• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lin-Lu-Yau curvature and diameter of amply regular graphs

    2022-01-24 12:16:12LIXintianLIUShiping
    中國科學技術(shù)大學學報 2021年12期

    LI Xintian, LIU Shiping

    School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China

    Abstract: By Hall’s marriage theorem, we study lower bounds of the Lin-Lu-Yau curvature of amply regular graphs with girth 3 or 4 under different parameter restrictions. As a consequence,we show that each conference graph has positive Lin-Lu-Yau curvature.Our approach also provides a geometric proof of a known diameter estimates of amply regular graphs in the case of girth 4 and some special cases of girth 3.

    Keywords: amply regular graph; perfect matching; Wasserstein distance; Lin-Lu-Yau curvature

    1 Introduction and statements of result

    Ricci curvature is a fundamental concept in Riemannian geometry. Its extension to general metric measure spaces, particularly, to locally finite graphs, has attracted lots of attention[1-8]. In 2009, Ollivier[2,3]introduced the notion of coarse Ricci curvature of Markov chains on metric spaces including graphs. On graphs, Ollivier’s Ricci curvatureκpof an edge is defined via the Wasserstein distance between two probability measure around the two vertices of the edge, depending on an idleness parameterp∈[0,1]. In 2011, Lin et al.[7]modified Ollivier’s notion by taking the minus of the derivative ofκpatp=1. We will study this modified Ricci curvature, which will be referred to as the Lin-Lu-Yau curvature, on amply regular graphs in this paper.

    Definition 1.1LetG=(V,E) be a locally finite graph,μ1andμ2be two probability measures onG. The Wasserstein distanceW1(μ1,μ2) betweenμ1andμ2is defined as

    where the infimum is taken over all mapsπ:V×V→[0,1] satisfying

    Such a map is called a transport plan.

    We consider the following particular measure around a vertexx∈V:

    Definition 1.2[2,7]LetG=(V,E) be a locally finite graph. For any verticex,y∈V, thep-Ollivier-Ricci curvatureκp(x,y),p∈[0,1], is defined as

    The Lin-Lu-Yau curvatureκ(x,y) is defined as

    Notice thatκ1(x,y) is always 0. Hence, the Lin-Lu-Yau curvatureκ(x,y) is minus the derivative ofκp(x,y) atp=1.

    Bourne et al.[9]studied the relation betweenp-Ollivier-Ricci curvature and Lin-Lu-Yau curvature. In particular, they proved that for an edgexy∈Ewith deg(x)=deg(y)=d

    (1)

    The Lin-Lu-Yau curvature has been computed or estimated on graphs with further regularity assumptions. For regular graphs (i.e., every vertex has the same degree), the following upper bound estimate is known.

    Theorem 1.1[10]LetG=(V,E) be ad-regular graph. For any edgexy∈E, we have

    whereΔxy:=Γ(x)∩Γ(y),Γ(x):={z∈V|xz∈E}, andΓ(y):={z∈V|yz∈E}.

    We study the Lin-Lu-Yau curvature of amply regular graphs with girth 3 or 4 in this paper.

    Definition 1.3(Amply regular graph[15]) We call ad-regular graph withnvertices an amply regular graph with parameter (n,d,α,β) if the following holds true:

    (i) Any two adjacent vertices haveαcommon neighbors.

    (ii) Any two vertices with distance 2 haveβcommon neighbors.

    We remark that if the above property (ii) holds for any two non-adjacent vertices, the amply regular graph is strongly regular. Therefore, amply regularity is a relaxation of the strongly regularity.

    For amply regular graphs with girth 4 we have the following Lin-Lu-Yau curvature formula.

    Theorem 1.2LetG=(V,E) be an amply regular graph with parameter (n,d,α,β) with girth 4. For anyxy∈E, we have

    This formula has been established for the particular cases of strongly regular graphs with girth 4 and distance regular graphs with girth 4 in Refs.[11] and [13], respectively. Observe that the Lin-Lu-Yau curvature of a given edge only involves number of common neighbors of vertices with distance at most 2. Therefore, the proofs of [11] and [13] can be adopted directly to amply regular graphs with girth 4.

    Our main result is the following Lin-Lu-Yau curvature formula or estimates for amply regular graphs with girth 3 (i.e.,α≥1).

