蔣艷方 陳基旺 崔璨 王曉玉 陳平平 周文新 易鎮(zhèn)邪
雜交稻頭季與再生季鎘積累分配特性差異研究
蔣艷方#陳基旺#崔璨 王曉玉 陳平平 周文新*易鎮(zhèn)邪*
(湖南農(nóng)業(yè)大學(xué) 農(nóng)學(xué)院/南方糧油作物協(xié)同創(chuàng)新中心, 長(zhǎng)沙 410128;共同第一作者;*通信聯(lián)系人, E-mail: zwxok@hunan.net, yizhenxie@126.com)
【】探究雜交稻頭季與再生季鎘積累分配特性差異,為再生稻安全生產(chǎn)提供科學(xué)依據(jù)。以Y兩優(yōu)9918和甬優(yōu)4149為材料,采用隨機(jī)區(qū)組設(shè)計(jì)開展大田試驗(yàn),比較頭季與再生季產(chǎn)量與鎘積累分配特性。1)甬優(yōu)4149再生季產(chǎn)量顯著低于頭季,而Y兩優(yōu)9918表現(xiàn)相反;兩品種再生季有效穗數(shù)、結(jié)實(shí)率顯著高于頭季,而千粒重顯著低于頭季;2)兩品種頭季成熟期根、莖、葉、穗鎘含量均顯著低于再生季,再生季糙米鎘含量為0.13~0.17 mg/kg,顯著高于頭季;3)再生季各器官鎘含量、鎘積累量、日均鎘積累速率、鎘轉(zhuǎn)移系數(shù)與富集系數(shù)均大于頭季,Y兩優(yōu)9918與甬優(yōu)4149再生季鎘總積累量分別是頭季的4.28和2.67倍,再生季糙米鎘含量分別是頭季的1.63和1.42倍;4)頭季穗部鎘主要來自灌漿中期-成熟期,而再生季主要來自齊穗前,鎘積累最快階段存在品種間差異;5)兩品種稻樁鎘積累量在再生季全生育期內(nèi)表現(xiàn)累積趨勢(shì),但各生育階段的表現(xiàn)存在品種間差異,Y兩優(yōu)9918以灌漿中期為界先降后升,甬優(yōu)4149表現(xiàn)先降后升再降趨勢(shì)。6)本研究條件下,Y兩優(yōu)9918頭季產(chǎn)量低于甬優(yōu)4149,但再生季產(chǎn)量表現(xiàn)相反,兩品種全年產(chǎn)量差異不大;甬優(yōu)4149器官鎘含量、積累量、日均積累速率及富集系數(shù)一般高于Y兩優(yōu)9918。再生季鎘超標(biāo)風(fēng)險(xiǎn)大于頭季,在鎘污染稻作區(qū)應(yīng)慎重發(fā)展再生稻,同時(shí)再生季降鎘措施的應(yīng)用應(yīng)以齊穗前為重點(diǎn)。
再生稻;頭季;再生季;鎘積累分配
我國再生稻栽培歷史悠久,早在漢末便有記載,但長(zhǎng)久以來人們大多抱著“有就收無就丟”的態(tài)度只是將再生稻栽培作為水稻生產(chǎn)的一種輔助手段。近年來,水稻生產(chǎn)成本不斷提高,效益持續(xù)走低,且農(nóng)村勞動(dòng)力大量流失,農(nóng)民生產(chǎn)水稻積極性降低,南方雙季稻地區(qū)的“雙改單”現(xiàn)象普遍,造成了土地與溫光資源的極大浪費(fèi),嚴(yán)重影響我國糧食安全。出于對(duì)再生稻生產(chǎn)成本低、勞動(dòng)強(qiáng)度小、稻米品質(zhì)較優(yōu)的考慮,人們又開始重視起了再生稻,再生稻種植面積近幾年呈現(xiàn)出了較快增長(zhǎng)勢(shì)頭,湖南、湖北、福建等省表現(xiàn)較為明顯,目前湖南省再生稻種植面積已達(dá)26.7萬hm2。
