姚曜,孫振炳,李曉寶,湯正捷,李曉平
羧甲基纖維素復合膜的研究現(xiàn)狀
姚曜,孫振炳,李曉寶,湯正捷,李曉平
(西南林業(yè)大學 云南省膠黏劑與膠合制品重點實驗室,昆明 650224)
介紹羧甲基纖維素與淀粉、海藻酸鈉、明膠、納米纖維素、殼聚糖和其他材料制備復合膜在國內(nèi)外的研究進展,以及該類具有抑菌性能的食品包裝復合膜的最新研究進展,為羧甲基纖維素復合膜的研究提供一定的思路和依據(jù)??偨Y(jié)該方向研究中不同材料的最佳添加量對羧甲基纖維素復合膜性能的提升情況,及一些復合膜添加不同的有機抑菌劑或無機抑菌劑后抑菌性能的提升情況和對一些食品的保鮮效果。羧甲基纖維素復合膜具有較大的應(yīng)用潛力,添加一些材料后具有抑菌活性,該類復合膜在食品保鮮方面具有一定的應(yīng)用價值。
羧甲基纖維素;復合膜;力學性能;抑菌性能;食品保鮮
羧甲基纖維素(CMC)是工業(yè)上重要的生物高分子原料之一,是纖維素葡萄糖單位上2,3,6個羥基被羧甲基基團部分取代而生成的水溶性纖維素衍生物。CMC具有聚電解質(zhì)特性,有良好的水溶性、無毒、生物相容性等優(yōu)點,眾多科研工作者致力于將CMC作為薄膜的成膜材料,希望能夠替代一部分石油化工產(chǎn)品。單獨的聚合物薄膜仍有許多缺點,用CMC制備的薄膜不具備良好的力學性能[1]。如今,越來越多的學者研究添加不同材料對CMC基復合膜進行改性,從而制備出一些具有良好的力學性能、熱穩(wěn)定性、可降解、抑菌性的復合膜,其中一些復合膜可以在食品保鮮方面得以廣泛應(yīng)用。文中主要綜述近年來CMC與淀粉、海藻酸鈉、明膠、納米纖維素、殼聚糖,以及其他一些材料復合成膜的研究進展。
淀粉基CMC復合膜(簡稱淀粉膜)具有良好 的生物降解性能,可有效阻隔氧氣、二氧化碳和油脂[2]。從2007年開始,科研工作者就開始了淀粉基CMC復合膜的研究工作。Ma等[3]制備了熱塑豌豆淀粉和CMC的復合膜,通過加入CMC來提升薄膜的抗拉強度、斷裂伸長率和水蒸氣阻隔性能等。Wirongrong等[4]制備了CMC和木薯淀粉的復合膜,利用FTIR證明了CMC和木薯淀粉之間存在分子間的相互作用,提升CMC的濃度可以增強復合膜的抗拉強度,并且能夠降低復合膜的水溶性。Aytunga等[5]制備了CMC與玉米淀粉的復合膜,用SEM對比觀察了甘油和聚乙二醇等2種增塑劑制備的復合膜,發(fā)現(xiàn)用甘油的復合膜均勻性較好。此外,復合膜相較于淀粉膜具有更好的透明性和水蒸氣阻隔性能。Rungsiri等[6]從榴蓮皮中制備出CMC并與大米淀粉制備復合膜,CMC的加入提升了復合膜的透明性、力學性能和熱穩(wěn)定性,且當?shù)矸叟cCMC質(zhì)量比分別為67∶33,50∶50時,性能提升最為明顯。不同種類的淀粉與CMC混合后的復合膜其性能也會有所不同,這是由于淀粉中的直鏈淀粉和支鏈淀粉的含量影響其功能特性,以及與其他材料之間的相互作用。Katiany等[7]分別將玉米淀粉、木薯淀粉與質(zhì)量分數(shù)為1%的CMC采用復配(質(zhì)量比為5∶5)制備復合膜,加入CMC后,玉米淀粉/CMC復合膜和木薯淀粉/CMC復合膜的抗拉強度分別提升206%和51%,斷裂應(yīng)力分別提升89%和74%,斷裂應(yīng)變分別提升381%和57%,水蒸氣透過率分別降低48%和40%。Fa等[8]以質(zhì)量分數(shù)為5%的木薯淀粉、質(zhì)量分數(shù)為10%的CMC、甘油及姜黃油,制作一種食品保鮮膜。FTIR分析證明了CMC可以穩(wěn)定姜黃油與復雜聚合物鏈間的分子間相互作用,并且經(jīng)過對比分析,CMC和甘油的加入提升了淀粉膜的抗拉強度和薄膜的疏水性能。