    Theorem 1.3LetG=(V,E) be an amply regular graph with parameter (n,d,α,β).

    (i) Ifα=1 andα<β, then we have for anyxy∈Ethat

    (ii) Ifα≥1 andα=β-1, then we have for anyxy∈Ethat

    (iii) Ifα=β>1, then we have for anyxy∈Ethat

    ③ Bonini et al.[11,Conjecture 1.7]conjectured that the Lin-Lu-Yau curvature of any strongly regular conference graphs with parameter (4γ+1,2γ,γ-1,γ) withγ≥2 satisfies

    Theorem 1.3(ii) implies that for such conference graphs

    ④ In general, it is still open whether the Lin-Lu-Yau curvature of an amply regular graph of parameter (n,d,α,β) with girth 3 (i.e.,α≥1) andβ≥2 is always nonnegative or not.

    For Ollivier’s Ricci curvature, a Bonnet-Myers type diameter estimate holds true[2]: Uniformly positive curvature lower bound implies the finiteness of the diameter. This has been extended to the Lin-Lu-Yau curvature.

    Theorem 1.4(discrete Bonnet-Myers theorem[7]) LetG=(V,E) be a locally finite connected graph. Supposeκ(x,y)≥k>0 holds true for anyxy∈E. Then the diameter

    Discrete Bonnet-Myers theorem has recently found important applications in coding theory: It provides a completely elementary way to derive bounds on locally correctable and some locally testable binary linear codes[14].

    Applying Theorem 1.4, we have the following consequences.

    Corollary 1.1LetG=(V,E) be an amply regular graph with parameter (n,d,α,β).

    (i) IfGhas girth 4, then

    diam(G)≤d.

    (ii) Ifα=1 andα<β, then

    (iii) Ifα≥1 andα=β-1, then

    diam(G)≤d.

    (iv) Ifα=β>1, then

    diam(G)≤d.

    The following diameter estimate for amply regular graphs is known via classical combinatorial methods, see, e.g., Ref.[15, Theorem 1.13.2].

    Theorem 1.5[15]LetG=(V,E) be an amply regular graph with parameter (n,d,α,β). Ifα≤β≠1, then

    diam(G)≤d,

    where the equality holds if and only ifGis ad-hypercube graph.

    Remark 1.2Corollary 1.1 provides a geometric proof via Lin-Lu-Yau curvature for Theorem 1.5 in the case of girth 4 and some special cases of girth 3. Moreover, we improve the estimate in Theorem 1.5 under the condition of Corollary 1.1(ii).

    2 Preliminaries

    We first recall the important concept of matching from graph theory.

    Definition 2.1[16, Section 16.1]LetG=(V,E) be a locally finite simple connected graph. A setMof pairwise nonadjacent edges is called a matching. The two vertices of each edge ofMare said to be matched underM, and each vertex adjacent to an edge ofMis said to be covered byM. A matchingMis called a perfect matching if it covers every vertex of the graph.

    The following Hall’s marriage theorem will be an important tool for our purpose.

    |ΓT(W)|≥|W| for allW?S

    holds, whereΓT(W):={v∈T| there existsw∈Wsuch thatvw∈E}.

    For anyxy∈E, the Lin-Lu-Yau curvatureκ(x,y) only depends on the subgraph induced by vertices with the distance less than or equal to 2 toxandy[6, Lemma 2.3]. For convenience, we introduce the following notation of the core neighborhood ofxy∈E:

    Cxy={x}∪{y}∪Δxy∪Nx∪Ny∪Pxy,

    where

    Nx=Γ(x)({y}∪Γ(y)),

    Ny=Γ(y)({x}∪Γ(x)),

    Pxy={z∈V|d(x,z)=2,d(y,z)=2}.

    3 Proof of Theorem 1.3

    In this section, we prove Theorem 1.3.

    Proof of Theorem 1.3(i)We consider the core neighborhood decomposition of an edgexy∈E, that is,

    Γ(x)={y}∪Δxy∪Nx,Γ(y)={x}∪Δxy∪Ny.

    Sinceα=1, we can denoteΔxy={x0}, and there are no edges connectingx0and any vertex inNxorNy. We are going to show the existence of a perfect matching betweenNxandNyvia applying Lemma 2.1.

    E(A,B):={xy∈E|x∈A,y∈B}.

