• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Statistical test for high order stochastic dominance under the density ratio model

    2022-01-24 12:15:26ZHOUYangQIUGuoxinZHUANGWeiwei

    ZHOU Yang, QIU Guoxin, ZHUANG Weiwei

    1. School of Management, University of Science and Technology of China, Hefei 230026, China;2. School of Business, Xinhua University of Anhui, Hefei 230088, China;3. International Institute of Finance, School of Management, University of Science and Technology of China, Hefei 230061, China

    Abstract: In economics, medicine and other fields, how to compare the dominance relations between two distributions has been widely discussed. Usually population means or medians are compared. However, the population with a higher mean may not be what we will choose, since it may also have a larger variance. Stochastic dominance proposes a good solution to this problem. Subsequently, how to test stochastic dominance relations between two distributions is worth discussing. In this paper, we develop the test statistic of high order stochastic dominance under the density ratio model. In addition, we provide the asymptotic properties of test statistic and use the bootstrap method to obtain p-values to make decisions. Furthermore, the simulation results show that the proposed test statistics have the high test power.

    Keywords: stochastic dominance; density ratio model; bootstrap test; empirical likelihood

    1 Introduction

    Stochastic dominance (SD) is a method based on the expected utility theory, which can sort stochastic variables and reduce the effective set to help investors to make decisions. Stochastic dominance theory was originally proposed by Lehmann[1]. Later, Hadar and Russell[2], Hanoch and Levy[3], Rothschild and Stiglitz[4], and other scholars applied stochastic dominance theory and criteria to practice. Some scholars combined stochastic dominance with statistics to consider testing stochastic dominance. Regarding the test of stochastic dominance, it can be roughly divided into two categories: comparing the distributions at a finite number of grids, and comparing the distributions over the whole support. For the first type of test statistics, Anderson[5]established a test based on thet-statistic for two independent populations. Although their test statistic follows a normal distribution, the test power is not high. Davidson and Duclos[6]based on Anderson’s test, used a new method to handle finite data. For the latter, McFadden[7]proposed the KS statistic to test first degree stochastic dominance, but the sample sizes of two populations are required to be equal. Eubank et al.[8]put forward a second degree stochastic dominance test, but the null hypothesis is that the distributionFdominates a known distributionF0. In reality, both distributions may be unknown. Kaur et al.[9]advised to use the infimum of distributions to test the dominance relations. The advantage of this method is that the limiting distribution of test statistic can be given. However, the disadvantage is that if one distribution almost dominates the other one, the null hypothesis cannot be rejected. Schmid and Trede[10]proposed a test for second degree stochastic dominance and gave its critical value, but the test required one known distribution with the monotonically decreasing density. The strict assumption results in the narrow scope of application. Barrett and Donald[11]presented a test statistic based on KS and gave its asymptotic distribution. Donaid and Hsu[12]offered a method to improve the power of stochastic dominance test. Estimators chosen in these papers generally used empirical distributions. Such nonparametric methods sometimes may have large errors. Especially, in reality, the populations under comparison are usually of the same nature: In economics, they can be income distributions of several socio-demographic groups; in finance, they can be asset return distributions. In these cases, the density ratio model (DRM) provides a semiparametric model to connect these populations. When the density functions of populations meet certain assumptions, we can estimate each cumulative distribution function based on the pooled sample, therefore this model can improve estimation efficiency compared to that of nonparametric model[13-19].

    The DRM originated from the logistic discriminant analysis of Anderson[20,21]. Anderson[13]formalized this model by setting the ratio of density functions of certain samples with similar information as the parameters family. Owen[22,23]proposed that the empirical likelihood can effectively handle the basic function in the DRM. Qin and Zhang[14]showed that the DRM could be used to solve the case-control logistic regression problem, estimated the parameters in the DRM using empirical likelihood, and finally gave a test to illustrate the feasibility. Qin[24]applied the DRM to the expected likelihood of case-control data. Keziou and Leoni-Aubin[15]formally equated the maximum empirical likelihood estimation of the parameters in the density ratio model with the maximum dual likelihood estimation. The dual empirical likelihood can be written as a specific expression, so it is more convenient to calculate and apply. Chen and Liu[16]gave the asymptotic distributions of quantile estimations based on the DRM. Zhuang et al.[25]estimated the relaxation indexes of stochastic dominance under the DRM. Compared with parametric models with the given distributions, the DRM can compensate for the loss of distribution errors and effectively reduce the risk of misprediction of the model distributions. Meanwhile, compared with nonparametric models, the DRM can make full use of similar information by making fewer assumptions, and improve the estimation accuracy.

    In this paper, we use a semiparametric method to estimate the distribution functionsFandGby using the empirical likelihood under the DRM. Based on the resulting estimators, we propose the test statistics of high order stochastic dominance, obtain the asymptotic properties of the test statistics, and construct the critical values. We conduct inferences of the test byp-value simulation using the bootstrap method. We select normal distributions and gamma distributions for the artificial data simulation, and use an actual example of stocks to illustrate the validity of our test. Simulation studies show that our test statistics substantially improve the estimation efficiency compared to the test statistics based on empirical distributions.