Lan等[9]制備了玉米淀粉和CMC復合膜,并將乳酸乳球菌添加到復合膜中釋放出乳酸鏈球菌素,乳酸鏈球菌素能夠有效地殺死金黃色葡萄球菌,當添加質(zhì)量分數(shù)為1.5%的乳酸乳球菌時,乳酸鏈球菌素釋放量最大,抑菌效果最好。當玉米淀粉和CMC質(zhì)量比為5∶5時,力學性能最好。Jiang等[10]將紫甘薯花青素添加到淀粉和CMC復合膜中,紫甘薯花青素提升了復合膜的抗拉強度,降低了斷裂伸長率。花青素使得薄膜對pH值與蛋白質(zhì)分解產(chǎn)生的揮發(fā)性氨十分敏感,不同環(huán)境下復合膜顏色會從紅色變成藍色及綠色。在此試驗中,復合膜用作檢測20 ℃下魚的新鮮度,魚的新鮮度和復合膜顏色變化一致,該復合膜可作為一種智能食品安全監(jiān)測包裝膜。
海藻酸鈉是從褐藻植物中提取的一種多糖[11]。海藻酸鈉是一種較好的成膜增稠材料,其水溶液能起到增稠作用。與淀粉類似,海藻酸鈉具有親水性,成膜后的力學性能較弱。將CMC與海藻酸鈉共混可以改善單一海藻酸鈉的理化性能,很多研究者在此基礎(chǔ)上添加其他成分,以提高復合膜的阻氧、抑菌等性能。部分CMC復合膜在食品保鮮中的應(yīng)用實驗結(jié)果見表1。
王碧等[12]以CaCl2為交聯(lián)劑制備了膠原蛋白/ CMC/海藻酸鈉復合膜,F(xiàn)TIR與X-射線衍射分析證明這3種高分子材料由于鈣離子交聯(lián),以及氫鍵和靜電引力的存在,形成了較強的相互作用和良好的相容性,明顯地提升了復合膜的力學性能、熱穩(wěn)定性和耐水性。孫瑤等[13]以海藻酸鈉與CMC為共混膜原料,通過添加山梨酸鉀來研制一種可食性抑菌膜。CMC所占比例的增加,提升了復合膜的抗拉強度和水蒸氣阻隔性能。經(jīng)過各項指標測定,復合膜成膜液各種原料的濃度確定為1.5%(質(zhì)量分數(shù))CMC,1%(質(zhì)量分數(shù))甘油,3%(質(zhì)量分數(shù))山梨酸鉀;海藻酸鈉和CMC混合質(zhì)量比為85∶15。Han等[14]將焦性沒食子酸(PA)添加到海藻酸鈉與CMC復合膜中,F(xiàn)TIR和SEM證明PA與復合膜間形成了氫鍵。隨著PA含量的增加,復合膜的厚度沒有明顯變化。PA的加入改善了復合膜的柔韌性能和紫外線阻隔性能,但是抗拉強度和水蒸氣阻隔性能均有所下降。此外,PA的存在使復合膜對大腸桿菌和金黃色葡萄球菌表現(xiàn)出抑菌作用。該團隊還研究了一種海藻酸鈉/CMC/桂皮精油(CEO)復合膜應(yīng)用于香蕉的包裝膜,CEO的添加量為15 g/L時,復合膜具有一定的疏水性能,WVP明顯下降。CEO為15 g/L時聚山梨酯-80的釋放量最大,抑菌性能最強[15]。Ruan等[16]將表沒食子兒茶素沒食子酸酯(EGCG)添加到海藻酸鈉與CMC的復合膜中。EGCG是茶多酚的成分之一,具有抗氧化作用。該膜在對豬肉保鮮試驗過程中進行了質(zhì)量損失試驗、活菌數(shù)試驗、脂質(zhì)氧化試驗和氮釋放量試驗等。試驗結(jié)果顯示,加入EGCG后的復合膜可以有效地抑制豬肉的腐敗變質(zhì),減少質(zhì)量損失。Hend等[17]將殼聚糖鹽酸(CBg)加入海藻酸鈉與CMC復合膜中,通過對西紅柿的保鮮試驗可知,該復合膜可以抑制西紅柿的腐敗和質(zhì)量損失。當添加質(zhì)量分數(shù)為15%的CBg時,CBg的交聯(lián)作用使得復合膜的結(jié)構(gòu)緊密,不僅降低了膜的厚度和溶解度,還明顯地提升了水蒸氣阻隔性能和抗拉強度。綜上所述,此種膜在食品保鮮上具有一定的應(yīng)用價值。
表1 部分CMC復合膜在食品保鮮中的應(yīng)用實驗結(jié)果
明膠是一種膠原部分水解后產(chǎn)生的蛋白質(zhì)大分子,在較低的相對濕度下對氧和芳香族化合物有很好的阻隔作用,且具有良好的成膜性。雖然明膠成膜后不具有較強的熱穩(wěn)定性和機械強度,但與CMC復合可以提高膜的其他性能。