隨著工業(yè)化的發(fā)展以及金屬采冶,稻田土壤重金屬污染日趨嚴(yán)重,其中以鎘污染最為嚴(yán)重[1]。水稻是最易積累鎘的大宗作物之一[2],鎘經(jīng)過食物鏈進(jìn)入人體,超過人體耐受值后會(huì)嚴(yán)重危及腎臟[3]以及骨骼[4]。自湖南鎘污染事件爆發(fā)以來,鎘污染問題已成為全國乃至世界關(guān)注的焦點(diǎn)。近年來,人們對(duì)水稻鎘積累分配規(guī)律[5-8]以及各項(xiàng)降鎘措施[9-12]都進(jìn)行了較為深入的研究。
再生稻在我國已有較為堅(jiān)實(shí)的理論與技術(shù)研究基礎(chǔ),但多集中在再生稻高產(chǎn)高效栽培生理及技術(shù)[13-15]以及源庫關(guān)系[16]等方面。關(guān)于水稻頭季與再生季的差異,前人從源庫特性[17]、米質(zhì)[18-19]等方面開展了比較研究;任天舉等[20]、唐祖蔭等[21]通過同位素示蹤試驗(yàn)發(fā)現(xiàn)再生季氮磷吸收及分配率均大于頭季。目前,有關(guān)再生稻鎘積累分配規(guī)律的研究較少,有關(guān)頭季稻與再生稻鎘積累分配規(guī)律的差異更是罕見報(bào)道。我們對(duì)再生稻鎘積累轉(zhuǎn)運(yùn)特性及其與頭季稻的差異進(jìn)行了初步研究,并報(bào)道了有關(guān)不同節(jié)位再生稻鎘積累分配及其與頭季稻差異的部分結(jié)果[22]。為進(jìn)一步探討頭季稻與再生稻鎘積累分配規(guī)律的差異,本研究以兩個(gè)雜交稻組合(雜交秈稻Y兩優(yōu)9918、雜交粳稻甬優(yōu)4149)為材料開展了大田試驗(yàn),旨在明確頭季稻與再生稻鎘積累分配特性差異,以期為再生稻稻米安全生產(chǎn)提供科學(xué)依據(jù)。
大田試驗(yàn)于2019年3月-10月在湖南省衡陽縣西渡鎮(zhèn)梅花村進(jìn)行。試驗(yàn)田土壤pH 6.42,有機(jī)質(zhì)24.90 g/kg,全氮1.43 g/kg,全磷0.65 g/kg,全鉀9.34 g/kg,堿解氮157.85 mg/kg,有效磷32.47 mg/kg,速效鉀150.00 mg/kg,全Cd和有效鎘分別為0.46和0.16 mg/kg。室內(nèi)考種與化學(xué)指標(biāo)測(cè)定在湖南農(nóng)業(yè)大學(xué)作物生理與分子生物學(xué)教育部重點(diǎn)實(shí)驗(yàn)室進(jìn)行。
以兩個(gè)雜交稻組合供試:雜交秈稻Y兩優(yōu)9918,頭季生育期130 d左右;雜交粳稻甬優(yōu)4149,頭季生育期133 d左右。兩個(gè)品種于3月18日播種,4月20日移栽。采用隨機(jī)區(qū)組試驗(yàn)設(shè)計(jì),3次重復(fù),小區(qū)面積20 m2,插秧株行距為16.7 cm×20 cm。水分管理采用間歇灌溉方式。施肥按照當(dāng)?shù)亓?xí)慣進(jìn)行:頭季基肥(復(fù)混肥料,N、P2O5、K2O比例為22∶8∶12) 600 kg/hm2,返青后追肥尿素(含氮46.4%) 150 kg/hm2。在頭季收獲前7~10 d追施尿素150 kg/hm2作再生稻促芽肥,頭季收獲后第2天施尿素150 g/hm2與氯化鉀(K2O含量60.0%) 100 kg/hm2作再生稻壯苗肥。其他管理同一般大田。
1.3.1 實(shí)際產(chǎn)量
成熟期每小區(qū)收割80穴水稻,脫粒后去除稻草及空粒,稱量谷重,用烘干法測(cè)含水率,折算成含水率13.5%的產(chǎn)量。
1.3.2 產(chǎn)量構(gòu)成因素
