唐琳欽,宿程遠*,黃 嫻,李汝婷,王安柳,樊翠萍,先云川
PFOA與PFOS對厭氧氨氧化污泥特性和微生物群落的影響
唐琳欽1,2,宿程遠1,2*,黃 嫻2,李汝婷2,王安柳2,樊翠萍2,先云川2
(1.廣西師范大學珍稀瀕危動植物生態(tài)與環(huán)境保護教育部重點實驗室,廣西 桂林 541004;2.廣西師范大學環(huán)境與資源學院,廣西 桂林 541004)
通過序批實驗研究了不同濃度(0.5,1mg/L)與不同類型的全氟化合物(PFCs)對厭氧氨氧化(anammox)污泥脫氮性能及微生物群落的影響.結(jié)果表明,0.5與1mg/L全氟辛酸(PFOA)和全氟辛烷磺酸鹽(PFOS)對anammox污泥的脫氮性能無明顯抑制作用;1mg/L PFOA(OA1)與PFOS(OS1)添加至anammox污泥中后1d,其去除率分別達到47.68%和92.7%.污泥的X射線光電子能譜(XPS)分析表明OA1、OS1實驗組存在C-F、MgF2、CaF2等官能團.PFOA和PFOS脅迫下anammox污泥中血紅素c濃度出現(xiàn)降低,OA1與OS1實驗組分別降低了21.05%、7.5%.對不同實驗組anammox污泥進行高通量測序分析表明,1mg/L PFOA和PFOS的添加會降低厭氧氨氧化菌但促進反硝化細菌的相對豐度,OA1、OS1實驗組中屬的相對豐度分別降低1.08%、0.28%,而不動桿菌屬相對豐度增加1.73%與0.06%.整體而言,PFOA對anammox污泥的負面影響更為明顯.
全氟辛酸;全氟辛烷磺酸鹽;厭氧氨氧化;污泥特性;微生物群落
全氟化合物(PFCs)是碳氫化合物中的氫原子被氟取代而形成的化合物,全氟辛酸(PFOA)和全氟辛烷磺酸鹽(PFOS)是典型的PFCs,兩者主要產(chǎn)生于涂料、潤滑劑、殺蟲劑等產(chǎn)品的生產(chǎn)過程中[1-2].由于PFOA與PFOS含有共價鍵C-F,因此具有較強的化學穩(wěn)定性從而在環(huán)境中具有高度持久性與生物累積性[3].由于PFCs的化學持久性、生物放大作用和潛在毒性,其越來越受到人們的廣泛關注.PFOA和PFOS的廣泛應用導致兩者不可避免在污水處理廠中積累.目前,全球諸多污水處理廠、地表水中均檢出了PFOA與PFOS[4].
目前PFOA和PFOS主要處理方法有電化學氧化法、臭氧氧化法、光催化氧化法、吸附法、生物處理法等[3].生物處理法是污水處理廠采用的主流工藝,具有穩(wěn)定、經(jīng)濟等優(yōu)點.Chiavola等[4]的研究表明,使用活性污泥法去除200~4000ng/L的PFOA和PFOS時,兩者在液相中去除率分別達到59%~68%和66%~96%.Yang等[2]研究發(fā)現(xiàn)好氧顆粒污泥法可去除廢水中32%~36.4%的PFOA,但1mg/L PFOA會抑制微生物聚羥基鏈烷酸酯與糖原的轉(zhuǎn)化,并降低亞硝化單胞菌屬()、硝化螺旋菌屬()等細菌的相對豐度,可見PFCs可被生物處理法去除卻會對微生物造成一定的不利影響.Yu等[5]研究了PFOA對活性污泥工藝的影響,發(fā)現(xiàn)PFOA濃度達到20mg/L時會抑制微生物的生長從而影響溶解性有機碳的去除.厭氧氨氧化(anammox)是在厭氧環(huán)境中,微生物以亞硝酸鹽為電子受體,將氨直接氧化為氮氣的自養(yǎng)過程,可節(jié)省碳源與運行成本,被認為是最有前途的脫氮處理技術之一[6].然而隨著工業(yè)的發(fā)展,越來越多的新型污染物諸如納米金屬、抗生素等出現(xiàn)在污水處理廠中,對anammox工藝的穩(wěn)定運行提出新挑戰(zhàn).Zhang等[7]發(fā)現(xiàn)anammox菌暴露在5mg/L CuNPs下,相對豐度由29.59%下降至17.53%.Du等[8]發(fā)現(xiàn)5~7mg/L的磺胺二甲嘧啶會抑制anammox菌活性,并使豐度從2.57%降低至0.39%.