Mahdiyar等[18]研究表明,明膠可以提升CMC基復合膜的柔軟度,相較于單一的CMC膜,明膠的加入能夠極大提升復合膜的斷裂伸長率[19]。Nazmi等[20]研究表明,CMC加入明膠雖然降低了膜的延展性,但較好地提升了復合膜的抗拉強度、抗穿刺性能和熱穩(wěn)定性。此外,還證明不同種類的明膠對復合膜力學性能的影響有一定的差異。Esteghlal等[21]研究結(jié)果顯示,不同值環(huán)境下對明膠與CMC復合膜的影響,隨著pH值降低,復合膜的抗拉強度先增大后減小,同時復合膜分子間的靜電力增強,分子間的縫隙增大,導致水蒸氣透過率變大。He等[22]將竹葉抗氧化劑(AOB)添加至明膠與CMC復合膜中,AOB由于氫鍵作用,能較好地融入混合液。添加質(zhì)量分數(shù)為0.2%的AOB時,復合膜的抗拉強度和熱穩(wěn)定性表現(xiàn)最好,且AOB增強了復合膜的紫外線阻隔能力。Hazirah等[23]加入黃原膠以改善明膠/CMC復合膜的性能,結(jié)果顯示,加入黃原膠增強了復合膜的熱穩(wěn)定性、紫外線與水蒸氣阻隔能力,以及使膜具有更強的抗穿刺能力。綜上所述,加入質(zhì)量分數(shù)為5%的黃原膠對復合膜性能提升最為明顯。明膠/CMC復合膜也可以用作制備食品抑菌膜,Maryam等[24]將殼聚糖納米纖維(CHNF)和藏茴香精油(AJEO)添加至明膠/ CMC復合膜。對生牛肉包裝測試的結(jié)果顯示,該復合膜有效地抑制了脂質(zhì)氧化和蛋白質(zhì)分解,明顯延長了牛肉的保質(zhì)期。Elnaz等[25]將TiO2-Ag添加至明膠/ CMC復合膜,制備出一種具有光催性能的薄膜復合材料,添加質(zhì)量分數(shù)為0.2%的TiO2-Ag不僅可以有效地增強膜的抗拉強度,還能輕微地降低水蒸氣透過率。TiO2-Ag的存在也使得復合膜對氨氣、乙醇和苯,具備一定的光催化活性。
納米纖維素(CNC)是一種具有高強度的可生物降解材料[26]。納米纖維素繼承了纖維素優(yōu)點的同時,還具有更好的結(jié)晶度,以及更強的力學性能,因此,CNC加入復合膜中,可以增強膜的力學性能,并降低水蒸氣透過率。
Li等[27]利用酸水解法從豌豆殼中制備出長度為81~286 nm,直徑為8~21 nm的CNC,用于增強CMC基復合薄膜。SEM結(jié)果表明,CNC可以很好地與CMC膜溶液復合。CNC質(zhì)量分數(shù)為5%時,復合膜的抗拉強度達到最大,與CMC薄膜對照組相比抗拉強度提升了50.8%,水蒸氣透過率降低了53.4%。實驗結(jié)果顯示,此種復合薄膜可以有效地減少紅辣椒的質(zhì)量損失和維生素C流失。Oun等[28]同樣利用酸水解法,分別從稻稈、小麥稈、大麥稈中制備出長度為120~800 nm,直徑為10~25 nm的CNC。當這3種原料的CNC分別同質(zhì)量分數(shù)為5%,2%的CMC制備復合膜,抗拉強度分別提升了45.7%,25.2%和42.6%,水蒸氣透過率分別降低了26.3%,19.1%和20.4%。實驗結(jié)果表明,不同原料的CNC對復合膜性能影響也有所不同。Arup等[29]從甘蔗渣中制備NC(Nanocellulose),用質(zhì)量分數(shù)為1.5%的NC和質(zhì)量分數(shù)為2.2%的CMC分別按不同比例制備復合膜,當NC質(zhì)量分數(shù)為70%時,復合薄膜的力學性能、熱穩(wěn)定性、氧氣和水分阻隔性等較好,可以考慮用作包裝保鮮薄膜。Oun等[30]從紙漿中制備長度為125~217 nm,直徑為23~28nm的CNF(Cellulose Nanofiber),CNF能夠與CMC制備出光滑柔韌的薄膜,表明CNF與CMC可以共混兼容。