    We then have

    Sinceβ>1, we derive from above that

    |A|≤|B|=|ΓNy(A)|.

    Applying Lemma 2.1, there is a perfect matchingMbetweenNxandNy. We construct the following transport plan building upon such a perfect matching:

    Noticing that |Nx|=|Ny|=d-α-1, we calculate the Wasserstein distance

    Applying Eq.(1), we have the Lin-Lu-Yau curvature

    Combining with Theorem 1.1, we obtain

    Proof of Theorem 1.3(ii)We construct a bipartite graphHfrom the core neighborhood ofxy∈Eas follows. Denote

    Δxy={z1,…,zα}.

    We add a new set of verticesΔ′xy:={z′1,…,z′α} which is considered as a copy ofΔxy. LetHbe the bipartite graph with vertex set

    VH=Nx∪Δxy∪Δ′xy∪Ny

    and edge set

    EH=E1∪E2∪E3∪E4∪E5,

    where

    E1={vw|v∈Nx,w∈Ny,vw∈E},

    E2={vz′i|v∈Nx,z′i∈Δ′xy,vzi∈E},

    E3={ziw|zi∈Δxy,w∈Ny,ziw∈E},

    E4={ziz′i|i=1,…,α},

    E5={ziz′j|zizj∈E,i≠j, 1≤i,j≤α}.

    Notice that in the above construction, edges only exist betweenNx∪ΔxyandNy∪Δ′xy. We will show thatHhas a perfect matching by Lemma 2.1.

    Take a subsetA?Nx∪Δxy. LetB=ΓNy∪ Δ′xy(A) be the neighbors ofAinNy∪Δ′xy.

    ① The caseA?Nx. Similarly as in the proof of Theorem 1.3 (i), there areβ-1≥1 neighbors of anyv∈AinNy∪Δ′xy, andβ-1≥1 neighbors of anyw∈B∩NyinNx∪Δxy. Consider any vertexz′i∈B∩Δ′xy. The corresponding vertexzi∈Δxyandxhaveαcommon neighbors inGincluding the vertexy. Since there is a new additional edge betweenziandz′iinH, the vertexz′ihas exactlyαneighbors inNx∪ΔxyinH. Therefore, we derive

    By assumption, we haveα=β-1. Hence the above estimate yields

    |A|≤|B|=|ΓNy∪Δ′xy(A)|.

    ② The caseA?Δxy. Consider any vertexzi∈A. The verticesziandyhasαcommon neighbors inGincluding the vertexx. Since there is a new additional edge betweenziandz′i∈Δ′xyinH, the vertexzihas exactlyαneighbors inNy∪Δ′xyinH. Therefore, we derive

    Usingα=β-1, we obtain

    |A|≤|B|=|ΓNy∪Δ′xy(A)|.

    ③ The caseA?Nx∪Δxy. We have

    Byα=β-1, we obtain

    |A|≤|B|=|ΓNy∪Δ′xy(A)|.

    Applying Eq.(1), we have the Lin-Lu-Yau curvature

    Proof of Theorem 1.3 (iii)We modify the construction of the bipartite graphHin the proof of Theorem 1.3 (ii) by dropping the edge setE4. That is,His the graph with vertex setVH=Nx∪Δxy∪Δ′xy∪Nyand edge setEH=E1∪E2∪E3∪E5.

    Take a subsetA?Nx∪Δxy. LetB=ΓNy∪ Δ′xy(A) be the neighbors ofAinNy∪Δ′xy. Similarly as the analysis in the proof of Theorem 1.3 (ii), we have

    By assumption, we haveα=β>1. Then we derive from above that

    |A|≤|B|=|ΓNy∪Δ′xy(A)|.

    Therefore, there is a perfect matching ofHby Lemma 2.1. Similarly as in the proof of Theorem 1.3 (ii), we derive

    Acknowledgments

    We are very grateful to BAI Shuliang for pointing out that amply regular graphs of parameter (n,d,α,β) withβ=1 can have girth 3 and negative Lin-Lu-Yau curvature. We would like to thank the anonymous referees for suggestions that helped to greatly improved the quality of this paper. This work is supported by the National Natural Science Foundation of China (No. 12031017).

    Conflictofinterest

    The authors declare no conflict of interest.