    The rest of paper is organized as follows. In Section 2, a brief introduction of stochastic dominance and the DRM is given. In Section 3, our test statistics of high order stochastic dominance are proposed, the asymptotic properties of the test statistics are given, and a bootstrap method is developed to obtainp-values to make decisions. In Section 4, we apply our method to analyze two artificial examples and one actual example of stocks. Section 5 concludes the paper.

    2 Notations and definitions

    2.1 Stochastic dominance

    Here are three commonly used dominance relations: first degree stochastic dominance (FSD), second degree stochastic dominance (SSD) and third degree stochastic dominance (TSD). As a simple example, if the return of the assetXin any case is higher than that of the assetY, we will choose the assetXwithout hesitation. This is the simplest FSD relationship, but the conditions of FSD are too strict and hard to meet in daily life. Compared with FSD, SSD is more common, and it is aimed at the avaricious and risk averse people. TSD is aimed at the investors who are not only avaricious and risk averse, but also have diminishing levels of risk aversion. Let the cumulative distribution functions of random variablesXandYbeFandG, respectively. Now we give the definition of stochastic dominance. Before giving the definition, we need to make the following assumptions:Assumption 2.1Assume that:

    Next, we give the definition of stochastic dominance.

    Definition 2.1[6]Forj≥1,Fis said to dominateGof orderj, denoted byFjG(XjY), if and only if

    Fj(z;F)≤Fj(z;G), ?z∈Z

    (1)

    where

    F1(z;H)=H(z),

    In order to make the concept better understood, we give the following figures of FSD and SSD.

    Figure 1. F (red line) and G (green line) satisfying FSD relationship.

    Figure 2. F (red line) and G (green line) satisfying SSD relationship.

    It can be seen from Figures 1 and 2 that the area ofFbelowGis always more than the areaFaboveG. It is worth mentioning that stochastic dominance of different orders satisfies the following relationship:

    FSD?SSD?TSD

    (2)

    But the reverse is not true. The relationship (2) implies that we can test from low order to high order. If there is dominance relationship in the low order case, the high order dominance naturally exists. However, even if the higher order dominates, the lower order may not hold.

    2.2 Density ratio model

    In this subsection, we first briefly introduce the density ratio model. Suppose thatF0,F1, …,Fm,m≥1, are continuous cumulative distributions. These distributions are said to satisfy the density ratio model if they are linked through

    (3)

    Givenk=0, 1,…,m, supposenk>0 is the number of observations fromFk, andxkjrepresents thejth observation value fromFk(j=1,2,…,nk). Givenk,xk1,xk2, … ,xknkare independent and identically distributed. The total number of observations isn=n0+n1+…+nm, and denoteρk=nk/n(k=0, 1,…,m) as the sample proportion. We first estimate the model parametersθandF0through maximum likelihood estimation.

    Letpkj=dF0(xkj). We have the log empirical likelihood function[27]:

    (4)

    (5)

    (6)

    Assumption 2.2[16]Assume that

    ④ the components ofq(x) are linearly independent and its first element is one.

    Ω=(ωri, rj(xi,xj))1≤i≤j[16].

    The analytical expression ofΩis complex, and the (r,s)th entry ofΩis determined as follows. Denotex∧y=min{x,y}. Letδrs=1 ifr=s, and 0 otherwise. Let

    Then, the generic form ofωri, rj(xi,xj) is

    ωrs(x,y)=σrs(x,y)-

    (7)

    where

    andBr(x) is a length-dvector, with itssth segment being

    3 Test statistics and asymptotic properties

    Select two different continuous distributionsFrandFs(r≠s) from the distributions in the DRM. For the convenience of presentation, letFdenoteFr, and letGdenoteFs. To test thejth order dominance relations betweenFandG,j≥1, we first formulate the null and alternative hypotheses as follows:

    Barrett and Donald[11]and Donald and Hsu[12]considered the same hypotheses. They used empirical distributions to estimate the distribution functionsFandG. AssumeX1,X2,…,XNandY1,Y2,…,YMare independent and identically distributed samples fromFandG, respectively. Their test statistics are defined as

    (8)

    However, in applied problems, the populations under comparison are generally of the same nature: In economics, they can be income distributions of several socio-demographic groups[5,6,29]; in finance, they are often asset return distributions[30,31]. In these cases, the density ratio model provides a semiparametric model to connect these populations. When the density functions of populations meet certain assumption, we can estimate each cumulative distribution function based on the pooled sample, therefore this model can improve estimation efficiency compared to that of nonparametric model[15-19].

    (9)

    In order to state the properties of test statistics, we first introduce the following lemma.

    (10)

    F1(x;F)=F(x),

    and

    Suppose

    We want to prove

    Note that

    By mathematical induction, the lemma is proved.

    Next, we study the asymptotic properties of our test statistics. Before giving the theorem, we introduce the following notation. Let

    which converges weakly to a Gaussian processW(x) in any finite dimensional distributions under Assumption 2.2[16]. The Gaussian processW(x) has a continuous sample path, mean zero and covariance function

    Cov(W(x),W(y))=ωrr(x,x)+

    ωss(y,y)-ωrs(x,y)-ωsr(y,x)

    (11)

    where theωrsare given in (7). Whenx=y, we obtain the variance function

    Var{W(x)}=

    ωrr(x,x)+ωss(x,x)-2ωrs(x,x)

    (12)

    Theorem 3.1Suppose thatF0,F1,…,Fmare continuous population distributions satisfying the DRM. For any 0≤r,s≤m, we denoteFr=FandFs=G. Let

    [Fj(·;F)-Fj(·;G)]},j≥1.

