著巨大的應(yīng)用前景。
[1] MUTHURAJ R, MEKONNEN T. Recent Progress in Carbon Dioxide (CO2) as Feedstock for Sustainable Materials Development: Co-Polymers and Polymer Blends[J]. Polymer, 2018(145): 348-373.
[2] PAN D, SU F M, LIU Chun-tai, et al. Research Progress for Plastic Waste Management and Manufacture of Value-Added Products[J]. Advanced Composites and Hybrid Materials, 2020, 3(4): 443-461.
[3] 溫宗國. 應(yīng)對(duì)挑戰(zhàn),塑料污染防治力度升級(jí)[J]. 中國生態(tài)文明, 2020(4): 38-40.
WEN Zong-guo. Efforts to Prevent and Control Plastic Pollution have been Upgraded[J]. China Ecological Civilization, 2020(4): 38-40.
[4] 周仕憑. 無孔不入的塑料污染[J]. 環(huán)境教育, 2020(8): 1.
ZHOU Shi-ping. Pervasive Plastic Pollution[J]. Environmental Education, 2020(8): 1.
[5] 馬相奎. 廢塑料污染問題帶給我國的影響[J]. 中小企業(yè)管理與科技(下旬刊), 2019(6): 95-96.
MA Xiang-kui. Impact of Waste Plastic Pollution on China[J]. Management & Technology of SME, 2019(6): 95-96.
[6] KURNIAWAN S B, ABDULLAH S R S, IMRON M F, et al. Current State of Marine Plastic Pollution and Its Technology for More Eminent Evidence: A Review[J]. Journal of Cleaner Production, 2021(278): 123537.
[7] HAWARD M. Plastic Pollution of the World's Seas and Oceans as a Contemporary Challenge in Ocean Governance[J]. Nature Communications, 2018, 9(1): 9-11.
[8] MEKONNEN T H, MISRA M, MOHANTY A K. Fermented Soymeals and Their Reactive Blends with Poly (Butylene Adipate-Co-Terephthalate) in Engineering Biodegradable Cast Films for Sustainable Packaging[J]. ACS Sustainable Chemistry and Engineering, 2016, 4(3): 782-793.
[9] 寇志敏. 小分子增塑劑對(duì)淀粉熱塑化改性及性能的影響研究進(jìn)展[J]. 包裝工程, 2021, 42(15): 148-155.
KOU Zhi-min. Research Progress of Small Molecule Plasticizer on The Rmoplasticizing Modification and Properties of Starch[J]. Packaging Engineering, 2021, 42(15): 148-155.
[10] NANA B, HHHH A, AE A, et al. Advancement on Modification of Chitosan Biopolymer and Its Potential Applications[J]. International Journal of Biological Macromolecules, 2020(152): 681-702.
[11] WU J F, ZHANG L Y. Dissolution Behavior and Conformation Change of Chitosan in Concentrated Chitosan Hydrochloric Acid Solution and Comparison with Dilute and Semidilute Solutions[J]. International Journal of Biological Macromolecules, 2019(121): 1101-1108.
[12] GALUS S, LENART A. Optical, Mechanical, and Moisture Sorption Properties of Whey Protein Edible Films[J]. Journal of Food Process Engineering, 2019, 42(6): 1-10.
[13] 嚴(yán)海彪, 胡慧, 金科. 淀粉基塑料制備與降解性能的現(xiàn)狀與進(jìn)展[J]. 塑料, 2020, 49(5): 96-101.
YAN Hai-biao, HU Hui, JIN Ke. Progress in Preparation and Degradation of Starch-Based Plastics[J]. Plastics, 2020, 49(5): 96-101.
[14] SIKORA J,MAJEWSKI U, PUSZKA A. Modern Biodegradable Plastics-Processing and Properties: Part I[J]. Materials, 2020, 13(8): 1986.
[15] PATNAIK S, KUMAR S, PANDA A K. Thermal Degradation of Eco-Friendly Alternative Plastics: Kinetics and Thermodynamics Analysis[J]. Environmental Science and Pollution Research, 2020, 27(13): 14991-15000.
[16] MENZEL C, ANDERSSO M, ANDERSSO R, et al. Improved Material Properties of Solution-Cast Starch Films: Effect of Varying Amylopectin Structure and Amylose Content of Starch from Genetically Modified Potatoes[J]. Carbohydrate Polymers, 2015(130): 388-397.