當CNF質(zhì)量分數(shù)為5%時,復合薄膜的抗拉強度和彈性模量分別增加23%和27%,斷裂伸長率降低28%。結(jié)果顯示,CMC/CNF復合薄膜在蔬果保鮮應(yīng)用上同樣具有較大潛力??敌茄诺萚31]采用機械球磨法從纖維素粉末中制備出CNC,將CNC與質(zhì)量分數(shù)為3%的CMC溶液混合流延制備復合膜。隨著CNC含量的增加,復合膜的抗拉強度和斷裂伸長率先增后減,水蒸氣透過率則先減后增。當CNC質(zhì)量分數(shù)為3%時,力學性能最好。
甲殼素是一種生物聚合物,分布在甲殼類動物的外殼、酵母或一些真菌的細胞壁中[32]。殼聚糖是天然多糖甲殼素脫除部分乙?;难苌?,具有活性陽離子結(jié)構(gòu)基團,并且當中的氨基能夠與微生物的細胞膜發(fā)生反應(yīng)導致微生物死亡,使殼聚糖具備抑菌作用。以殼聚糖作為成膜材料的膜力學性能較弱[33],一些研究以CMC與殼聚糖為基制備出一些具有抑菌性的復合膜。
Nooshin等[34]加入姜和肉桂精油至CMC/殼聚糖復合膜中。2種精油提升了膜的水蒸氣阻隔性能、力學性能、疏水性能和抑菌性能。其中,由于肉桂精油中肉桂醛的存在使精油起到了增塑作用,因此提升效果尤為明顯。Shahriyar等[35]研究加入肉桂精油和戊二醛至復合膜中,得到了相似的預(yù)期效果,復合膜的抑菌性、抗氧化性和力學性能同樣都有所提升。由于殼聚糖不易溶于水,所以大多研究只能將殼聚糖溶于酸性溶液來成膜。這些研究通過對殼聚糖改性制備殼聚糖衍生物來解決此類問題。Wang等[36]制備了殼聚糖季銨鹽(HTCC)與CMC共混復合膜,HTCC不僅有很好的水溶性和成膜性,還保留了殼聚糖的抑菌性。該研究配備了不同比例的成膜液,最終確定當HTCC與CMC質(zhì)量比為1∶9時,復合膜的分子間作用力最強,力學性能最好。Zhang等[37]制備了一種兩性離子型羧甲基殼聚糖(HTCMCh)與CMC制備復合膜,復合膜的性能與這種羧甲基殼聚糖衍生物的取代度和質(zhì)量分數(shù)有關(guān),當HTCMCh取代度為0.58,與CMC質(zhì)量比為1∶9時,對復合膜的性能改善效果最好。結(jié)果顯示,抗拉強度和彈性模量分別提升了130.9%和351.6%,在鮮豬肉的保鮮試驗中驗證了該膜可以在48 h內(nèi)有效地抑制細菌繁殖。Hend等[38]制備了殼聚糖雙胍鹽酸鹽,并添加乳香精油與CMC制備復合膜,乳香精油不僅提升了復合膜的抗拉強度和水蒸氣阻隔性,還提升了薄膜的斷裂伸長率。當乳香精油質(zhì)量分數(shù)為5%時,復合膜對肺炎鏈球菌、枯草芽孢桿菌和大腸桿菌的抑菌率分別提升了26.7%,50.8%和36.9%。
半纖維素是一種理想的成膜材料,具有價格低廉、成膜后透氣性低、耐水性強等優(yōu)點。Weerasooriya等[39]從油棕空果串中提取出半纖維素與CMC制備復合膜,膜的熱穩(wěn)定性隨著半纖維素含量的提升而有所改善,當半纖維素質(zhì)量分數(shù)為60%時,膜的力學性能最佳。Wu等[40]將膠原纖維與CMC混合制備復合膜,CMC含量的增加提升了復合膜的抗拉強度和彈性模量,分別提升了125%和277%。木質(zhì)素不僅具有良好的疏水性、熱穩(wěn)定性和生物降解性,同時還有一定的抑菌作用。Michele等[41]按CMC/木質(zhì)素質(zhì)量比為1∶1制備了復合膜,實驗證明了木質(zhì)素可以提升薄膜的防水性、水蒸氣阻隔性和熱穩(wěn)定性。石墨烯作為一種新興的二氧化碳材料,其獨有的物理性能可以增強復合材料的熱穩(wěn)定性、力學性能、氣阻性和電學性質(zhì)等,在生物復合材料方向已經(jīng)有人利用淀粉和海藻酸鈉與石墨烯復合進行研究。