    Authorinformation

    LIXitianis a master student under the supervision of Professor Liu Shiping at University of Science and Technology of China. She received her BS degree from Nanjing University of Science and Technology in 2018. Her research mainly focuses on the discrete Ricci curvature theory.

    LIUShiping(corresponding author) is a Professor at School of Mathematical Sciences, University of Science and Technology of China. He received his BS degree from Shandong University in 2006, and PhD (Dr. rer. nat.) degree from Max Planck Institute for Mathematics in the Sciences, Leipzig and University of Leipzig, Germany, in 2012. From 2013 to 2016, he worked as a Research Associate in the Department of Mathematical Sciences, Durham University, UK. His research interests include spectral graph theory, discrete Ricci curvature theory, spectral geometry and other related topics in discrete and continuous geometric analysis.

    尤物成人国产欧美一区二区三区| 午夜精品一区二区三区免费看| 又紧又爽又黄一区二区| 久久婷婷人人爽人人干人人爱| 亚洲性夜色夜夜综合| 伊人久久大香线蕉亚洲五| 黄色丝袜av网址大全| 国内毛片毛片毛片毛片毛片| 丁香六月欧美| 丰满人妻熟妇乱又伦精品不卡| www日本黄色视频网| 国产成人影院久久av| av视频在线观看入口| 九九久久精品国产亚洲av麻豆| 久久精品国产综合久久久| 国产色爽女视频免费观看| av片东京热男人的天堂| 欧美性猛交╳xxx乱大交人| 深夜精品福利| 看黄色毛片网站| 成年女人永久免费观看视频| 亚洲真实伦在线观看| 搡老熟女国产l中国老女人| 热99re8久久精品国产| 淫秽高清视频在线观看| 国产成人系列免费观看| 一级毛片女人18水好多| 欧美成人性av电影在线观看| 动漫黄色视频在线观看| 黑人欧美特级aaaaaa片| 欧美在线黄色| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕人妻丝袜一区二区| ponron亚洲| 中文字幕久久专区| 女生性感内裤真人,穿戴方法视频| 精品一区二区三区视频在线观看免费| 亚洲久久久久久中文字幕| 午夜亚洲福利在线播放| 日韩欧美三级三区| 日本与韩国留学比较| 欧美日韩黄片免| 黄色成人免费大全| 久久久久久久久中文| 女警被强在线播放| 一个人免费在线观看电影| 免费av毛片视频| 一级黄色大片毛片| 欧美色视频一区免费| 国产精品自产拍在线观看55亚洲| 国产一区二区亚洲精品在线观看| 啦啦啦免费观看视频1| 熟女电影av网| 在线观看舔阴道视频| 婷婷丁香在线五月| 很黄的视频免费| 亚洲人与动物交配视频| 亚洲av一区综合| 日本五十路高清| 