    Then, under Assumption 2.2, we have

    Ω1(x,y,W)=

    ωrr(x,x)+ωss(y,y)-ωrs(x,y)-ωsr(y,x).

    ProofFirst, we need to show that for anyj≥1,

    (13)

    The casej=1 is obvious. Forj=2, note the fact that

    Consequently,

    Now assume that whenj=k,k>2, we have

    Thus, whenj=k+1,

    Therefore, (13) is proved.

    Next, it is easy to see from (10) that, for anyj≥1,

    Fj(z;Wn)

    (14)

    Under Assumption 2.2, it is known from Chen and Liu[16]thatWnweakly converges to the Gaussian processWin any finite dimensional distributions. Since Fjis a continuous function, it can be seen from Continuous Mapping Theorem[32]that Fj(z;Wn) weakly converges to Fj(z;W). Especially, whenj=1, F1(·;W)=W. From (11), we have known that,Wis the Gaussian process with mean zero and covariance function

    Ω1(x,y,W)=

    ωrr(x,x)+ωss(y,y)-ωrs(x,y)-ωsr(y,x).

    Then, this theorem is proved.

    For anyj≥1, we choose the critical valuescjsatisfying

    The following theorem presents asymptotic power properties of our test.

    Theorem 3.2Suppose the same conditions as in Theorem 3.1, andcjis a positive finite constant. Then, forj≥1, we have

    (15)

    (16)

    Part (i) is proved.

    Next, we prove the second part. If the alternative hypothesis is true, there exists somez*∈Z such that

    Fj(z*;F)-Fj(z*;G)=δ>0.

    Thus,

    It follows from Bahadur representation of DRM-based estimator[16]that

    and

    From (14), note that

    Then, this theorem is proved.

    The inequalities in (i) imply that the tests will never reject more often thanα. Moreover, the result in (ii) implies that the tests are capable of detecting any violation of the full set of implications of the null hypothesis.

    4 Simulation results

    Although in the previous section, we construct the critical valuecjfor the test, the value ofcjis difficult to obtain since the complex form of Fj(z;W). In this section, we conduct inferences of the test byp-value simulation using the bootstrap method. First, we select normal distributions and gamma distributions for the artificial data simulation. Then, we use the actual example of stocks to illustrate the validity of our test.

    4.1 Bootstrap hypothesis tests

    Assume that {X1,X2,…,XN} are independently and identically distributed samples fromF, and {Y1,Y2,…,YM} are independently and identically distributed samples fromG. Define the pooled samples as {X1,X2,…,XN;Y1,Y2,…,YM}. The detailed steps of the bootstrap approach are as follows:

    In addition, about the selection of critical valuecj, we can use the quantile instead. Sorting theKtimes bootstrap samples from small to large, we get

    4.2 Two sample normal distributions

    Table 1. The dominance relationship of two normal distributions.

    Figure 3.Estimation of distribution functions F (red line) and G (green line) under the density ratio model.

    Figure 4.Estimation of functions F2(z;F) (red line) and F2(z;G) (green line) under the density ratio model.

    Figure 5.Estimation of functions F3(z;F) (red line) and F3(z;G) (green line) under the density ratio model.

    In the special case 1a, the two distributions are always the same, no matter what value ofj. For the remaining cases 1band 1c, we will infer the dominance relations based on the distribution plots, and then give the rejection rates of the tests. We take the case 1cas the example. First, we present the distribution function plots of 1cforFandGunder the density ratio model, as shown in Figure 3. From Figure 3 we can see that there is a crossover between the two distributions, so there is no first order stochastic dominance betweenFandG.Secondly, we want to judge whether there is second order stochastic dominance between the two distributions. We give the plots of

    and

    as shown in Figure 4. From Figure 4, we can see that the two functions still have intersecting parts.FandGshould not have second order stochastic dominance relationship.

    Finally, we discuss whether there exists third order stochastic dominance. Figure 5 shows the plots of

    and

    From the figure, we find that there is a crossover between the two functions, so there is still no third order stochastic dominance relationship.

    Now we give the rejection rates under different orders. EMP represents the test statistic under empirical distributions; DRM represents the test statistic under the density ratio model. The numbersj=1, 2, 3 in parentheses in the table indicate thejth order dominance. From Table 2, we can see that in the case of rejecting the null hypothesis, the rejection rates under the density ratio model are greater than those under empirical distributions. In the case of accepting the null hypothesis, the rejection rate should tend to 0, and the rejection rates under the density ratio model are smaller than those under empirical distributions. These all indicate that our test statistics under the density ratio model have better performance than the test statistic under empirical distributions.