本文研究了不同濃度、類型的PFCs對anammox污泥脫氮性能的影響;同時采用高效液相色譜-質(zhì)譜法(HPLC-MS)分析了anammox污泥對PFOA與PFOS的去除效率;并利用X射線光電子能譜(XPS)與三維熒光光譜(3D-EEM)研究了PFOA和PFOS對anammox污泥官能團及胞外聚合物(EPS)組分的影響.最后,利用16S rRNA擴增子測序分析了anammox污泥中微生物群落與功能代謝在PFOA和PFOS脅迫下的演替情況,從而為厭氧氨氧化體系的穩(wěn)定運行提供一定的科學借鑒.
實驗所用anammox污泥取自實驗室運行180d的厭氧折流板反應器.實驗所用PFOA購自Adamas, PFOS購自江西國化化工.所用廢水為人工配置廢水,包括50mg/L NH4Cl、65mg/L NaNO2、58.6mg/L MgSO4·7H2O、840mg/L NaHCO3、73.5mg/L CaCl·2H2O,以及100mg/L Na2SO3作為脫氧劑,此外還加入1.25mL/L微量元素I和微量元素II[9].
序批實驗在5個500mL錐形瓶中進行,錐形瓶內(nèi)均含有150mL anammox污泥及350mL廢水.參考文獻[10],在本實驗確定0.5, 1mg/L的PFOA和PFOS.實驗中對照組(CT)不添加PFCs,OA0.5、OA1、OS0.5、OS1實驗組分別添加0.5mg/L PFOA、1mg/L PFOA、0.5mg/L PFOS、1mg/L PFOS[3].實驗周期40d,每天進水量350mL,水力停留時間24h, pH值控制在7.5~8.0,原水DO濃度在0.5mg/L以下.實驗中錐形瓶封口處理并置于35℃恒溫震蕩器中,1~3d時震蕩速度160r/min,在該震蕩速度下硝酸鹽高度積累,為使厭氧氨氧化細菌處于合適的生存環(huán)境,對震蕩速度適當調(diào)整,4~8d時震蕩速度100r/min,9~40d時震蕩速度120r/min[2].每天測定進水與出水氨氮、亞硝酸鹽氮及硝酸鹽氮濃度;每隔4d分析PFOA與PFOS去除情況;此外分別于第0, 40d取出一定量anammox污泥用于EPS、血紅素c的測定;實驗結(jié)束時通過16S rRNA擴增子測序?qū)Σ煌瑢嶒灲M的微生物群落結(jié)構(gòu)進行分析.
水樣經(jīng)0.45 μm濾膜過濾后使用納氏試劑分光光度法,N-(1-萘基)-乙二胺光度法分光光度法及紫外分光光度法分別測定其氨氮,亞硝酸鹽氮及硝酸鹽氮濃度.X射線光電子能譜儀(Thermo scientific, 250Xi)用于anammox污泥表面官能團分析,將實驗結(jié)束后(40d)的污泥于105℃下干燥24h進行XPS分析,測試束斑為500 μm,全譜通過能100eV,步長1.0eV,窄譜通過能30eV,步長0.06eV[9].污泥胞外聚合物(EPS)的提取采用熱提取法,并將松散型胞外聚合物(LB-EPS)與緊致型胞外聚合物(TB-EPS)用于EEM光譜分析(日立-F7000),儀器發(fā)射波長和激發(fā)波長為5nm,掃描速度為2400r/min[11]. Anammox污泥中血紅素c的測定采用吡啶分光光度法,于波長549nm處測定其吸光度并計算血紅素c濃度[12].
液相色譜串聯(lián)質(zhì)譜儀(Agilent Q-TOF 6545B)用于水樣及anammox污泥中PFOA、PFOS濃度的測定;LC-MS所用色譜柱為ZORBAX Eclipse plus c18,流動相A為乙腈,流動相B為5mmol/L乙酸銨; LC-MS掃描時間為6min,流速0.2mL/min,0~2.5min流動相A與B的體積比例為58:42,2.5~4min流動相A與B的體積比例為5:95,4~6min流動相A與B的體積比例恢復到58:42.污泥中PFOA、PFOS的提取方法:取一定量anammox泥水混合物于5mL離心管,于6000r/min離心5min棄去上清液,置于2mL甲醇溶液中,超聲破碎1h后于6000r/min離心5min,取上清液進行測定[4].