[17] ZOU Y, YUAN C, CUI B, et al. Formation of High Amylose Corn Starch/Konjac Glucomannan Composite Film with Improved Mechanical and Barrier Properties[J]. Carbohydrate Polymers, 2021(251): 117039.
[18] QIN Y, ZHANG H, DAI Y Y, et al. Effect of Alkali Treatment on Structure and Properties of High Amylose Corn Starch Film[J]. Materials, 2019, 12(10): 1-9.
[19] LIU W W, XUE J, CHENG B J, et al. Anaerobic Biodegradation, Physical and Structural Properties of Normal and High-Amylose Maize Starch Films[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(5): 184-193.
[20] 魯守平, 陳波, 張晗菡, 等. 高直鏈淀粉玉米的研究進(jìn)展[J]. 山東農(nóng)業(yè)科學(xué), 2019, 51(6): 169-174.
LU Shou-ping, CHEN Bo, ZHANG Han-han, et al. Research Progress of High Amylose Corn[J]. Shandong Agricultural Sciences, 2019, 51(6): 169-174.
[21] 馬健. 纏結(jié)濃度對(duì)根莖淀粉物化性能影響的研究[D]. 合肥: 安徽農(nóng)業(yè)大學(xué), 2017: 1-3.
MA Jian. Effects of Entanglement Concentration on Thephysicochemical Properties of Root Starches[D]. Hefei: Anhui Agricultural University, 2017: 1-3.
[22] OJOGBO E, OGUNSONA E O, MEKONNEN T H. Chemical and Physical Modifications of Starch for Renewable Polymeric Materials[J]. Materials Today Sustainability, 2020(22): 7-8.
[23] 張斌, 羅發(fā)興, 黃強(qiáng), 等. 不同直鏈含量玉米淀粉結(jié)晶結(jié)構(gòu)及其消化性研究[J]. 食品與發(fā)酵工業(yè), 2010, 36(8): 26-30.
ZHANG Bin, LUO Fa-xing, HUANG Qiang, et al. Crystalline Structure and Digestibility of Corn Starch with Different Amylose Content[J]. Food and Fermentation Industries, 2010, 36(8): 26-30.
[24] ZHANG Y C, REMPEL C, LIU Q. Thermoplastic Starch Processing and Characteristics-A Review[J]. Critical Reviews in Food Science and Nutrition, 2014, 54(10): 1353-1370.
[25] MULLER J, GONZáLEZ-MARTíNEZ C, CHIRALT A. Combination of Poly (Lactic) Acid and Starch for Biodegradable Food Packaging[J]. Materials, 2017, 10(8): 1-22.
[26] 王潔, 徐同成, 劉麗娜, 等. 馬鈴薯淀粉消化性能研究進(jìn)展[J]. 中國食物與營(yíng)養(yǎng), 2018, 22(5): 34-37.
WANG Jie, XU Tong-cheng, LIU Li-na, et al. Research Progress on the Digestibility of Potato Starch[J]. Food and Nutrition in China, 2018, 22(5): 34-37.
[27] ROLLAND-SABATé A, SáNCHEZ T, BULéON A, et al. Structural Characterization of Novel Cassava Starches with Low and High-Amylose Contents in Comparison with Other Commercial Sources[J]. Food Hydrocolloids, 2012, 27(1): 161-174.
[28] 安迪, 鄭學(xué)玲. 市售小麥淀粉特性及其對(duì)面條品質(zhì)的影響[J]. 糧食與油脂, 2018, 31(12): 58-63.
AN Di, ZHENG Xue-ling. Characteristics of Commercially Available Wheat Starch and Its Effect on Noodle Quality[J]. Cereals & Oils, 2018, 31(12): 58-63.
[29] 田曉紅, 譚斌, 譚洪卓, 等. 20種高粱淀粉特性[J]. 食品科學(xué), 2010, 31(15): 13-20.
TIAN Xiao-hong, TAN Bin, TAN Hong-zhuo, et al. Properties of Sorghum Starches from Twenty Varieties in China[J]. Food Science, 2010, 31(15): 13-20.
[30] SOUSA Y, MEDEIROS L, PINTADO M, et al. Goat Milk Oligosaccharides: Composition, Analytical Methods and Bioactive and Nutritional Properties[J]. Trends in Food Science and Technology, 2019(92): 152-161.
[31] KUMARI S, YADAV B S, YADAV R B. Synthesis and Modification Approaches for Starch Nanoparticles for Their Emerging Food Industrial Applications: A Review[J]. Food Research International, 2020(128): 108765.