    4.3 Two sample gamma distributions

    The DRM not only performs well in the case of common normal distributions, but also in the case of gamma distributions. We generate data from gamma distributions with the density function

    f(x;α,β)=βαxα-1exp(-βx)/Γ(α),x>0,

    whereαis the shape parameter andβis the scale parameter. For the same null and alternative hypothesises as Subsection 4.2, the sample sizes areN=M=200. Different from the normal distributions, the basis function for gamma distributions is chosen to beq(x)={1,x,log(x)}T. The numbers of repetitions areK=300 andB=500. The symbols in Table 3 have the same meanings as those in Table 1. Next, we take the case 2bas the example. It can be seen from Figure 6 that there is an intersection between the two distributions, and there is no phenomenon that one distribution is always above the other distribution. Hence, there is no first order stochastic dominance.

    Table 2. Rejection rate of two normal distribution, α=0.05.

    Table 3. The dominance relationship of two gamma distributions.

    Figure 6. Estimation of distribution functions F (red line) and G (green line) under the density ratio model.

    Figure 7. Estimation of functions F2(z;F) (red line) and F2(z;G) (green line) under the density ratio model.

    Figure 8. Estimation of functions F3(z;F) (red line) and F3(z;G) (green line) under the density ratio model.

    In Figure 7, there is a partial region at the left end, where the function F2(z;F) is above F2(z;G). Therefore, we can infer that there is no second order stochastic dominance between the two distributions.

    Figure 8 shows that the plots of

    and

    still have an intersection area, so there is no third order stochastic dominant relationship.

    From Table 4, we can see that the rejection rates under empirical distributions are very close to those under the density ratio model. However, when rejecting the null hypothesis, the rejection rates under the density ratio model are slightly larger; when accepting the null hypothesis, the rejection rates under the density ratio model are slightly smaller. This phenomenon shows that our test statistics under the density ratio model are relatively more effective than the test statistics under empirical distributions.

    Table 4. Rejection rate of two gamma distribution, α=0.05.

    Figure 9. Estimated distribution functions of DVN (dashed) and NOV (solid ) under the density ratio model.

    Figure 10. Second order function estimates for DVN (dashed) and NOV (solid) under the density ratio model.

    4.4 Real data example

    Finally, we will apply our method to the real data example of stocks. In recent years, the topic of stocks has become more and more popular. Using the stochastic dominance method to compare the strength and weakness of two stocks is an effective method. We select two stocks from Devon Energy Corporation (DVN) and National Oilwell Varco (NOV) over the last three years (2017-2019) for analysis. The reason for choosing the two stocks is that their closing prices are not much different, and it is difficult to determine the pros and cons. We scale the data due to the large magnitude of the data in the likelihood estimation. The null hypothesis is taken as DVNNOV. Sample sizes areN=M=753, and the number of repetitions isK=300. The basis function of the density ratio model is selected asq(x)=(1,x,x2)T. Now, we give the distribution function plots of two stocks under the density ratio model.

    From Figure 9, we can see that there is no first order stochastic dominance between the two stocks, but there may exist second order stochastic dominance. Next, we give the second order function plots of two stocks under the density ratio model.

    It can be seen from Figure 10 that the second order function plot of DVN is always below that of NOV, which means that in the second order case, DVN dominates NOV. In addition, the value of the test statistic in second order case is -4.62× 10-4, which falls into the 95% confidence interval (-∞,4.17×10-2], and thep-value is 0.52. These all show that we cannot reject the null hypothesis, so we can infer that the stock DVN is second stochastic dominant the stock NOV. For risk averse people, we would recommend the stock DVN.

    5 Conclusions

    In this paper, we propose a semiparametric method to test high order stochastic dominance relations between two different populations. We introduce the test statistics based on the DRM and prove their asymptotic properties. A bootstrap method is developed to obtainp-values for making decisions. The normal distributions and gamma distributions are selected for artificial data simulation. Simulation studies show that our test statistic substantially improves the estimation efficiency compared to the test statistic based on empirical distributions. Finally, we apply our method to an actual example of stocks. A topic for further work is the extension of our method to test almost stochastic dominance relations. Another possible application of the current inference framework is to test factional stochastic dominance, for example, stochastic dominance of order 1+γ, for 0<γ<1, which is related to stochastic optimization.

    Acknowledgments

    The work is supported by the National Nature Science Foundation of China (Nos. 71971204, 71871208, 11701518), and the Provincial Natural Science Foundation of Anhui (No. 1908085MG236).

    Conflictofinterest

    The authors declare no conflict of interest.

    Authorinformation

    ZHOUYangis currently pursuing the master degree in Statistics and Finance with the School of Management, University of Science and Technology of China. His research interests include stochastic dominance and statistical test.

    ZHUANGWeiwei(corresponding author) received the PhD degree in Probability and Statistics from the University of Science and Technology of China (USTC) in 2006. She is currently an Associate Professor with the Department of Statistics and Finance, USTC. Her research interests include statistical dependence, stochastic comparisons, semiparametric model, and their applications.