Saba等[42]最先將石墨烯納米片與CMC混合制備復合膜,結(jié)果顯示,當添加質(zhì)量分數(shù)為0.5%的石墨烯納米片時,復合膜的綜合性能提升效果最好?;诮】悼紤],有研究者開始在包裝膜中加入一些維生素、益生菌、礦物質(zhì)和氨基酸等。Ali等[43]將生育酚(維生素E衍生物)添加到CMC薄膜中,生育酚的加入不僅增強了復合膜的水蒸氣阻隔性能,還提升了膜的斷裂伸長率。該團隊認為,此種膜可以用作包裝含有脂類或脂肪的食品。Hadi等[44]制備了CMC/聚乙烯醇復合膜,為提升抑菌性將玫瑰精油加入復合膜中,測試結(jié)果顯示,當玫瑰精油質(zhì)量分數(shù)為3%時,在60 d內(nèi)復合膜可以完全抑制柑橘綠霉病菌的生長。納米氧化鋅是一種有優(yōu)異抑菌性的新型無機材料,Hamid等[45]將CMC與納米氧化鋅與秋葵黏液混合制備復合膜。在對雞胸肉保鮮實驗中,2種成分有效地減緩了樣本的脂質(zhì)氧化,當秋葵黏液體積分數(shù)為50%時,對微生物的抑制作用最為明顯。
CMC作為纖維素的衍生生物聚合物在復合膜領(lǐng)域已經(jīng)取得了諸多優(yōu)異的研究成果,是一種理想的生物質(zhì)材料,以替代一些不可再生、不可回收、不可生物降解的化工產(chǎn)品。現(xiàn)階段,以CMC為成膜材料的復合薄膜也存在一些問題。
1)CMC成分會影響膜的斷裂伸長率和柔韌性。
2)制備CMC基復合膜需要添加一定量的增塑劑與其他材料進行復合成膜。
3)CMC基復合膜的水蒸氣阻隔性和耐水性相較于傳統(tǒng)的塑料薄膜材料要差很多。
4)CMC本身不具備抗微生物活性,作為食品抑菌膜需添加額外的功能材料,以提供抑菌活性。
以CMC作為成膜材料的復合膜研究目前處于發(fā)展階段,這個研究方向仍有很大的提升潛力,將來會出現(xiàn)綜合性能更均衡、經(jīng)濟性更好的CMC基復合膜,以更廣泛地應(yīng)用到醫(yī)藥、食品、農(nóng)業(yè)、環(huán)境保護等諸多領(lǐng)域。
[1] ZHAO X, CLIFFORD A, POON R, et al. Carboxymethyl Cellulose and Composite Films Prepared by Electrophoretic Deposition and Liquid-Liquid Particle Extraction[J]. Colloid and Polymer Science, 2018, 296(5): 927-934.
[2] BANKER G S. Film Coating Theory and Practice[J]. Elsevier, 1966, 55(1): 81-89.
[3] MA X, PETER R, YU J. Properties of Biodegradable Thermoplastic Peastarch/Carboxymethyl Cellulose and Pea Starch/Microcrystalline Cellulose Composites[J]. Carbohydrate Polymers, 2007, 72(3): 369-375.
[4] WIRONGRONG T, LISA J, SASITORN W, et al. Effect of Carboxymethyl Cellulose Concentration on Physical Properties of Biodegradable Cassava Starch-Based Films[J]. Chemistry Central Journal, 2011, 5(1): 6-14.