實驗結(jié)束后對CT、OA1、OS1組的anammox污泥進行16S rRNA擴增子測序,使用Mag-Bind土壤DNA試劑盒(EZNATM,OMEGA,美國)提取污泥的DNA,DNA完整性通過1%瓊脂糖凝膠電泳驗證并使用Qubit定量檢測DNA樣本濃度[13].PCR一輪擴增所用引物為V3-V4通用引物341F(CCTACGGGNG- GCWGCAG)和805R(GACTACHVGGGTATCTAA- TCC)[14];第二輪擴增引入Illumina橋式PCR兼容引物[15].Illumina Miseq?/Hiseq?得到的原始圖像數(shù)據(jù)文件經(jīng)堿基識別分析轉(zhuǎn)化為原始測序序列[16].然后對各樣本數(shù)據(jù)的質(zhì)量進行質(zhì)控過濾,得到各樣本有效數(shù)據(jù),之后再進行OTU聚類分析和物種分類學分析.此外KEGG(基因和基因組京都百科全書)數(shù)據(jù)庫被用來預測anammox污泥中相關代謝功能預測分析[14].
首先分析了不同濃度PFOA與PFOS污染下,anammox污泥對氨氮、亞硝酸鹽氮去除及硝酸鹽氮生成的情況,結(jié)果如圖1所示.
由圖1A可知,CT對照組與OA0.5(0.5mg/L PFOA)、OA1(1mg/L PFOA)、OS0.5(0.5mg/L PFOS)、OS1(1mg/L PFOS)實驗組氨氮去除率變化趨勢基本一致,1~3d時振蕩器震蕩速度為160r/min,5個實驗組氨氮去除率均達86%以上,去除率相對穩(wěn)定,這表明PFOA與PFOS對氨氮去除并未產(chǎn)生急性抑制作用.4~8d時,CT、OA0.5、OA1、OS0.5、OS1的氨氮平均去除率降低至51.48%、53.43%、72.65%、63.21%和61.43%,在此階段氨氮去除率均明顯下降,可能是anammox污泥中細菌活性受到一定抑制導致.9~40d時振蕩器震蕩速度為120r/min,CT、OA0.5、OA1、OS0.5、OS1對氨氮去除率基本保持在98%左右,這表明PFOA、PFOS的添加對anammox污泥除氨氮能力并未產(chǎn)生不利影響.由圖1B可知,CT、OA0.5、OA1、OS0.5、OS1各組對亞硝酸鹽氮去除率變化趨勢與氨氮基本一致,1~3d時,5個實驗組的亞硝酸鹽氮去除率均達到76%以上;在4~10d時亞硝酸鹽氮去除率明顯降低,亞硝酸鹽氮平均去除率分別為41.19%、43.88%、51.12%、51.40%、37.41%,以OS1實驗組降低的最為明顯.而11d以后,對照組與實驗組對亞硝酸鹽氮的去除效率逐漸升高, 13~40d時各組去除率均達到97%以上.
根據(jù)Strous提出的anammox反應方程,硝酸鹽氮/氨氮理論物質(zhì)的量比為0.26[17],對不同實驗組出水硝酸鹽氮/氨氮與硝酸鹽氮/亞硝酸鹽氮進行分析,如圖2所示.硝酸鹽氮/氨氮在1~3d內(nèi)持續(xù)增大,表明震蕩速度為160r/min時,反應器內(nèi)的硝酸鹽氮濃度增加,這可能是由于過高的震蕩速度使得反應器中廢水溶解氧含量增加導致.4~8d時震蕩速度為100r/min,此時硝酸鹽氮/氨氮明顯下降同時伴隨著氨氮、亞硝酸鹽去除率大幅下降,對照組與實驗組的硝酸鹽氮/氨氮最低為0.082. 9~40d時振蕩器震蕩速度為120r/min,而硝酸鹽氮/氨氮緩慢增加,此階段硝酸鹽氮/氨氮維持在0.77~1.11之間,超過理論物質(zhì)的量比,這表明出水硝酸鹽氮濃度增加.9~40d時CT對照組與4個實驗組的氨氮、亞硝酸鹽去除率也逐漸升高并達到穩(wěn)定狀態(tài)是其轉(zhuǎn)化成硝酸鹽氮所致.CT對照組與4個實驗組硝酸鹽氮/亞硝酸鹽氮的變化趨勢與硝酸鹽氮/亞硝酸鹽氮的變化趨勢基本一致.
圖2 硝酸鹽氮與氨氮、亞硝酸鹽氮的比值
PFOA和PFOS分別具有親水性官能團羧基和磺酸基,使PFOA和PFOS具有一定的水溶性,其中PFOA、PFOS的溶解度分別為3.4和0.54g/L[4],為更好評價PFOA與PFOS的去除情況,本文對出水及污泥中的PFOA和PFOS進行了測定,結(jié)果如圖3所示.