    99热这里只有是精品50| 国模一区二区三区四区视频 | 色综合欧美亚洲国产小说| 国产av在哪里看| 亚洲av中文字字幕乱码综合| 亚洲第一电影网av| 久久午夜亚洲精品久久| 亚洲精品国产精品久久久不卡| 国产精品香港三级国产av潘金莲| 天堂影院成人在线观看| 一夜夜www| 久久中文字幕一级| 亚洲精品久久成人aⅴ小说| 日韩欧美精品v在线| 999久久久国产精品视频| 在线观看www视频免费| 一本综合久久免费| 99国产精品99久久久久| 校园春色视频在线观看| 亚洲精品国产一区二区精华液| 久久精品成人免费网站| 亚洲av美国av| 国产高清激情床上av| 2021天堂中文幕一二区在线观| 熟女电影av网| 欧美绝顶高潮抽搐喷水| 国产精品一区二区免费欧美| 在线看三级毛片| 俺也久久电影网| 欧美一区二区国产精品久久精品 | 久久天堂一区二区三区四区| 亚洲 国产 在线| 亚洲欧美精品综合一区二区三区| 日日爽夜夜爽网站| 亚洲男人的天堂狠狠| 国产真实乱freesex| 欧美成人性av电影在线观看| 色噜噜av男人的天堂激情| 身体一侧抽搐| 日本黄大片高清| 久久精品亚洲精品国产色婷小说| 久久久久精品国产欧美久久久| 国产精品美女特级片免费视频播放器 | 脱女人内裤的视频| 国产99久久九九免费精品| 亚洲精品av麻豆狂野| 国产99久久九九免费精品| 日韩大尺度精品在线看网址| 亚洲精品国产一区二区精华液| 老司机福利观看| 日本在线视频免费播放| 男插女下体视频免费在线播放| 19禁男女啪啪无遮挡网站| ponron亚洲| 不卡一级毛片| 精品少妇一区二区三区视频日本电影| 国产午夜精品论理片| 脱女人内裤的视频| 50天的宝宝边吃奶边哭怎么回事| 精品日产1卡2卡| xxxwww97欧美| 美女 人体艺术 gogo| 制服诱惑二区| 一边摸一边抽搐一进一小说| 一个人观看的视频www高清免费观看 | 正在播放国产对白刺激| 国产人伦9x9x在线观看| 蜜桃久久精品国产亚洲av| 亚洲第一电影网av| 国产探花在线观看一区二区| 看黄色毛片网站| 亚洲av成人一区二区三| 国产成人精品久久二区二区免费| 真人做人爱边吃奶动态| 欧美高清成人免费视频www| 欧美日韩国产亚洲二区| av免费在线观看网站| 欧美日韩黄片免| 伊人久久大香线蕉亚洲五| 国产精品影院久久| 亚洲真实伦在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 欧美性猛交╳xxx乱大交人| 国产精品爽爽va在线观看网站| 国产精品av久久久久免费| av在线天堂中文字幕| 日本a在线网址| av视频在线观看入口| 丝袜人妻中文字幕| 99久久无色码亚洲精品果冻| 老汉色av国产亚洲站长工具| 他把我摸到了高潮在线观看| 国产不卡一卡二| 一区福利在线观看| 久久天堂一区二区三区四区| 日本 av在线| 天天躁狠狠躁夜夜躁狠狠躁| 一级a爱片免费观看的视频| 精华霜和精华液先用哪个| www日本黄色视频网| 日韩精品免费视频一区二区三区| 中文字幕人成人乱码亚洲影| 国产在线观看jvid| 亚洲成人中文字幕在线播放| 国产精品久久久av美女十八| av国产免费在线观看| 丁香欧美五月| 日韩成人在线观看一区二区三区| 女人高潮潮喷娇喘18禁视频| 天天躁狠狠躁夜夜躁狠狠躁| 精华霜和精华液先用哪个| 宅男免费午夜| 中文字幕人妻丝袜一区二区| 亚洲18禁久久av| 国产精品日韩av在线免费观看| 亚洲性夜色夜夜综合| av视频在线观看入口| 成人午夜高清在线视频| 这个男人来自地球电影免费观看| 色播亚洲综合网| 精品欧美国产一区二区三| 国产成人aa在线观看| 国产成人一区二区三区免费视频网站| 欧美一级毛片孕妇| 99热这里只有精品一区 | 亚洲,欧美精品.| 在线免费观看的www视频| 天堂动漫精品| 琪琪午夜伦伦电影理论片6080| 国产精品av久久久久免费| 母亲3免费完整高清在线观看| 亚洲色图 男人天堂 中文字幕| 欧美色欧美亚洲另类二区| 99热这里只有精品一区 | 亚洲黑人精品在线| 香蕉国产在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲人成电影免费在线| 狂野欧美激情性xxxx| 欧美大码av| 国产成人精品久久二区二区免费| 不卡av一区二区三区| 动漫黄色视频在线观看| 我的老师免费观看完整版| www.