[5] AYTUNGA E, KIBAR A, FERHUNDE U. Starch-Cellulose Ether Films: Microstructure and Water Resistance[J]. Journal of Food Process Engineering, 2017, 40(2): 356-364.
[6] Rungsiri S, Rafael A. Auras. Utilization of Carboxymethyl Cellulose from Durian Rind Agricultural Waste to Improve Physical Properties and Stability of Rice Starch-Based Film[J]. Springer US, 2019, 27(2): 286-298.
[7] Katiany M T, Adriana d C, Milene C M, et al. Corn and Cassava Starch with Carboxymethyl Cellulose Films and Its Mechanical and Hydrophobic Properties[J]. Carbohydrate Polymers, 2019(223): 115055.
[8] FA M, Jai J, Sharif Z, et al. Cassava Starch/Carboxymethylcellulose Biocomposite Film for Food Paper Packaging Incorporated with Turmeric Oil[J]. IOP Conference Series: Materials Science and Engineering, 2019, 507(1): 2008.
[9] LAN W, ZHANG R, JI T, et al. Improving Nisin Production by Encapsulated Lactococcus lactis with Starch/Carboxymethyl Cellulose Edible Films[J]. Carbohydrate polymers, 2020(251): 117062.
[10] JIANG G, HOU X, ZENG X, et al. Preparation and Characterization of Indicator Films from Carboxymethyl-Cellulose/Starch and Purple Sweet Potato (Ipomoea Batatas (L) lam) Anthocyanins for Monitoring Fish Freshness[J]. International Journal of Biological Macromolecules, 2020(143): 359-372.
[11] Sabina G, Andrzej L. Development and Characterization of Composite Edible Films Based on Sodium Alginate and Pectin[J]. Journal of Food Engineering, 2013, 115(4): 459-465.
[12] 王碧, 廖立敏, 李建鳳, 等. 膠原蛋白/海藻酸/羧甲基纖維素共混膜的結(jié)構(gòu)與性能[J]. 化學世界, 2013, 54(3): 155-164.
WANG Bi, LIAO Li-min, LI Jian-feng, et al. Structure and Properties of Collagen/Alginate/Carboxylmethyl Cellulose Blend Film[J]. Chemical World, 2013, 54(3): 155-164.
[13] 孫瑤, 王瑞, 騰飛, 等. 海藻酸鈉-羧甲基纖維素-山梨酸鉀復合抗菌膜的制備[J]. 食品工業(yè)科技, 2013, 34(9): 90-93.
SUN Yao, WANG Rui, TENG Fei, et al. Preparation of Sodiumalginate-Sodium Carboxymethyl Cellulose-Potassium Sorbate Compound Antibacterial Film[J]. Science and Technology of Food Industry, 2013, 34(9): 90-93.
[14] HAN Y, WANG L. Sodium Alginate/Carboxymethyl Cellulose Films Containing Pyrogallic Acid: Physical and Antibacterial Properties[J]. Journal of the Science of Food and Agriculture, 2017, 97(4): 1295-1301.
[15] HAN Y, YU M, WANG L. Physical and Antimicrobial Properties of Sodium Alginate/Carboxymethyl Cellulose Films Incorporated with Cinnamon Essential Oil[J]. Food Packaging and Shelf Life, 2018(15): 35-42.
[16] RUAN C, ZHANG Y, SUN Y, et al. Effect of Sodium Alginate and Carboxymethyl cellulose Edible Coating with Epigallocatechin Gallate on Quality and Shelf Life of Fresh Pork[J]. International Journal of Biological Macromolecules, 2019(141): 178-184.
[17] Hend E, Salama, Mohamed S. Carboxymethyl Cellulose/Sodium Alginate/Chitosan Biguanidine Hydrochloride Ternary System for Edible Coatings[J]. International Journal of Biological Macromolecules, 2019(139): 614-620.
[18] Mahdiyar S, Seyed J A, Amirhossein S, et al. Carboxymethyl Cellulose Film Modification through Surface Photo-Crosslinking and Chemical Crosslinking for Food Packaging Applications[J]. Food Hydrocolloids, 2016(61): 378-389.
[19] Tabari M. Investigation of Carboxymethyl Cellulose (CMC) on Mechanical Properties of Cold Water Fish Gelatin Biodegradable Edible Films.[J]. Foods (Basel Switzerland), 2017, 6(6): 41-50.