由圖3可知,第1d時,OA0.5、OA1實驗組對PFOA的去除率分別為49.86%、47.68%, OA0.5、OA1實驗組PFOA在污泥相的比例為45.67%和46.48%,此外OA0.5、OA1中PFOA的量均有不同程度損失,其比例分別為1.2%,4.19%.而第5d以后PFOA去除率降低并維持在18.43%~29.17%之間,表明添加PFOA的初始,anammox污泥對PFOA具有一定吸附能力,而持續(xù)添加PFOA會降低anammox污泥的吸附能力.OS0.5、OS1實驗組在添加PFOS的1d后,PFOS去除率高達91.5%和92.7%,而第9d后污泥對PFOS的吸附能力逐漸趨于飽和,此時OS0.5、OS1實驗組的PFOS去除率降低至49.08%以下.在添加PFOS的17d后,PFOS的去除率相對平穩(wěn),OS0.5、OS1實驗組的PFOS平均去除率分別為26.94%和24.83%.此外OS0.5、OS1實驗組的PFOS在污泥相的比例高達88.77%和89.8%,這表明添加PFOS1d后,anammox污泥吸附PFOS的能力較PFOA更強.污泥對PFOA和PFOS的吸附可歸因于陽離子架橋作用與疏水作用,污水及污泥中的帶正電的Ca2+與Mg2+作為陽離子連接帶負電的PFOA和PFOS,從而實現(xiàn)PFCs被污泥吸附[18];同時PFOA和PFOS具有羧基和磺酸基及較長的C-F主鏈,溶解在水相的PFCs會與anammox污泥發(fā)生疏水作用而被吸附.由于PFOS比PFOA具有更多C-F鍵(多2個)故具有更強疏水能力[19],從而與anammox污泥間具有更強的親和力.
圖3 PFOA與PFOS的去除率及分布情況
堆積條形圖為添加PFCs一天后,PFCs的分布比例
為分析PFOA與PFOS對污泥表面官能團的影響,使用XPS光譜對對照組與OA1、OS1實驗組anammox污泥中C、N、F元素進行分析,結(jié)果如圖4所示.
圖4 污泥的XPS譜圖分析
圖4表明OA1、OS1實驗組污泥中存在多種含氟官能團,其中688.5~688.9eV處出現(xiàn)的峰為PFOA、PFOS中含有的C-F[20],且OS1組C-F鍵的峰面積明顯大于OA1,這說明OS1組anammox污泥中吸附了較多PFOS;685.9~686.2,684.4~685eV處出現(xiàn)的峰分別為MgF2、CaF2[21],這表明anammox污泥中的Mg2+、Ca2+可通過陽離子架橋連接帶負電荷的anammox污泥及2種PFCs;此外OS1組在683eV處還存在KF官能團[22],說明PFOS對anammox污泥的親和力更高.C1s由3~4種官能團組成,其中284.8, 286.3,288eV處出現(xiàn)的峰分別為C-C、C-O-C、C=O[2];另外CT、OS1組在289, 289.4eV出現(xiàn)的峰為-COOH[2].在399.9, 401.8~401.9eV附近處存在2個峰,399.9eV處出現(xiàn)的峰歸因于非質(zhì)子化氨基(-NH),而401.8~401.9eV處的峰與質(zhì)子化的氨基有關(-NH3+)[23].
胞外聚合物(EPS)是微生物產(chǎn)生的由蛋白質(zhì)與多糖等組成的高分子聚合物,具有較強的吸附能力且能保護細菌免受有毒物質(zhì)的影響,主要可分為松散型胞外聚合物(LB-EPS)和緊密型胞外聚合物(TB-EPS),兩者空間分布和理化特性不同[24-25].
圖5 不同實驗組污泥LB-EPS和TB-EPS的3D-EEM譜圖
由圖5可知,第0d時,CT、OA1、OS1組的LB- EPS在x/m=280/345~350nm和x/m=420/ 475nm處存在色氨酸(峰A)和輔酶F420(峰B)2個主峰[26-27].其中CT、OA1、OS1類色氨酸熒光峰強度存在一定差異,分別為62.11,69.11,76.34,可能是由于實驗之初anammox污泥間混合不勻所致.此外在x/m=230/305~310nm、x/m=270/470nm處存在芳香族蛋白質(zhì)(峰C)、黃腐酸(峰D)熒光峰[26].第40d時,CT、OA1、OS1組色氨酸熒光峰強度均有不同程度降低,分別降低14.2%、28.9%、23.52%. TB-EPS的EEM譜圖中主要存在色氨酸峰(峰A)和輔酶F420(峰B)2種熒光峰.第0d時色氨酸熒光峰強度較高,CT對照組與OA1、OS1實驗組峰A的熒光強度達到302.9,332.9,318.1,而到第40d時,CT、OA1、OS1組色氨酸峰強度分別降低21%、27.7%、31.1%.這表明添加PFCs會降低anammox污泥色氨酸的分泌,且PFOA對污泥色氨酸的分泌所產(chǎn)生負面影響更為明顯.污泥的疏水作用主要與污泥中疏水性氨基酸(色氨酸、丙氨酸、苯丙氨酸等)、腐殖酸、富里酸中的芳香族、脂環(huán)族及污泥中的脂質(zhì)有關[28].各組污泥的EEM譜圖表明,相較于CT對照組,PFCs的存在使LB-EPS、TB-EPS中色氨酸熒光峰強度降低更顯著,可能是PFCs與EPS中色氨酸發(fā)生疏水作用所導致.