自偷自拍.com| 久久人人精品亚洲av| 巨乳人妻的诱惑在线观看| 在线永久观看黄色视频| 18禁国产床啪视频网站| 88av欧美| 最近最新中文字幕大全免费视频| 午夜福利视频1000在线观看| 99久久国产精品久久久| 国产v大片淫在线免费观看| 久久久久久亚洲精品国产蜜桃av| 黄色丝袜av网址大全| 国产久久久一区二区三区| 国产精品电影一区二区三区| 一本大道久久a久久精品| 少妇熟女aⅴ在线视频| av福利片在线观看| 人妻夜夜爽99麻豆av| 亚洲真实伦在线观看| 99久久精品热视频| 国产精品一区二区三区四区久久| 久久香蕉国产精品| 国产午夜精品久久久久久| av在线天堂中文字幕| 中国美女看黄片| 18禁黄网站禁片午夜丰满| 国产成人欧美在线观看| 制服人妻中文乱码| 免费在线观看日本一区| 午夜日韩欧美国产| 国产精品98久久久久久宅男小说| 少妇粗大呻吟视频| 日韩精品免费视频一区二区三区| 亚洲精品美女久久久久99蜜臀| 亚洲av电影在线进入| 最近最新中文字幕大全免费视频| 制服诱惑二区| 久久精品国产99精品国产亚洲性色| 亚洲国产精品久久男人天堂| 久久久久久久久免费视频了| 啦啦啦观看免费观看视频高清| 超碰成人久久| 一区二区三区激情视频| 婷婷精品国产亚洲av| 亚洲电影在线观看av| 国产亚洲精品第一综合不卡| 婷婷丁香在线五月| 香蕉国产在线看| 免费在线观看成人毛片| 婷婷丁香在线五月| 久久久精品大字幕| 精品久久久久久久人妻蜜臀av| 亚洲成av人片在线播放无| 天天一区二区日本电影三级| 国产黄片美女视频| 身体一侧抽搐| 国产男靠女视频免费网站| 亚洲国产精品999在线| 国产精品av视频在线免费观看| 岛国视频午夜一区免费看| 国产精品九九99| 中文字幕熟女人妻在线| 最近最新中文字幕大全免费视频| 99久久精品国产亚洲精品| 成人亚洲精品av一区二区| 成人18禁高潮啪啪吃奶动态图| 婷婷亚洲欧美| 亚洲av成人不卡在线观看播放网| 岛国视频午夜一区免费看| 老鸭窝网址在线观看| e午夜精品久久久久久久| 精品久久蜜臀av无| 国产精品一区二区免费欧美| 中文字幕av在线有码专区| 手机成人av网站| 色在线成人网| 久久婷婷人人爽人人干人人爱| 国产精品精品国产色婷婷| 欧美在线一区亚洲| 嫁个100分男人电影在线观看| 1024手机看黄色片| 中文在线观看免费www的网站 | 两个人免费观看高清视频| 欧美黑人巨大hd| 91麻豆av在线| 午夜日韩欧美国产| 欧美一区二区精品小视频在线| 国产精品,欧美在线| 色播亚洲综合网| 亚洲免费av在线视频| 日日爽夜夜爽网站| 麻豆久久精品国产亚洲av| 少妇人妻一区二区三区视频| 欧美日韩中文字幕国产精品一区二区三区| 国产精品久久视频播放| 女警被强在线播放| 精品国内亚洲2022精品成人| 老熟妇乱子伦视频在线观看| 成人三级黄色视频| 欧美性猛交╳xxx乱大交人| 一级作爱视频免费观看| 人妻久久中文字幕网| 成人永久免费在线观看视频| 国产精品久久久久久亚洲av鲁大| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲精品中文字幕一二三四区| 又大又爽又粗| 免费看日本二区| 日日夜夜操网爽| 婷婷亚洲欧美| 天天躁夜夜躁狠狠躁躁| 99精品欧美一区二区三区四区| 国产精品久久久久久人妻精品电影| 又大又爽又粗| 可以免费在线观看a视频的电影网站| 高潮久久久久久久久久久不卡| 婷婷精品国产亚洲av| 国产野战对白在线观看| 国产成年人精品一区二区| 日本a在线网址| 亚洲人成电影免费在线| 国产精品永久免费网站| 国产亚洲精品一区二区www| 全区人妻精品视频| 国产精品香港三级国产av潘金莲| or卡值多少钱| 香蕉国产在线看| 午夜福利成人在线免费观看| 中文字幕av在线有码专区| 一区二区三区激情视频| 久久精品国产亚洲av香蕉五月| 午夜福利免费观看在线| 黄片大片在线免费观看| 欧美另类亚洲清纯唯美| 成人永久免费在线观看视频| ponron亚洲| 香蕉av资源在线| 少妇裸体淫交视频免费看高清 | 婷婷丁香在线五月| 黑人操中国人逼视频| 亚洲成人久久性| 亚洲av美国av| 人成视频在线观看免费观看| 18禁黄网站禁片午夜丰满| 亚洲精品国产一区二区精华液| 在线观看舔阴道视频| 国产一区二区三区视频了| 久久久久久久久久黄片| 日韩av在线大香蕉| 国内久久婷婷六月综合欲色啪| 亚洲国产精品合色在线| 日韩欧美精品v在线| 亚洲精品粉嫩美女一区| 欧美日韩一级在线毛片| 精品第一国产精品| 不卡av一区二区三区| 2021天堂中文幕一二区在线观| 国产午夜精品久久久久久| av片东京热男人的天堂| 1024手机看黄色片| www.