[32] GE S J, XIONG L, LI M, et al. Characterizations of Pickering Emulsions Stabilized by Starch Nanoparticles: Influence of Starch Variety and Particle Size[J]. Food Chemistry, 2017(234): 339-347.
[33] LIU C C, AN F P, HE H, et al. Pickering Emulsions Stabilized by Compound Modified Areca Taro (Colocasia Esculenta (L.) Schott) Starch with Ball-Milling and OSA[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 556(15): 185-194.
[34] LU X X, WANG Y, LI Y Q, et al. Assembly of Pickering Emulsions Using Milled Starch Particles with Different Amylose/Amylopectin Ratios[J]. Food Hydrocolloids, 2018(84): 47-57.
[35] MINAKAWA A F K, FARIA-TISCHER P C S, MALI S, et al. Simple Ultrasound Method to Obtain Starch Micro- and Nanoparticles from Cassava, Corn and Yam Starches[J]. Food Chemistry, 2019(283): 11-18.
[36] KANG N, ZUO Y J, HILLIOU L, et al. Viscosity and Hydrodynamic Radius Relationship of High-Power Ultrasound Depolymerised Starch Pastes with Different Amylose Content[J]. Food Hydrocolloids, 2016(52): 183-191.
[37] ZHONG Y Y, LIANG W X, PU H Q, et al. Short-Time Microwave Treatment Affects the Multi-Scale Structure and Digestive Properties of High-Amylose Maize Starch[J]. International Journal of Biological Macromolecules, 2019(137): 870-877.
[38] LOPEZ-SILVA M, BELLO-PEREZ L A, AGAMA-ACEVEDO E, et al. Effect of Amylose Content in Morphological, Functional and Emulsification Properties of OSA Modified Corn Starch[J]. Food Hydrocolloids, 2019(97): 105212.
[39] LEAL-CASTA?EDA E J, GARCíA-TEJEDA Y, HERNáNDEZ-SáNCHEZ H, et al. Pickering Emulsions Stabilized with Native and Lauroylated Amaranth Starch[J]. Food Hydrocolloids, 2018(80): 177-185.
[40] GOSWAMI S R, WANG S, GNANASEKAR P, et al. Catalyst-Free Esterification of High Amylose Starch with Maleic Anhydride in 1-Butyl-3- Methylimidazolium Chloride: The Effect of Amylose Content on the Degree of MA Substitution[J]. Carbohydrate Polymers, 2020(234): 115892.
[41] KIM H Y, JANE J L, LAMSAL B. Hydroxypropylation Improves Film Properties of High Amylose Corn Starch[J]. Industrial Crops and Products, 2017, 95: 175-183.
[42] 范春艷, 佟毅, 李航, 等. 羥丙基化對(duì)高直鏈玉米淀粉理化性質(zhì)的影響[J]. 當(dāng)代化工, 2020, 49(8): 1694-1698.
FAN Chun-yan, TONG Yi, LI Hang, et al. Effect of Hydroxypropylation on Physicochemical Properties of High-Amylose Corn Starch[J]. Contemporary Industry Chemical, 2020, 49(8): 1694-1698.
[43] COLUSSI R, PINTO V Z, EL HALAL S L M, et al. Acetylated Rice Starches Films with Different Levels of Amylose: Mechanical, Water Vapor Barrier, Thermal, and Biodegradability Properties[J]. Food Chemistry, 2017, 221: 1614-1620.
[44] MIN S, HONGBO T, YANPING L. Synthesis, Characterization and Properties of Acetylated High-Amylose Corn Starch[J]. Cellulose Chemistry and Technology, 2017, 51(9-10): 929-938.
[45] ZHU J, ZHANG S Y, ZHANG B J, et al. Structural Features and Thermal Property of Propionylated Starches with Different Amylose/Amylopectin Ratio[J]. International Journal of Biological Macromolecules, 2017, 97: 123-130.
[46] TAVARES A C K, ZANATTA E, DA ROSA ZAVAREZE E, et al. The Effects of Acid and Oxidative Modification on the Expansion Properties of Rice Flours with Varying Levels of Amylose[J]. LWT - Food Science and Technology, 2010, 43(8): 1213- 1219.
[47] 資名揚(yáng). 改性高直鏈玉米淀粉復(fù)合膜的制備、性能及應(yīng)用研究[D]. 廣州: 華南理工大學(xué), 2011: 33-39.
ZI Ming-yang. Study on Preparation, Properties and Application of Modified High-Amylose Corn Starch Composite Film[D]. Guangzhou: South China University Of Technology, 2011: 33-39.