波野结衣二区三区在线 | 国产精品三级大全| 亚洲成人精品中文字幕电影| 少妇高潮的动态图| 久久国产精品人妻蜜桃| 国产真实乱freesex| 色综合站精品国产| 免费看a级黄色片| 婷婷亚洲欧美| 亚洲不卡免费看| 一本久久中文字幕| 亚洲熟妇中文字幕五十中出| 性欧美人与动物交配| 免费大片18禁| 国产精品一及| 欧美日韩综合久久久久久 | 久久精品91蜜桃| 亚洲avbb在线观看| 男人的好看免费观看在线视频| 久久久成人免费电影| 麻豆一二三区av精品| tocl精华| 青草久久国产| 久久久久久大精品| 久久99热这里只有精品18| 日韩精品青青久久久久久| 国产精品野战在线观看| 非洲黑人性xxxx精品又粗又长| 国内毛片毛片毛片毛片毛片| 色噜噜av男人的天堂激情| 久久久久国产精品人妻aⅴ院| 久久国产精品人妻蜜桃| 精品熟女少妇八av免费久了| 欧美一区二区国产精品久久精品| 丁香欧美五月| 99国产精品一区二区三区| 亚洲熟妇中文字幕五十中出| 又黄又粗又硬又大视频| 国产色爽女视频免费观看| 国产精品亚洲av一区麻豆| 2021天堂中文幕一二区在线观| 国产成+人综合+亚洲专区| 天堂网av新在线| 很黄的视频免费| 天天躁日日操中文字幕| 国产高清视频在线观看网站| 婷婷精品国产亚洲av在线| 少妇的逼水好多| 国产日本99.免费观看| 午夜老司机福利剧场| 男人舔女人下体高潮全视频| 天天一区二区日本电影三级| 亚洲男人的天堂狠狠| 久久午夜亚洲精品久久| 叶爱在线成人免费视频播放| 美女免费视频网站| 天天一区二区日本电影三级| 丰满人妻熟妇乱又伦精品不卡| 91久久精品国产一区二区成人 | 色尼玛亚洲综合影院| 国产成人福利小说| 亚洲精品亚洲一区二区| 免费av观看视频| 欧美中文综合在线视频| 麻豆国产av国片精品| 日本精品一区二区三区蜜桃| 久久久久久九九精品二区国产| 波多野结衣巨乳人妻| 欧美中文日本在线观看视频| 免费看美女性在线毛片视频| 亚洲专区国产一区二区| 啦啦啦韩国在线观看视频| 热99re8久久精品国产| 欧美在线一区亚洲| 国内少妇人妻偷人精品xxx网站| 天堂影院成人在线观看| 真人一进一出gif抽搐免费| 久久香蕉国产精品| 中文在线观看免费www的网站| 久久久久九九精品影院| 亚洲内射少妇av| 91字幕亚洲| 欧美最新免费一区二区三区 | 国产成年人精品一区二区| 男人和女人高潮做爰伦理| 国产成人精品婷婷| 精品久久久久久久久亚洲| 日日啪夜夜撸| 你懂的网址亚洲精品在线观看| 亚洲欧美日韩东京热| 免费看不卡的av| 亚洲人成网站在线观看播放| av黄色大香蕉| 亚洲色图av天堂| 五月天丁香电影| 成人无遮挡网站| 国产av国产精品国产| 激情五月婷婷亚洲| 国产一区亚洲一区在线观看| 日韩制服骚丝袜av| 美女主播在线视频| 国产精品国产三级专区第一集| 两个人的视频大全免费| 肉色欧美久久久久久久蜜桃 | 能在线免费观看的黄片| 久久6这里有精品| 亚洲18禁久久av| 午夜福利高清视频| 爱豆传媒免费全集在线观看| 成年免费大片在线观看| 高清欧美精品videossex| 狂野欧美激情性xxxx在线观看| eeuss影院久久| 在线天堂最新版资源| 欧美性猛交╳xxx乱大交人| 女人十人毛片免费观看3o分钟| 亚洲av一区综合| 丰满乱子伦码专区| 国产精品日韩av在线免费观看| 又大又黄又爽视频免费| av网站免费在线观看视频 | 欧美激情久久久久久爽电影| 伊人久久国产一区二区| 久久久久久久国产电影| 久热久热在线精品观看| 午夜激情欧美在线| 成年免费大片在线观看| 亚洲美女搞黄在线观看| 国产日韩欧美在线精品| 小蜜桃在线观看免费完整版高清| 免费看不卡的av| 一个人看的www免费观看视频| 寂寞人妻少妇视频99o| 国产爱豆传媒在线观看| 国产亚洲5aaaaa淫片| 深夜a级毛片| 又大又黄又爽视频免费| 777米奇影视久久| 国产精品三级大全| 