熟女人妻精品国产| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品久久久av美女十八| 亚洲狠狠婷婷综合久久图片| 可以在线观看的亚洲视频| 亚洲天堂国产精品一区在线| 麻豆久久精品国产亚洲av| 老汉色av国产亚洲站长工具| 91国产中文字幕| 正在播放国产对白刺激| 久久香蕉精品热| 男女床上黄色一级片免费看| 麻豆国产av国片精品| 精品国内亚洲2022精品成人| 老司机靠b影院| 五月玫瑰六月丁香| 这个男人来自地球电影免费观看| 色综合欧美亚洲国产小说| 99国产精品一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 一夜夜www| www.精华液| 岛国在线观看网站| 97人妻精品一区二区三区麻豆| 日日干狠狠操夜夜爽| 亚洲欧美精品综合久久99| 熟妇人妻久久中文字幕3abv| 午夜福利18| 性色av乱码一区二区三区2| 欧美色视频一区免费| 真人做人爱边吃奶动态| 天天躁夜夜躁狠狠躁躁| 精品免费久久久久久久清纯| 亚洲第一电影网av| 欧美日韩瑟瑟在线播放| 国产在线观看jvid| 精品免费久久久久久久清纯| 精品日产1卡2卡| 亚洲一区中文字幕在线| 啦啦啦免费观看视频1| 精品免费久久久久久久清纯| 首页视频小说图片口味搜索| 欧美日本视频| 人人妻人人澡欧美一区二区| 国产精品精品国产色婷婷| 久久这里只有精品19| 男男h啪啪无遮挡| www.自偷自拍.com| 九九热线精品视视频播放| 亚洲成人久久爱视频| 免费一级毛片在线播放高清视频| 黄色 视频免费看| 亚洲精品美女久久av网站| 麻豆国产av国片精品| 国产探花在线观看一区二区| 黄色 视频免费看| 亚洲精品国产精品久久久不卡| 国产av又大| 欧美最黄视频在线播放免费| 国产一区二区三区视频了| 国产高清视频在线观看网站| 给我免费播放毛片高清在线观看| 精品一区二区三区av网在线观看| 亚洲成人免费电影在线观看| 1024香蕉在线观看| 一个人观看的视频www高清免费观看 | 国产亚洲精品第一综合不卡| 国产黄色小视频在线观看| svipshipincom国产片| 一进一出抽搐gif免费好疼| 我要搜黄色片| 国产久久久一区二区三区| 国产午夜福利久久久久久| 露出奶头的视频| 日本三级黄在线观看| 亚洲精品在线美女| 国产一区二区三区在线臀色熟女| 婷婷丁香在线五月| 国产99白浆流出| 免费看美女性在线毛片视频| 美女扒开内裤让男人捅视频| 在线观看www视频免费| 日本精品一区二区三区蜜桃| 精品一区二区三区四区五区乱码| 欧美日韩国产亚洲二区| 18禁黄网站禁片免费观看直播| 69av精品久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 麻豆成人av在线观看| 五月玫瑰六月丁香| aaaaa片日本免费| 岛国在线观看网站| 久久中文看片网| 可以在线观看的亚洲视频| 久久久久免费精品人妻一区二区| 精品久久久久久,| 一个人观看的视频www高清免费观看 | 亚洲av成人不卡在线观看播放网| 国产精品自产拍在线观看55亚洲| 最新在线观看一区二区三区| 一边摸一边做爽爽视频免费| 亚洲中文av在线| 亚洲国产中文字幕在线视频| av免费在线观看网站| 久久久久久久久久黄片| 狂野欧美白嫩少妇大欣赏| 日本熟妇午夜| 哪里可以看免费的av片| 可以免费在线观看a视频的电影网站| 国产亚洲av高清不卡| 亚洲熟妇中文字幕五十中出| 午夜老司机福利片| 欧美绝顶高潮抽搐喷水| 日本精品一区二区三区蜜桃| 美女 人体艺术 gogo| 亚洲欧美精品综合一区二区三区| 国产一区二区在线av高清观看| 夜夜夜夜夜久久久久| 亚洲精品一卡2卡三卡4卡5卡| 波多野结衣高清作品| e午夜精品久久久久久久| 国产一区二区三区视频了| 制服丝袜大香蕉在线| 校园春色视频在线观看| 少妇粗大呻吟视频| 1024视频免费在线观看| 欧美久久黑人一区二区| 国产精品久久久久久亚洲av鲁大| 午夜激情av网站| 天天一区二区日本电影三级| 99精品欧美一区二区三区四区| www国产在线视频色| 三级国产精品欧美在线观看 | 少妇被粗大的猛进出69影院| 麻豆国产av国片精品| 少妇熟女aⅴ在线视频| 老汉色av国产亚洲站长工具| 成熟少妇高潮喷水视频| 熟女电影av网| 免费观看人在逋| 人妻丰满熟妇av一区二区三区| 少妇人妻一区二区三区视频| 十八禁人妻一区二区| 亚洲国产日韩欧美精品在线观看 | 亚洲国产中文字幕在线视频| 亚洲精品中文字幕在线视频| 国产精品av久久久久免费| 伦理电影免费视频| 神马国产精品三级电影在线观看 | 天天一区二区日本电影三级| 黄片小视频在线播放| e午夜精品久久久久久久| 精品不卡国产一区二区三区| 