厭氧氨氧化污泥具有紅色特征主要是由于具有細胞色素c,細胞色素c包含血紅素c,當二價鐵和三價鐵間轉(zhuǎn)換時,血紅素c能夠被氧化和還原,因此可通過確定血紅素c含量來估算anammox污泥的細胞色素c含量[29].Shi等[30]研究表明當厭氧氨氧化反應器中土霉素濃度為2mg/L時,特定厭氧氨氧化活性(SAA)降低81.3%,同時血紅素c濃度降低50.1%,這說明血紅素c的濃度與SAA存在聯(lián)系,因此本文分析了PFOA與PFOS對anammox污泥中血紅素c含量的影響,結(jié)果如圖6所示.
圖6 PFOA與PFOS對血紅素c含量的影響
由圖6可知,在未添加PFCs之前,OA1組的血紅素c含量最高,而添加PFCs后的第20d,CT、OA1、OS1的血紅素c含量均有不同程度降低,分別降低了2.77,9.39,5.7 μmol/g.添加PFCs后的第40d,CT對照組血紅素c含量出現(xiàn)回升,而OA1、OS1實驗組繼續(xù)降低,降低幅度分別為21.05%和7.5%.因此添加PFCs之后會降低anammox污泥血紅素c的含量,以PFOA最為顯著,說明1mg/L的PFCs抑制了厭氧氨氧化污泥的氧化活性.
由圖7可知,變形菌門(Proteobacteria)、廣古菌門(Euryarchaeota)、綠彎菌門(Chloroflexi)、浮霉菌門(Planctomycetes)在各組微生物群落中占主導地位,另外還存在裝甲菌門(Armatimonadetes)、擬桿菌門(Bacteroidetes)、酸桿菌門(Acidobacteria)等.變形菌門與綠彎菌門是反硝化過程中主要細菌,據(jù)報道PFCs可促進變形菌門與綠彎菌門相對豐度增加[10,31].添加1mg/L的PFOA與PFOS使變形菌門相對豐度分別增加3.92%與0.32%,OA1中綠彎菌門的相對豐度增加2.01%,這表明添加PFCs促進了反硝化細菌的生長.此外OA1組變形菌門與綠彎菌門的豐度較OS1組增加比例更高,可能歸因于PFOA C-F鍵更少而更好地被利用.擬桿菌屬具有較好的代謝能力,可以適應惡劣的環(huán)境,酸桿菌門是一種有機物水解細菌[10].添加1mg/L的PFOA和PFOS后擬桿菌門、酸桿菌門相對豐度分別增加0.49%和0.24%、0.24%與0.06%,這與先前的研究相一致[10,31].目前已知的厭氧氨氧化菌屬于浮霉菌門[32],PFCs的存在降低了浮霉菌門相對豐度,相對于CT組,OA1、OS1實驗組中浮霉菌門比例分別降低1.38%、0.52%.
圖7 門水平與屬水平細菌的相對豐度
甲烷絲菌屬()、不動桿菌屬()、甲烷桿菌屬 ()在屬水平上為優(yōu)勢菌群,此外還存在、、等具有脫氮能力的菌群.高豐度的甲烷絲菌屬、甲烷桿菌屬與馴化污泥有關[9].據(jù)報道不動桿菌屬和屬能進行異養(yǎng)硝化和好氧反硝化[33-34].此外是一種多功能氮代謝細菌,常發(fā)現(xiàn)于自養(yǎng)反硝化與異養(yǎng)反硝化反應器中[35],是一種自養(yǎng)反硝化細菌[36]1mg/L的PFOA與PFOS使不動桿菌屬、的相對豐度增加1.73%與0.06%、0.65%與0.98%,而、分別增加0.55%與0.22%、0.65%和0.33%,這表明添加PFCs會促進反硝化細菌的相對豐度.相較于與等厭氧氨氧化細菌,具有更高的生長速度與亞硝酸鹽半飽合常數(shù).1mg/L PFOA、1mg/L PFOS的存在使的相對豐度降低1.08%、0.28%.總體而言,PFCs的存在能夠刺激反硝化細菌而抑制厭氧氨氧化菌生長.可能是PFCs能被反硝化菌作為碳源而被生物利用,而厭氧氨氧化細菌由于生長速度慢且對環(huán)境因素更敏感,具有生物毒性的PFCs添加至厭氧氨氧化體系中會使其被PFCs所抑制.