偷拍熟女少妇极品色| 毛片一级片免费看久久久久| 男人爽女人下面视频在线观看| 免费在线观看成人毛片| 成人二区视频| 特大巨黑吊av在线直播| 亚洲av在线观看美女高潮| 久久久a久久爽久久v久久| 天堂av国产一区二区熟女人妻| 日日摸夜夜添夜夜添av毛片| 国产精品一区二区在线观看99 | freevideosex欧美| 日韩伦理黄色片| 亚洲18禁久久av| 中国国产av一级| 欧美zozozo另类| 欧美xxxx黑人xx丫x性爽| 久久久久网色| 久久久久久久国产电影| 欧美变态另类bdsm刘玥| av福利片在线观看| 纵有疾风起免费观看全集完整版 | 精品久久久久久电影网| 国产国拍精品亚洲av在线观看| 成人漫画全彩无遮挡| 最后的刺客免费高清国语| 亚洲欧美中文字幕日韩二区| 国产单亲对白刺激| 欧美成人午夜免费资源| 成年女人在线观看亚洲视频 | 久久久久久久久中文| 国产成人freesex在线| 亚洲国产高清在线一区二区三| 中文字幕av成人在线电影| av国产免费在线观看| 我的女老师完整版在线观看| 丰满人妻一区二区三区视频av| 18禁在线播放成人免费| 国产精品久久久久久av不卡| 国产精品久久久久久精品电影小说 | 成人性生交大片免费视频hd| 中文字幕制服av| 极品少妇高潮喷水抽搐| 日韩欧美一区视频在线观看 | 国产成人精品一,二区| 一级a做视频免费观看| 超碰av人人做人人爽久久| 男插女下体视频免费在线播放| 日韩一区二区三区影片| 中文字幕人妻熟人妻熟丝袜美| 在线播放无遮挡| 国产熟女欧美一区二区| 欧美三级亚洲精品| 色吧在线观看| 狂野欧美激情性xxxx在线观看| 六月丁香七月| 国产精品美女特级片免费视频播放器| 久热久热在线精品观看| 免费少妇av软件| 最近中文字幕2019免费版| 日本色播在线视频| 男女边吃奶边做爰视频| 大片免费播放器 马上看| 欧美3d第一页| 国产伦精品一区二区三区四那| 三级经典国产精品| 2021天堂中文幕一二区在线观| 日韩欧美三级三区| 久久6这里有精品| 99热全是精品| 男女那种视频在线观看| 九九爱精品视频在线观看| 精品久久久久久久人妻蜜臀av| av天堂中文字幕网| 国内精品美女久久久久久| 美女脱内裤让男人舔精品视频| 久久99精品国语久久久| 国产黄色免费在线视频| 99久久精品热视频| 久久综合国产亚洲精品| 简卡轻食公司| 色尼玛亚洲综合影院| 欧美人与善性xxx| 一区二区三区高清视频在线| av免费在线看不卡| 69人妻影院| 美女高潮的动态| 免费av观看视频| 日本黄大片高清| 国产精品av视频在线免费观看| 国产亚洲最大av| 亚洲va在线va天堂va国产| 女的被弄到高潮叫床怎么办| a级一级毛片免费在线观看| 中文天堂在线官网| 成人特级av手机在线观看| 少妇熟女欧美另类| 日韩在线高清观看一区二区三区| 汤姆久久久久久久影院中文字幕 | 色综合亚洲欧美另类图片| 亚洲经典国产精华液单| 水蜜桃什么品种好| 听说在线观看完整版免费高清| 日日摸夜夜添夜夜爱| 免费观看性生交大片5| 高清av免费在线| 国内揄拍国产精品人妻在线| 亚洲欧美精品自产自拍| kizo精华| 又爽又黄无遮挡网站| 婷婷色综合www| 九色成人免费人妻av| 少妇被粗大猛烈的视频| 免费av不卡在线播放| 国产精品人妻久久久久久| 免费少妇av软件| 观看免费一级毛片| 亚洲av不卡在线观看| 午夜福利成人在线免费观看| 国产伦精品一区二区三区视频9| av在线观看视频网站免费| 国产黄频视频在线观看| 22中文网久久字幕| 看免费成人av毛片| 啦啦啦韩国在线观看视频| 国产淫语在线视频| 成年女人在线观看亚洲视频 | 嫩草影院精品99| 床上黄色一级片| 免费不卡的大黄色大毛片视频在线观看 | 亚洲四区av| 午夜老司机福利剧场| 中国国产av一级| av一本久久久久| 最近视频中文字幕2019在线8| 亚洲国产欧美在线一区| 色哟哟·www| 