久久久国产精品麻豆| 色尼玛亚洲综合影院| 在线观看免费午夜福利视频| 手机成人av网站| 国产一区二区激情短视频| 校园春色视频在线观看| 国产精品综合久久久久久久免费| 两个人视频免费观看高清| 中文字幕久久专区| 欧美在线黄色| 日本一区二区免费在线视频| 精品福利观看| 亚洲人成77777在线视频| 级片在线观看| 久久人人精品亚洲av| 成人手机av| 99国产精品一区二区三区| 亚洲国产欧洲综合997久久,| 老司机午夜福利在线观看视频| 大型黄色视频在线免费观看| 午夜福利视频1000在线观看| 老司机在亚洲福利影院| 俄罗斯特黄特色一大片| 啦啦啦观看免费观看视频高清| 午夜a级毛片| 亚洲一区高清亚洲精品| 亚洲精品中文字幕在线视频| 久久久久久久精品吃奶| 午夜日韩欧美国产| www.999成人在线观看| 法律面前人人平等表现在哪些方面| 男人舔女人的私密视频| 中国美女看黄片| 欧美性长视频在线观看| 90打野战视频偷拍视频| 最新美女视频免费是黄的| 啦啦啦免费观看视频1| 热99re8久久精品国产| 欧美一区二区精品小视频在线| 久久天躁狠狠躁夜夜2o2o| 日韩国内少妇激情av| 麻豆国产97在线/欧美 | 欧美日本视频| 波多野结衣高清作品| 日本三级黄在线观看| 日本五十路高清| 亚洲人成电影免费在线| 亚洲 欧美 日韩 在线 免费| 国产精品 国内视频| 香蕉久久夜色| 欧美日韩中文字幕国产精品一区二区三区| 高清在线国产一区| 欧美日本亚洲视频在线播放| 别揉我奶头~嗯~啊~动态视频| 亚洲一区二区三区色噜噜| 久久久久九九精品影院| av免费在线观看网站| 69av精品久久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 色精品久久人妻99蜜桃| www日本在线高清视频| 我要搜黄色片| 国产熟女xx| 变态另类丝袜制服| 国产又黄又爽又无遮挡在线| 男人舔女人下体高潮全视频| 精品欧美一区二区三区在线| 国产av在哪里看| 午夜老司机福利片| 精品国产超薄肉色丝袜足j| 久久久久久久精品吃奶| 欧美日本视频| av有码第一页| 精品久久久久久久久久免费视频| av国产免费在线观看| 老司机午夜十八禁免费视频| 黄色 视频免费看| 中国美女看黄片| 亚洲国产精品合色在线| av在线天堂中文字幕| 日日爽夜夜爽网站| 免费在线观看完整版高清| 女人被狂操c到高潮| 好男人电影高清在线观看| 禁无遮挡网站| 变态另类成人亚洲欧美熟女| 久久精品国产亚洲av高清一级| 精品久久久久久久人妻蜜臀av| 欧美黑人欧美精品刺激| 中文字幕最新亚洲高清| 国内揄拍国产精品人妻在线| 久久草成人影院| 欧美日本亚洲视频在线播放| bbb黄色大片| 日韩欧美 国产精品| 在线观看午夜福利视频| 老司机在亚洲福利影院| 一级片免费观看大全| 国产黄片美女视频| 男女视频在线观看网站免费 | 久久精品综合一区二区三区| 国产1区2区3区精品| 久久久水蜜桃国产精品网| 欧美最黄视频在线播放免费| 国产欧美日韩精品亚洲av| 怎么达到女性高潮| 国产黄a三级三级三级人| 亚洲av中文字字幕乱码综合| 欧美性猛交黑人性爽| 亚洲av成人一区二区三| av在线天堂中文字幕| 亚洲专区字幕在线| 欧美日韩亚洲综合一区二区三区_| 久久久久免费精品人妻一区二区| 成在线人永久免费视频| 一本综合久久免费| 黄频高清免费视频| 成人国产综合亚洲| 精品乱码久久久久久99久播| 丰满人妻熟妇乱又伦精品不卡| 国产免费av片在线观看野外av| 欧美国产日韩亚洲一区| 久久精品国产清高在天天线| 在线播放国产精品三级| 1024香蕉在线观看| 欧美一级a爱片免费观看看 | 欧美日韩亚洲国产一区二区在线观看| 丁香欧美五月| 精品午夜福利视频在线观看一区| 国产真人三级小视频在线观看| 午夜福利成人在线免费观看| 久久精品夜夜夜夜夜久久蜜豆 | 日本熟妇午夜| 欧美在线一区亚洲| 一二三四在线观看免费中文在| 一级片免费观看大全| 黑人巨大精品欧美一区二区mp4| 俺也久久电影网| 三级国产精品欧美在线观看 | www.www免费av| 国产午夜福利久久久久久| 好男人在线观看高清免费视频| 国内少妇人妻偷人精品xxx网站 | a级毛片在线看网站| 看黄色毛片网站| 亚洲精品美女久久久久99蜜臀| 亚洲 欧美一区二区三区| 18禁国产床啪视频网站| 亚洲精品国产一区二区精华液| av欧美777| 久久热在线av| 久久久久久久午夜电影| 久久精品亚洲精品国产色婷小说| 日日干狠狠操夜夜爽| 一级黄色大片毛片| 精品欧美国产一区二区三| 大型黄色视频在线免费观看| 久久久久久亚洲精品国产蜜桃av|