由圖8可知,KEGG通路圖顯示對照組和OA1、OS1實驗組中主要有4個一級通路:代謝(41.43%~ 42.03%)、基因信息處理(17.48%~17.73%)、環(huán)境信息處理(12.81%~9.13.48%)和細胞過程(3.26%~ 4.02%).代謝主要以氨基酸代謝(9.56%~9.88%)、碳水化合物代謝(10.26%~10.54%)為主.相對于對照組,OA1實驗組的氨基酸代謝、碳水化合物代謝、多糖生物合成的豐度分別增強0.015%、0.073%、0.067%,而能量代謝的比例減少0.27%.1mg/L PFOS的添加使得氨基酸代謝和能量代謝能力增強(0.016%和0.109%),而碳水化合物代謝、多糖生物合成和代謝的能力略微降低.氨基酸代謝和碳水化合物代謝是污泥中的主要代謝路徑,這與污泥去除氮素與有機污染物有直接關系[37-38].PFCs的添加使OA1、OS1實驗組anammox污泥的氨基酸代謝能力得到增加,但污泥中的血紅素c含量與浮霉菌門豐度出現(xiàn)了降低,從而解釋了添加有PFCs的OA1、OS1實驗組對氨氮、亞硝酸鹽氮去除效果和CT對照組無明顯差異的現(xiàn)象.
圖8 PFOA與PFOS對KEGG代謝途徑的影響
3.1 PFOA與PFOS的濃度為0.5與1mg/L時,對anammox污泥去除氨氮、亞硝酸鹽氮的效率并無明顯抑制;由于PFOS更高的疏水性,anammox污泥對PFOS的去除率高于PFOA,其中污泥的吸附作用占有較大比例.
3.2 PFOA和PFOS的添加會降低污泥C-C、C- O-C等官能團的比例,而會增加C=O的比例;PFOA和PFOS會降低LB-EPS、TB-EPS中色氨酸峰的強度;同時PFOA、PFOS脅迫下使污泥中血紅素c的濃度出現(xiàn)降低,PFOA的抑制作用更為明顯.
3.3 PFOA與PFOS脅迫下,厭氧氨氧化菌相對豐度降低,特別是PFOA影響下,的相對豐度降低了1.08%,但PFOA與PFOS的存在促進反硝化細菌相對豐度及氨基酸代謝能力.
[1] Gong X, Yang C X, Hong Y J, et al. PFOA and PFOS promote diabetic renal injury in vitro by impairing the metabolisms of amino acids and purines [J]. Science of the Total Environment, 2019,676:72-86.
[2] Yang G J, Zhang N, Yang J N, et al. Interaction between perfluorooctanoic acid and aerobic granular sludge [J]. Water Research, 2020,169:115249.
[3] 張春暉,劉 育,唐佳偉,等.典型工業(yè)廢水中全氟化合物處理技術研究進展 [J]. 中國環(huán)境科學, 2021,41(3):1109-1118.
Zhang C H, Liu Yu, Tang J W, et al. Progress of research on treatment technology of perfluorinated compounds in typical industrial wastewater [J].China Environmental Science, 2021,41(3):1109-1118.
[4] Chiavola A, Di Marcantonio C, Boni M R, et al. Experimental investigation on the perfluorooctanoic and perfluorooctane sulfonic acids fate and behaviour in the activated sludge reactor [J]. Process Safety and Environmental Protection, 2020,134:406-415.
[5] Yu X, Nishimura F, Hidaka T. Impact of long-term perfluorooctanoic acid (PFOA) exposure on activated sludge process [J]. Water Air & Soil Pollution, 2018,229:134-145.
[6] Chen R, Takemura Y, Liu Y, et al. Using partial nitrification and anammox to remove nitrogen from low-strength wastewater by co-immobilizing biofilm inside a moving bed bioreactor [J]. ACS Sustainable Chemistry & Engineering, 2019,7:1353-1361.
[7] Zhang Z Z, Hu H Y, Xu J J, et al. Susceptibility, resistance and resilience of anammox biomass to nanoscale copper stress [J]. Bioresource Technology, 2017,241:35-43.
[8] Du L F, Cheng S J, Hou Y Q, et al. Influence of sulfadimethoxine (SDM) and sulfamethazine (SM) on anammox bioreactors: Performance evaluation and bacterial community characterization [J]. Bioresource Technology, 2018,267:84-92.