成熟期每小區(qū)數(shù)80穴水稻,記錄有效穗數(shù),計(jì)算單穴平均有效穗數(shù),再根據(jù)單穴平均有效穗數(shù)每小區(qū)取樣5穴,帶回室內(nèi)考種,考查每穗總粒數(shù)、每穗實(shí)粒數(shù)、結(jié)實(shí)率、千粒重,并計(jì)算理論產(chǎn)量。
1.3.3 干物質(zhì)積累
于頭季分蘗盛期、孕穗期、齊穗期、灌漿中期(齊穗后15 d)、成熟期及再生季齊穗期、灌漿中期、成熟期取水稻植株樣,每小區(qū)根據(jù)單穴平均莖蘗數(shù)(有效穗數(shù))取樣3穴。將取回的各時(shí)期植株洗凈,然后用0.1 mol/L鹽酸浸泡根系15 min,用自來水沖洗3遍,再用去離子水沖洗3遍,吸干表面水分。頭季植株分為根、莖、葉、穗等4部分,再生季植株分為根、稻樁、莖、葉、穗等5部分,成熟期穗分為枝梗、空粒、糙米和穎殼等4部分。頭季成熟收割后每小區(qū)取3個(gè)稻樁,分袋裝好置于烘箱中105℃下殺青30 min,然后80℃下烘至恒重,稱重記錄。同時(shí),每品種收稻谷1 kg,曬干,儲(chǔ)藏3個(gè)月后,碾米,分成谷殼、糙米兩部分。以上樣品烘干粉碎后過100目篩,裝于自封袋中,用于鎘含量測(cè)定。
1.3.4 各器官鎘含量與鎘積累、分配
以上植株材料采用硝酸-高氯酸高溫消解方法(GB/T5009, 15),使用原子吸收分光光度計(jì)檢測(cè)鎘含量。計(jì)算鎘積累量、日均鎘積累速率、轉(zhuǎn)移系數(shù)、富集系數(shù)和分配系數(shù)。鎘積累量(mg/hm2)=器官鎘含量×干物質(zhì)量;日均鎘積累速率[mg/(hm2?d)]=鎘積累量/生育階段天數(shù);鎘轉(zhuǎn)移系數(shù)=地上部器官鎘含量/根鎘含量;鎘富集系數(shù)=各器官鎘含量/土壤鎘含量;鎘分配系數(shù)(%)=地上部各器官鎘積累量/地上部總積累量×100%。
表1 頭季與再生季的地上部干物質(zhì)量
同一列中,數(shù)據(jù)跟相同小寫字母表示同一器官不同季別間差異未達(dá)0.05顯著水平。
Within a column, figures followed by common lowercase letters are not significantly different at 0.05 level. MC, Main crop; RC, Ratooning crop. The same below.
表2 頭季與再生季的產(chǎn)量及其構(gòu)成
同一品種同一列中,數(shù)據(jù)后跟相同小寫字母者表示不同季別間差異未達(dá)0.05顯著水平。下同。
Within a column, figures followed by common lowercase letters are not significantly different at 0.05 level. The same below.
所有的試驗(yàn)數(shù)據(jù)均采用Excel 2013進(jìn)行數(shù)據(jù)初步整理,采用SPSS 22.0及DPS 7.05進(jìn)行方差分析,采用檢驗(yàn)方法統(tǒng)計(jì)處理間差異顯著性。
由表1可知,兩品種頭季與再生季的齊穗期莖干物量無顯著差異。甬優(yōu)4149在頭季灌漿中期的莖干物質(zhì)量顯著低于再生季,但在成熟期的莖干物質(zhì)量顯著高于再生季,而Y兩優(yōu)9918表現(xiàn)相反;兩品種葉片干物質(zhì)量均表現(xiàn)為頭季顯著大于再生季;兩品種在齊穗期與灌漿中期的穗干物質(zhì)量均表現(xiàn)為再生季顯著大于頭季,而成熟期的穗干物質(zhì)量甬優(yōu)4149表現(xiàn)為頭季顯著大于再生季,Y兩優(yōu)9918表現(xiàn)相反。