[48] LUO Z G, FU X, GAO Q Y, et al. Effect of Acid Hydrolysis in the Presence of Anhydrous Alcohols on the Structure, Thermal and Pasting Properties of Normal, Waxy and High-Amylose Maize Starches[J]. International Journal of Food Science and Technology, 2011, 46(2): 429-435.
[49] CAI J W, YANG Y, MAN J M, et al. Structural and Functional Properties of Alkali-Treated High-Amylose Rice Starch[J]. Food Chemistry, 2014, 145: 245-253.
[50] 肖瑀. 酶法制備改性玉米淀粉及其物理與消化特性研究[D]. 合肥: 安徽農(nóng)業(yè)大學(xué), 2019: 2-4.
XIAO Yu. Preparation of Modified Corn Starch by Enzymatic Method and Its Physical and Digestive Characteristics[D]. Hefei: Anhui Agricultural University, 2019: 2-4.
[51] 孫亞東, 陳啟鳳, 呂閃閃, 等. 淀粉改性的研究進(jìn)展[J]. 材料導(dǎo)報(bào), 2016, 30(21): 68-74.
SUN Ya-dong, CHEN Qi-feng, LYU Shan-shan, et al. Recent Progress in Modification of Starch[J]. Materials Reports, 2016, 30(21): 68-74.
[52] LIU G F, GU Z B, HONG Y, et al. Effects of Molecular Interactions in Debranched High Amylose Starch on Digestibility and Hydrogel Properties[J]. Food Hydrocolloids, 2020, 101(C): 105498.
[53] 賈超, 王利強(qiáng), 盧立新. 淀粉基可食膜研究進(jìn)展[J]. 食品科學(xué), 2013, 34(5): 289-292.
JIA Chao, WANG Li-qiang, LU Li-xin. Research Progress of Starch-Based Edible Film[J]. Food Science, 2013, 34(5): 289-292.
[54] 張曉曉, 黃麗婕, 陳杰, 等. 淀粉基食品包裝膜材料的研究進(jìn)展[J]. 包裝工程, 2018, 39(3): 83-88.
ZHANG Xiao-xiao, HUANG Li-jie, CHEN Jie, et al. Research Progress of Starch-Based Food Packaging Film[J]. Packaging Engineering, 2018, 39(3): 83-88.
[55] GARCíA M A, MARTINO M N, ZARITZKY N E. Lipid Addition to Improve Barrier Properties of Edible Starch-Based Films and Coatings[J]. Journal of Food Science, 2000, 65(6): 941-944.
[56] 瞿曉松, 秦洋, 陸慧玲, 等. 高直鏈玉米淀粉/羥丙基甲基纖維素可食性膜的制備及性能研究[J]. 中國糧油學(xué)報(bào), 2019, 34(7): 33-38.
QU Xiao-song, QIN Yang, LU Hui-ling, et al. Preparation and Properties of High Amylose Corn Starch/Hydroxypropyl Methyl Eellulose Edible Film[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(7): 33-38.
[57] 陳雪風(fēng), 艾月, 史淞浩, 等. pH響應(yīng)性食品包裝材料的制備及其對(duì)酸性氣體的識(shí)別指示性研究[J]. 包裝工程, 2021, 42(7): 159-167. CHEN Xue-feng, AI Yue, SHI Song-hao, et al. Preparation of pH-Responsive Food Packaging Materials and Study of Acid Gas Indication[J]. Packaging Engineering, 2021, 42(7): 159-167.
[58] 劉超, 李莎, 熊漢國. 高直鏈淀粉/納米二氧化鈦抗菌薄膜的性能研究[J]. 現(xiàn)代塑料加工應(yīng)用, 2014, 26(4): 13-17.
LIU Chao, LI Sha, XIONG Han-guo. Study on Properties of Antimicrobial Film of High Amylose-Starch/Nano-TiO2[J]. Modern Plastics Processing and Applications, 2014, 26(4): 13-17.
[59] WANG W H, WANG K, XIAO J D, et al. Performance of High Amylose Starch-Composited Gelatin Films Influenced by Gelatinization and Concentration[J]. International Journal of Biological Macromolecules, 2017(94): 258-265.
[60] 蘭俊杰. 高直鏈淀粉基可降解膜的研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2007: 47-55.
LAN Jun-jie. The Research of High Amylose Based Degradable Film[D]. Harbin: Harbin Institute of Technology, 2007: 47-55.