[20] Nazmi N N, Isa M I N, SARBON N M. Preparation and Characterization of Chicken Skin Gelatin/CMC Composite Film as Compared to Bovine Gelatin Film[J]. Food Bioscience, 2017(19): 149-155.
[21] Esteghlal S, Mehrdad N, SEYED M. Physical and Mechanical Properties of Gelatin-CMC Composite Films under the Influence of Electrostatic Interactions[J]. International Journal of Biological Macromolecules, 2018(114): 1-9.
[22] HE B, WANG W, SONG Y, et al. Structural and Physical Properties of Carboxymethyl Cellulose/Gelatin Films Functionalized with Antioxidant of Bamboo Leaves[J]. International Journal of Biological Macromolecules, 2020(164): 1649-1656.
[23] Hazirah M N, Isa M, Sarbon N. Effect of Xanthan Gum on the Physical and Mechanical Properties of Gelatin-Carboxymethyl Cellulose Film Blends[J]. Food Packaging and Shelf Life, 2016(9): 55-63.
[24] Maryam A, Babak G, Mahmoud S, et al The Effects of Gelatin-CMC Films Incorporated With Chitin Nanofiber and Trachyspermum Ammi Essential Oil on the Shelf Life Characteristics of Refrigerated Raw Beef[J]. International Journal of Food Microbiology, 2020(318): 108493.
[25] Elnaz F, Sajad P, Leila R, et al. Photocatalytic/Biodegradable Film Based on Carboxymethyl Cellulose, Modified by Gelatin and TiO2-Ag Nanoparticles[J]. Carbohydrate Polymers, 2019(216): 189-196.
[26] 王曉宇, 張洋, 江華, 等. 兩種方法制備納米纖維素的特性對比[J]. 林業(yè)科技開發(fā), 2015, 29(6): 95-99.
WANG Xiao-yu, ZHANG Yang, JIANG-Hua, et al. Characteristics of Nanocellulose Prepared by Two Methods[J]. Journal of Forestry Engineering, 2015, 29(6): 95-99.
[27] LI H, SHI H, HE Y, et al. Preparation and Characterization of Carboxymethyl Cellulose-Based Composite Films Reinforced by Cellulose Nanocrystals Derived from Pea Hull Waste for Food Packaging Applications[J]. International Journal of Biological Macromolecules, 2020(164): 4104-4112.
[28] Oun A, Rhim J. Isolation of Cellulose Nanocrystals from Grain Straws and their Use for the Preparation of Carboxymethyl Cellulose-Based Nanocomposite Films[J]. Carbohydrate Polymers, 2016(150): 187- 200.
[29] Arup M, Debabrata C. Studies on Mechanical, Thermal, and Barrier Properties of Carboxymethyl Cellulose Film Highly Filled with Nanocellulose[J]. Journal of Thermoplastic Composite Materials, 2019, 32(7): 995-1014.
[30] Oun A, Rhim J. Preparation and Characterization of Sodium Carboxymethyl Cellulose/Cotton Linter Cellulose Nanofibril Composite Films[J]. Carbohydrate Polymers, 2015(2): 127.
[31] 康星雅, 賀藝美, 丁艷紅, 等. 纖維素納米晶/羧甲基纖維素復合膜的制備及性能[J]. 纖維素科學與技術(shù), 2020, 28(3): 32-38.
KANG Xing-ya, HE Yi-mei, DING Yan-hong, et al. Preparation and Properties of Cellulose Nanocrystalline/Carboxymethyl Cellulose Composite Film[J]. Journal of Cellulose Science and Technology, 2020, 28(3): 32-38.
[32] AZUMA, KAZUO, IFUKU, et al. Preparation and Biomedical Applications of Chitin and Chitosan Nanofibers[J]. Journal of Biomedical Nanotechnology, 2014, 10(10): 2891-2920.
[33] Dutta P K, Shipra T, Mehrotra G K, et al. Perspectives for Chitosan Based Antimicrobial Films in Food Applications[J]. Food Chemistry, 2008, 114(4): 1173-1182.
[34] Nooshin N, Babak G, Christian G, et al. Cinnamon and Ginger Essential Oils to Improve Antifungal, Physical and Mechanical Properties of Chitosan-Carboxymethyl Cellulose Films[J]. Food Hydrocolloids, 2017(70): 36-45.