由表2可知,Y兩優(yōu)9918再生季產(chǎn)量顯著高于頭季,其千粒重頭季顯著高于再生季,其他各產(chǎn)量構(gòu)成因素均表現(xiàn)為頭季顯著低于再生季;甬優(yōu)4149再生季的有效穗數(shù)和結(jié)實(shí)率顯著高于頭季,每穗實(shí)粒數(shù)和千粒重均以頭季較大,且頭季產(chǎn)量顯著高于再生季。綜合兩組合來看,再生季有效穗數(shù)、結(jié)實(shí)率顯著高于頭季,而千粒重顯著低于頭季。從品種間差異來看,Y兩優(yōu)9918頭季產(chǎn)量明顯低于甬優(yōu)4149,但再生季產(chǎn)量明顯高于甬優(yōu)4149,兩品種全年產(chǎn)量差異不大,頭季長(zhǎng)勢(shì)不佳時(shí)可加強(qiáng)再生季的田間管理以挽回?fù)p失。
由表3可知,甬優(yōu)4149與Y兩優(yōu)9918頭季各時(shí)期根、莖、穗鎘含量均顯著低于再生季,葉片表現(xiàn)稍有差異,甬優(yōu)4149齊穗期與灌漿中期葉片鎘含量以頭季顯著較高,而成熟期表現(xiàn)相反,Y兩優(yōu)9918齊穗期頭季與再生季葉片鎘含量無顯著差異,但灌漿中期與成熟期以再生季顯著較高。甬優(yōu)4149頭季與再生季各器官鎘含量表現(xiàn)為根>莖>葉>穗,Y兩優(yōu)9918再生季與之表現(xiàn)一致,但頭季表現(xiàn)為根>莖>穗>葉。除再生季齊穗期根與成熟期葉鎘含量以Y兩優(yōu)9918較高以外,各時(shí)期各器官鎘含量均以甬優(yōu)4149較高。
表3 頭季與再生季各器官的鎘含量
表4 頭季與再生季成熟期穗各部位的鎘含量
比較了兩品種頭季與再生季成熟期稻穗各部分的鎘含量(表4),發(fā)現(xiàn)兩品種成熟期穗各部位鎘含量均以頭季顯著較低,且再生季稻穗各部位鎘含量表現(xiàn)為枝梗>空粒>穎殼>糙米的趨勢(shì);除頭季穎殼外,Y兩優(yōu)9918頭季與再生季成熟期稻穗各部位鎘含量均低于甬優(yōu)4149。
2.3.1 鎘積累量
由表5可知,Y兩優(yōu)9918除齊穗前葉片的鎘積累量與灌漿中期-成熟期穗鎘積累量表現(xiàn)為頭季顯著大于再生季外,其余均以再生季顯著大于頭季;甬優(yōu)4149齊穗前及齊穗-灌漿中期,除葉片鎘積累量表現(xiàn)頭季顯著大于再生季外,其余均表現(xiàn)為再生季顯著大于頭季,但成熟期表現(xiàn)相反。Y兩優(yōu)9918、甬優(yōu)4149再生季全生育期總鎘積累顯著大于頭季,再生季總鎘積累量分別是頭季的4.28和2.67倍;頭季與再生季各器官鎘積累量均表現(xiàn)為莖>穗>葉的趨勢(shì)。分析穗部的鎘積累規(guī)律,發(fā)現(xiàn)兩品種頭季穗部的鎘積累主要發(fā)生在灌漿中期-成熟期,但再生季穗鎘積累主要發(fā)生在齊穗前。
兩品種稻樁鎘積累量在整個(gè)生育期內(nèi)表現(xiàn)增長(zhǎng)趨勢(shì),但在各生育階段的表現(xiàn)存在品種間差異。Y兩優(yōu)9918在灌漿中期以前稻樁鎘積累量呈下降趨勢(shì),即稻樁鎘會(huì)向外轉(zhuǎn)運(yùn),但灌漿中期之后又有積累;甬優(yōu)4149再生季稻樁鎘積累量在齊穗前和灌漿中期之后呈下降趨勢(shì),而齊穗-灌漿中期呈增長(zhǎng)趨勢(shì)。
2.3.2 日均鎘積累速率