[9] Tang L Q, Su C Y, Chen Y, et al. Influence of biodegradable polybutylene succinate and non-biodegradable polyvinyl chloride microplastics on anammox sludge: Performance evaluation, suppression effect and metagenomic analysis [J]. Journal of Hazardous Materials, 2021,401:123337.
[10] Ji J, Peng L, Redina M M, et al. Perfluorooctane sulfonate decreases the performance of a sequencing batch reactor system and changes the sludge microbial community [J]. Chemosphere, 2021,279:130596.
[11] Zhao L J, Su C Y, Liu W H, et al. Exposure to polyamide 66microplastic leads to effects performance and microbial community structure of aerobic granular sludge [J]. Ecotoxicology and Environmental Safety, 2020,190:110070.
[12] Ma H Y, Zhang Y L, Xue Y, et al. Relationship of heme c, nitrogen loading capacity and temperature in anammox reactor [J]. Science of the Total Environment, 2019,659:568-577.
[13] Deng Q J, Su C Y, Lu X Y, et al. Performance and functional microbial communities of denitrification process of a novel MFC-granular sludge coupling system [J]. Bioresource Technology, 2020,306: 123173.
[14] Qin R H, Su C Y, Liu W H, et al. Effects of exposure to polyether sulfone microplastic on the nitrifying process and microbial community structure in aerobic granular sludge [J]. Bioresource Technology, 2020,302:122827.
[15] 趙立君,劉云根,王 妍,等.砷污染湖濱濕地底泥微生物群落結(jié)構(gòu)及多樣性 [J]. 中國環(huán)境科學, 2019,39(9):3933-3940.
Zhao L J, Liu Y G, Wang Y et al. Microbial community structure and diversity of arsenic-contaminated lakeshore wetland sediments [J].China Environmental Science, 2019,39(9):3933-3940.
[16] Ucar D, Yilmaz T, Di Capua F, et al. Comparison of biogenic and chemical sulfur as electron donors for autotrophic denitrification in sulfur-fed membrane bioreactor (SMBR) [J]. Bioresource Technology, 2020,299:122574.
[17] Strous M, Heijnen S, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms [J]. Applied Microbiology and Biotechnology, 1998,50:589-596.
[18] Zhou Q, Deng S B, Zhang Q Y, et al. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated sludge [J]. Chemosphere, 2010,81:453-458.
[19] Arvaniti O S, Andersen H R, Thomaidis N S, et al. Sorption of perfluorinated compounds onto different types of sewage sludge and assessment of its importance during wastewater treatment [J]. Chemosphere, 2014,111:405-411.
[20] Zhang K l, Huang J, Yu G, et al. Destruction of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) by ball milling [J]. Environmental Science & Technology, 2013,47:6471-6477.
[21] Briggs D. Handbook of x-ray and ultraviolet photoelectron spectroscopy [M]. Cheshire, England: ICI Ltd Corporate Laboratory Runcom, 1997:387-391.
[22] Wagner C D. Studies of the charging of insulators in ESCA [J]. Journal of Electron Spectroscopy and Related Phenomena, 1980,18:345-349.
[23] Zhang B A Q, Zhao Z W, Chen N, et al. Insight into efficient phosphorus removal/recovery from enhanced methane production of waste activated sludge with chitosan-Fe supplementation [J]. Water Research, 2020,187:116427.
[24] Jiang X Y, Cheng Y F, Zhu W Q, et al. Effect of chromium on granule-based anammox processes [J]. Bioresource Technology, 2018,260:1-8.
[25] Wang W G, Yan Y, Zhao Y H, et al. Characterization of stratified EPS and their role in the initial adhesion of anammox consortia [J]. Water Research, 2020,169:115223.
[26] Ding A, Wang J L, Lin D C, et al. In situ coagulation versus pre- coagulation for gravity-driven membrane bioreactor during decentralized sewage treatment: Permeability stabilization, fouling layer formation and biological activity [J]. Water Research, 2017,126: 197-207.
[27] Deng Q J, Su C Y, Lu X Y, et al. Performance and functional microbial communities of denitrification process of a novel MFC-granular sludge coupling system [J]. Bioresource Technology, 2020,306: 123173.
[28] Xiao K, Abbt-Braun G, Horn H, et al. Changes in the characteristics of dissolved organic matter during sludge treatment: A critical review [J]. Water Research, 2020,187:116441.
[29] Kang D, Li Y Y, Xu D D, et al. Deciphering correlation between chromaticity and activity of anammox sludge [J]. Water Research, 2020,185:116184.