又粗又硬又长又爽又黄的视频| 国产成人福利小说| av免费观看日本| 国产精品国产三级专区第一集| 亚洲精品自拍成人| 国产精品一区二区性色av| 男的添女的下面高潮视频| 91久久精品电影网| 男人舔奶头视频| 边亲边吃奶的免费视频| 精品不卡国产一区二区三区| 欧美区成人在线视频| 六月丁香七月| 亚洲欧洲国产日韩| 国产一区二区三区av在线| 三级经典国产精品| 久久鲁丝午夜福利片| 色尼玛亚洲综合影院| 男插女下体视频免费在线播放| 在线免费十八禁| 亚洲人与动物交配视频| 免费看av在线观看网站| 亚洲精品中文字幕在线视频 | 少妇高潮的动态图| 天堂网av新在线| 亚洲久久久久久中文字幕| 国产在视频线在精品| 亚洲成人一二三区av| 秋霞在线观看毛片| 简卡轻食公司| 九九爱精品视频在线观看| 国产 一区 欧美 日韩| 九九爱精品视频在线观看| 日韩电影二区| 国产在线男女| 亚洲国产高清在线一区二区三| 男的添女的下面高潮视频| 亚洲自拍偷在线| 亚洲18禁久久av| 卡戴珊不雅视频在线播放| 97热精品久久久久久| 成人鲁丝片一二三区免费| 国产成人午夜福利电影在线观看| 亚洲av成人精品一区久久| 国产午夜精品论理片| 国产午夜精品久久久久久一区二区三区| 床上黄色一级片| 嫩草影院新地址| 欧美激情久久久久久爽电影| 一级毛片黄色毛片免费观看视频| 熟女电影av网| 亚洲欧美精品专区久久| 成人国产麻豆网| 深夜a级毛片| 日本午夜av视频| 2018国产大陆天天弄谢| 有码 亚洲区| 我的女老师完整版在线观看| 欧美日韩精品成人综合77777| 免费播放大片免费观看视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 久久精品人妻少妇| 免费观看a级毛片全部| 精品久久久久久电影网| 黑人高潮一二区| 舔av片在线| 好男人在线观看高清免费视频| 久久久久久久国产电影| 99久久精品一区二区三区| 91久久精品国产一区二区成人| 国产免费又黄又爽又色| 男人舔女人下体高潮全视频| 麻豆成人午夜福利视频| 免费av观看视频| 黄片wwwwww| 久久97久久精品| 亚洲精品乱码久久久v下载方式| 夫妻性生交免费视频一级片| 高清av免费在线| 免费黄频网站在线观看国产| 黄片无遮挡物在线观看| 国产精品嫩草影院av在线观看| 伦理电影大哥的女人| 久久久国产一区二区| 久久久久久久久久久丰满| 亚洲成人精品中文字幕电影| 午夜爱爱视频在线播放| 国产精品.久久久| or卡值多少钱| 久久这里有精品视频免费| 日韩大片免费观看网站| 欧美极品一区二区三区四区| 久久热精品热| 国内精品宾馆在线| 色网站视频免费| 成人午夜高清在线视频| 欧美高清成人免费视频www| 亚洲美女视频黄频| 午夜爱爱视频在线播放| 国产探花极品一区二区| 黑人高潮一二区| 成年av动漫网址| 寂寞人妻少妇视频99o| 最近中文字幕高清免费大全6| 免费少妇av软件| 在线 av 中文字幕| 黄色配什么色好看| 色哟哟·www| 国产综合懂色| 亚洲乱码一区二区免费版| 国产在视频线精品| 欧美高清成人免费视频www| 久久精品国产自在天天线| 在现免费观看毛片| 网址你懂的国产日韩在线| 亚洲熟妇中文字幕五十中出| 亚洲成人一二三区av| 欧美三级亚洲精品| 少妇裸体淫交视频免费看高清| 亚洲人成网站高清观看| 日韩av不卡免费在线播放| 好男人视频免费观看在线| 午夜免费男女啪啪视频观看| 日韩伦理黄色片| 毛片女人毛片| 国内精品一区二区在线观看| 麻豆国产97在线/欧美| 亚洲av在线观看美女高潮| 国产日韩欧美在线精品| 一个人看的www免费观看视频| 国产精品三级大全| 极品少妇高潮喷水抽搐| 久久国产乱子免费精品| 久久精品夜色国产| 国产av码专区亚洲av| 一级二级三级毛片免费看| 十八禁国产超污无遮挡网站| 亚洲av中文av极速乱| 亚洲最大成人手机在线| 国产成人freesex在线| 九九久久精品国产亚洲av麻豆| 乱系列少妇在线播放| 国产精品1区2区在线观看.