[61] LACOURSE. Biodegradable Shaped Products and the Method of Preparation Thereof: US, 07/477374[P]. 1991-07-30.
[62] 孫炳新, 谷宏, 韓春陽, 等. 高直鏈玉米淀粉全降解片材的制備[J]. 包裝工程, 2009, 30(4): 37-39.
SUN Bing-xin, GU Hong, HAN Chun-yang, et al. Preparation of Total Biodegradable Sheet with High Amylose Corn Starch[J]. Packaging Engineering, 2009, 30(4): 37-39.
[63] MUSCAT D, ADHIKARI R, MCKNIGHT S, et al. The Physicochemical Characteristics and Hydrophobicity of High Amylose Starch-Glycerol Films in the Presence of Three Natural Waxes[J]. Journal of Food Engineering, 2013, 119(2): 205-219.
[64] LIU H H, ADHIKARI R, GUO Q P, et al. Preparation and Characterization of Glycerol Plasticized (High-Amylose) Starch-Chitosan Films[J]. Journal of Food Engineering, 2013, 116(2): 588-597.
[65] 洪雁. 藥物緩釋性載體用脫支淀粉的研究[D]. 無錫: 江南大學(xué), 2015: 8-12.
HONG Yan. Study on Debranched Starches Used as Drug Sustained-Release Carrier[D]. Wuxi: Jiangnan University, 2015: 8-12.
[66] 王齊放, 趙喆, 劉洪卓, 等. 直鏈淀粉與水楊酸包合物的制備及影響因素考察[J]. 沈陽藥科大學(xué)學(xué)報(bào), 2010, 27(6): 419-422.
WANG Qi-fang, ZHAO Zhe, LIU Hong-zhuo, et al. Preparation of Inclusion Complex of Amylose and Salicylic Acid and Its Influencing Factors[J]. Journal of Shenyang Pharmaceutical University, 2010, 27(6): 419-422.
[67] NABAIS T, LECLAIR G. High-Amylose Sodium Carboxymethyl Starch Matrices: Development and Characterization of Tramadol Hydrochloride Sustained-Release Tablets for Oral Administration[J]. ISRN Pharmaceutics, 2014(256): 391523.
[68] ZHANG Z H, LI M F, PENG F, et al. Oxidized High-Amylose Starch Macrogel as a Novel Delivery Vehicle for Probiotic and Bioactive Substances[J]. Food Hydrocolloids, 2020(114): 106578.
[69] XIAO X M, YU L, XIE F W, et al. One-Step Method to Prepare Starch-Based Superabsorbent Polymer for Slow Release of Fertilizer[J]. Chemical Engineering Journal, 2017(309): 607-616.
Research Progress in Modification and Application of High-Amylose Starch Materials
ZHAO Xi-poa,b,BIAN Wu-xuna,LIU Jin-chaoa,LI Jun-chenga,LI Xuan-kanga,PENG Shao-xiana,b
(a.School of Materials and Chemical Engineering b.Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China)
High-amylose starch has unique gelatinization characteristics and excellent film-forming performance. It has great application prospect in biodegradable materials and food.. But high-amylose starch based biodegradable materials have inherent defects such as poor resistance to water and low wet. So it is required to fully understand the wide application of high-amylose starch based materials, and explore the modification methods of high-amylose starch in-depth. By tracking the high-amylose starch related modification research and application progress at home and abroad, the basic nature and properties of high-amylose starch were summarized. The effects of commonly used methods for high-amylose starch modification, such as physical modification, chemical modification and enzymatic modification on microstructure and mechanical properties of high-amylose starch were mainly analyzed and the challenges and opportunities of high-amylose starchin many areas were introduced in detail. The physical, chemical and enzymatic modification methods can be used to improve the physical and chemical properties of high-amylose starch, such as decreasing particle size, decreasing gelatinization temperature and increasing thermal stability, which can broaden the application range of high-amylose starch in packaging, food and medical fields.
high-amylose starch; plasticizing; biodegradable
O636.1+2
A
1001-3563(2022)01-0001-09
10.19554/j.cnki.1001-3563.2022.01.001
2021-06-08
國家自然科學(xué)基金(51273060)
趙西坡(1982—),男,博士,湖北工業(yè)大學(xué)副教授,主要研究方向?yàn)槎嘞嗑酆衔矬w系結(jié)構(gòu)設(shè)計(jì)和生物可降解材料結(jié)構(gòu)調(diào)控及高性能化與功能化。