[30] Shi Z J, Hu H Y, Shen Y Y, et al. Long-term effects of oxytetracycline (OTC) on the granule-based anammox: Process performance and occurrence of antibiotic resistance genes [J]. Biochemical Engineering Journal, 2017,127:110-118.
[31] Cai Y P, Chen H L, Yuan R F, et al. Metagenomic analysis of soil microbial community under PFOA and PFOS stress [J]. Environmental Research, 2020,188:109838.
[32] 張志強,關 笑,呂 鋒,等.懸浮填料對厭氧氨氧化MBR運行的影響特性及機理[J]. 中國環(huán)境科學, 2018,38(3):929-934.
Zhang Z Q, Guang X, Lv F, et al. Influencing characteristics and mechanisms of suspended carriers on anammox MBR performance [J].China Environmental Science, 2018,38(3):929-934.
[33] 王秀杰,王維奇,李 軍,等.異養(yǎng)硝化菌Acinetobacter sp.的分離鑒定及其脫氮特性[J]. 中國環(huán)境科學, 2017,37(11):4241-4250.
Wang X J, Wang W Q, Li J, et al. Isolation and identification of a heterotrophic nitrifier,sp., and its characteristics of nitrogen removal [J].China Environmental Science, 2017,37(11): 4241-4250.
[34] Qiao Z X, Sun R, Wu Y G, et al. Characteristics and metabolic pathway of the bacteria for heterotrophic nitrification and aerobic denitrification in aquatic ecosystems [J]. Environmental Research, 2020,191:110069.
[35] Zhang S C, Zhang Z J, Xia S B, et al. The potential contributions to organic carbon utilization in a stable acetate-fed Anammox process under low nitrogen-loading rates [J]. Science of the Total Environment, 2021,784:147150.
[36] Ma Y H, Zheng X Y, He S B, et al. Nitrification, denitrification and anammox process coupled to iron redox in wetlands for domestic wastewater treatment [J]. Journal of Cleaner Production, 2021,300: 126953.
[37] Kong Z J, Wang X Q, Wang M M, et al. Bacterial ecosystem functioning in organic matter biodegradation of different composting at the thermophilic phase [J]. Bioresource Technology, 2020,317: 123990.
[38] Gao Y Y, Li J, Dong H Y, et al. Nitrogen removal mechanism of marine anammox bacteria treating nitrogen-laden saline wastewater in response to ultraviolet (UV) irradiation: High UV tolerance and microbial community shift [J]. Bioresource Technology, 2021,320: 124325.
Evaluation of sludge characteristics and microbial community of anammox sludge during exposure to perfluorooctane acid and perfluorooctane sulfonate.
TANG Lin-qin1,2, SU Cheng-yuan1,2*, HUANG Xian2, LI Ru-ting2, WANG An-liu2, FAN Cui-ping2, XIAN Yun-chuan2
(1.Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin 541004, China;2.School of Environment and Resources, Guangxi Normal University, Guilin 541004, China)., 2022,42(1):194~202
The sequential batch experiments explored the influence mechanism under different concentrations (0.5mg/L and 1mg/L) and types of perfluorinated compounds (PFCs) on the denitrification performance and microbial community of anaerobic ammonia oxidation (anammox) sludge. Results indicated that perfluorooctanoic acid (PFOA) (at 0.5mg/L, 1mg/L) and perfluorooctane sulfonate (PFOS) had no obvious inhibitory effect on the denitrification performance of the anammox sludge. The addition of 1mg/L PFOA (OA1) and PFOS (OS1) to the anammox sludge for one day resulted in removal rates of respectively 47.68% and 92.7%. X-ray photoelectron spectroscopy (XPS) analysis of the sludge showed the presence of C-F, MgF2, CaF2functional groups in the OA1 and OS1 groups. The addition of PFOA and PFOS reduced the concentration of heme c in the anammox sludge by respectively 21.05% and 7.5%. The high-throughput sequencing analysis of the anammox sludge in different experimental groups showed that the addition of 1mg/L PFOA and PFOS could reduce the relative abundance of anammox bacteria and promote the relative abundance of denitrifying bacteria. The relative abundance ofin the OA1 and OS1 groups decreased by respectively 1.08% and 0.28%, while the relative abundance ofincreased by 1.73% and 0.06%. In general, the negative effects of PFOA on the anammox sludge were more significant than PFOS.
perfluorooctanoic acid;perfluorooctane sulfonate;anammox;sludge characteristics;microbial communities
X703.1
A
1000-6923(2022)01-0194-09
唐琳欽(1997-),男,廣西桂林人,廣西師范大學碩士研究生,研究方向為水處理技術.
2021-06-01
國家自然科學基金資助項目(52060003);廣西師范大學科研育人項目(2020YR009)
* 責任作者, 教授, suchengyuan2008@126.com