[35] Shahriyar V, Mahmood N, Sedighe B, et al Development of Bioactive Composite Films from Chitosan and Carboxymethyl Cellulose Using Glutaraldehyde, Cinnamon Essential Oil and Oleic Acid[J]. International Journal of Biological Macromolecules, 2019(134): 604-612.
[36] WANG B, YANG X, QIAO C, et al. Effects of Chitosan Quaternary Ammonium Salt on the Physicochemical Properties of Sodium Carboxymethyl Cellulose-Based Films[J]. Carbohydrate Polymers, 2018(184): 37-46.
[37] ZHANG C, YANG X, LI Y, et al. Enhancement of a Zwitterionic Chitosan Derivative on Mechanical Properties and Antibacterial Activity of Carboxymethyl Cellulose-Based Films[J]. International Journal of Biological Macromolecules, 2020(159): 5080.
[38] Hend E, Salama, Mohamed S. Development of Antibacterial Carboxymethyl Cellulose/Chitosan Biguanidine Hydrochloride Edible Films Activated with Frankincense Essential Oil[J]. International Journal of Biological Macromolecules, 2019(139): 1162- 1167.
[39] Weerasooriya P, Nadhilah R, Owolabi F, et al. Exploring the Properties of Hemicellulose based Carboxymethyl Cellulose Film as a Potential Green Packaging[J]. Current Research in Green and Sustainable Chemistry, 2020, 1(1): 20-28.
[40] WU J, LIU F, YU Z, et al. Facile Preparation of Collagen Fiber-Glycerol-Carboxymethyl Cellulose Composite Film by Immersing Method[J]. Carbohydrate Polymers, 2020(229): 115429.
[41] Michele M, Arlete M, Marques, et al. Carboxymethyl Cellulose-Based Films: Effect of Organosolv Lignin Incorporation on Physicochemical and Antioxidant Properties[J]. Journal of Food Engineering, 2020(285): 110107.
[42] Saba E, Babak G, Hamed H. Physical Properties of Carboxymethyl Cellulose based Nano-Biocomposites with Graphene Nano-Platelets[J]. International Journal of Biological Macromolecules, 2016(84): 16-23.
[43] Ali M M, Farhad G, Danial D, et al. Physical, Mechanical, Thermal and Structural Characteristics of Nanoencapsulated Vitamin E Loaded Carboxymethyl Cellulose Films[J]. Progress in Organic Coatings, 2020(138): 105383.
[44] Hadi F, Mohammad F, Mahdi H, et al. Novel Carboxymethyl Cellulose-Polyvinyl Alcohol Blend Films Stabilized by Pickering Emulsion Incorporation Method[J]. Carbohydrate Polymers, 2017(167): 79-89.
[45] Hamid M, Abolfazl K, Ali M, et al. Nanocomposite Films with CMC, Okra Mucilage, and ZnO Nanoparticles: Extending the Shelf-Life of Chicken Breast Meat[J]. Food Packaging and Shelf Life, 2019(21): 100330.
Research Status of Carboxymethyl Cellulose Composite Film
YAO Yao, SUN Zhen-bing, LI Xiao-bao, TANG Zheng-jie, LI Xiao-ping
(Key Laboratory of Adhesives and Adhesive Products of Yunnan Province, Southwest Forestry University, Kunming 650224, China)
The work aims to introduce the research progress of preparing composite film by CMC and starch, sodium alginate, gelatin, nanocellulose, chitosan and other materials at home and abroad and the latest research progress of such food packaging composite film with antibacterial properties, so as to provide certain ideas and basis for the research of carboxymethyl cellulose composite film. The improvement of carboxymethyl cellulose composite film performance by the optimum addition amount of different materials was summarized in this research direction and the enhancement of antibacterial properties of some composite films after addition of different organic or inorganic antibacterial agents and the preservation effect on some food were also concluded. The carboxymethyl cellulose composite film has a great application potential. Some of the added materials have antibacterial activity and this type of composite film has certain application value in food preservation.
carboxymethyl cellulose; composite film; mechanical properties; antibacterial properties; food preservation
TQ352.4
A
1001-3563(2022)01-0010-07
10.19554/j.cnki.1001-3563.2022.01.002
2021-04-26
國家自然科學基金面上項目(31870551);云南省萬人計劃“青年拔尖人才”(YNWR-QNBJ-2018-120)
姚曜(1997—),男,西南林業(yè)大學碩士生,主攻生物基復合材料。
李曉平(1980—),女,博士,西南林業(yè)大學教授,主要研究方向為生物基復合材料。