| 美女xxoo啪啪120秒动态图| videos熟女内射| 免费观看a级毛片全部| 日本黄色片子视频| av在线观看视频网站免费| 国产精品久久久久久精品电影小说 | 亚洲,欧美,日韩| 中文精品一卡2卡3卡4更新| 成年av动漫网址| 日韩欧美精品v在线| 亚洲四区av| 国产男女超爽视频在线观看| 欧美日韩视频高清一区二区三区二| 国产午夜精品一二区理论片| 亚洲av成人精品一二三区| 超碰97精品在线观看| 亚洲国产高清在线一区二区三| 一夜夜www| 80岁老熟妇乱子伦牲交| 丰满人妻一区二区三区视频av| 欧美丝袜亚洲另类| 久久久久久久久久人人人人人人| av专区在线播放| 黑人高潮一二区| 高清毛片免费看| 久久热精品热| 国产精品久久视频播放| 久久亚洲国产成人精品v| 精品久久久久久电影网| 久久精品久久久久久久性| www.色视频.com| 男人爽女人下面视频在线观看| 亚洲色图av天堂| 深爱激情五月婷婷| 国产午夜精品一二区理论片| 亚洲一级一片aⅴ在线观看| 欧美成人精品欧美一级黄| 神马国产精品三级电影在线观看| 五月天丁香电影| h日本视频在线播放| 免费大片18禁| 高清视频免费观看一区二区 | 别揉我奶头 嗯啊视频| 日本午夜av视频| 亚洲成人一二三区av| 亚洲激情五月婷婷啪啪| 精品一区二区三区视频在线| 插逼视频在线观看| 91久久精品国产一区二区成人| 久久鲁丝午夜福利片| 国产视频首页在线观看| 赤兔流量卡办理| 国产一区亚洲一区在线观看| 内地一区二区视频在线| 看非洲黑人一级黄片| 午夜激情福利司机影院| 一区二区三区高清视频在线| 午夜精品在线福利| 最近中文字幕2019免费版| 日日干狠狠操夜夜爽| 内射极品少妇av片p| 偷拍熟女少妇极品色| 国产精品不卡视频一区二区| 2018国产大陆天天弄谢| 国产成人精品一,二区| 国产男人的电影天堂91| 欧美97在线视频| 亚洲国产欧美在线一区| 国产综合懂色| 一级毛片 在线播放| 亚洲精品一区蜜桃| 男女下面进入的视频免费午夜| 干丝袜人妻中文字幕| 国产极品天堂在线| 精品久久久噜噜| 少妇丰满av| 亚洲av不卡在线观看| 亚洲精品,欧美精品| 国产麻豆成人av免费视频| 国产免费福利视频在线观看| 欧美日韩国产mv在线观看视频 | 激情五月婷婷亚洲| 久久亚洲国产成人精品v| 狂野欧美激情性xxxx在线观看| 亚洲人成网站在线观看播放| 亚洲国产欧美人成| 欧美变态另类bdsm刘玥| 麻豆国产97在线/欧美| 精品久久久噜噜| 一边亲一边摸免费视频| 国产精品麻豆人妻色哟哟久久 | 午夜福利成人在线免费观看| 日本午夜av视频| 欧美 日韩 精品 国产| 亚洲精品日韩av片在线观看| 人妻系列 视频| 日韩av在线免费看完整版不卡| 午夜激情欧美在线| 国产午夜福利久久久久久| 69av精品久久久久久| 亚洲精华国产精华液的使用体验| 久久久久久国产a免费观看| 韩国高清视频一区二区三区| 夜夜爽夜夜爽视频| 大话2 男鬼变身卡| 欧美性感艳星| 国产单亲对白刺激| .国产精品久久| 九九久久精品国产亚洲av麻豆| 一本久久精品| 久久这里有精品视频免费| 亚洲精品日韩在线中文字幕| 日韩av在线大香蕉| 精品少妇黑人巨大在线播放| 久久99热这里只频精品6学生| 99re6热这里在线精品视频| 亚洲av一区综合| 精品少妇黑人巨大在线播放| 午夜亚洲福利在线播放| 亚洲无线观看免费| 亚洲av一区综合| 国产成人精品福利久久| 久久午夜福利片| 亚洲第一区二区三区不卡| 午夜精品在线福利| 久久精品人妻少妇| 亚洲人与动物交配视频| 亚洲真实伦在线观看| 国产69精品久久久久777片| 国产真实伦视频高清在线观看| 免费看日本二区| 久久精品久久久久久噜噜老黄| 亚洲久久久久久中文字幕| 日韩制服骚丝袜av| 午夜久久久久精精品| 亚州av有码| 中文字幕久久专区|