由表6可知,Y兩優(yōu)9918除灌漿中期-成熟穗日鎘積累速率表現(xiàn)頭季顯著大于再生季外,其余階段均表現(xiàn)為再生季顯著大于頭季;甬優(yōu)4149除齊穗-灌漿中期葉片的日均鎘積累速率在頭季與再生季間無顯著差異外,其頭季在齊穗前及齊穗-灌漿的日均鎘積累速率均顯著小于再生季,而灌漿中期-成熟期葉片日均鎘積累速率以再生季顯著較大,其余器官均表現(xiàn)為頭季顯著大于再生季。兩品種再生季全株鎘積累速率明顯大于頭季,兩品種頭季全株與穗鎘積累最快時(shí)期為灌漿中期-成熟期,但再生季有品種間差異,Y兩優(yōu)9918齊穗前鎘積累最快,而甬優(yōu)4149齊穗-灌漿中期鎘積累最快,但與齊穗前鎘積累速率差距不大;同時(shí),Y兩優(yōu)9918頭季全生育期鎘積累速率明顯低于甬優(yōu)4149。
2.3.3 鎘轉(zhuǎn)移系數(shù)
由表7可知,甬優(yōu)4149莖、穗鎘轉(zhuǎn)移系數(shù)均表現(xiàn)為頭季顯著低于再生季,但葉片表現(xiàn)相反;Y兩優(yōu)9918頭季莖鎘轉(zhuǎn)移系數(shù)均顯著低于再生季,但齊穗期與灌漿中期葉鎘轉(zhuǎn)移系數(shù)頭季顯著高于再生季,成熟期卻表現(xiàn)為再生季顯著高于頭季,頭季與再生季齊穗期穗鎘轉(zhuǎn)移系數(shù)無顯著差異,但灌漿中期與成熟期表現(xiàn)相反,灌漿中期以再生季較高,成熟期以頭季較高,且差異顯著,兩品種頭季與再生季各器官鎘轉(zhuǎn)移系數(shù)差異不顯著。
表5 頭季與再生季各生育階段的鎘積累量
表6 頭季與再生季各生育階段的日均鎘積累速率
表7 頭季和再生季的鎘轉(zhuǎn)移系數(shù)
由表8可知,Y兩優(yōu)9918與甬優(yōu)4149空粒與枝梗鎘轉(zhuǎn)移系數(shù)表現(xiàn)為再生季顯著高于頭季,但Y兩優(yōu)9918糙米與穎殼鎘轉(zhuǎn)移系數(shù)頭季顯著高于再生季,而甬優(yōu)4149的糙米和穎殼鎘轉(zhuǎn)移系數(shù)在頭季與再生季間無顯著差異。
2.3.4 鎘富集系數(shù)與分配系數(shù)
由表9可知,Y兩優(yōu)9918頭季各器官鎘富集系數(shù)均顯著低于再生季;甬優(yōu)4149頭季和再生季各器官的鎘富集系數(shù)均表現(xiàn)為根>莖>葉>穗,Y兩優(yōu)9918再生季與之表現(xiàn)一致,但頭季表現(xiàn)為根>莖>穗>葉;兩品種再生季穗各部位富集系數(shù)表現(xiàn)為枝梗>空粒>穎殼>糙米,但兩品種頭季表現(xiàn)不同,Y兩優(yōu)9918表現(xiàn)為穎殼>枝梗>糙米>空粒,甬優(yōu)4149則表現(xiàn)為空粒>枝梗>穎殼>糙米。除頭季的穎殼和再生季的葉、穎殼外,Y兩優(yōu)9918其余器官的鎘富集系數(shù)均明顯低于甬優(yōu)4149。
表8 頭季與再生季成熟期穗各部位鎘轉(zhuǎn)移系數(shù)
表9 頭季與再生季成熟期鎘富集系數(shù)
表10 頭季與再生季各器官鎘分配系數(shù)
由表10可知,兩組合葉與穗的鎘分配系數(shù)均以頭季顯著大于再生季,但Y兩優(yōu)9918頭季的莖分配系數(shù)顯著小于再生季,而甬優(yōu)4149的莖中鎘分配系數(shù)在頭季與再生季間無顯著差異。兩品種頭季各器官鎘分配系數(shù)表現(xiàn)為莖>穗>葉,Y兩優(yōu)9918再生季表現(xiàn)為莖>穗>稻樁>葉,而甬優(yōu)4149再生季表現(xiàn)為莖>稻樁>穗>葉。兩組合頭季與再生季各器官鎘分配系數(shù)差異表現(xiàn)不明顯。
本研究以頭季稻與再生稻鎘積累分配規(guī)律的差異為核心目標(biāo)開展研究,發(fā)現(xiàn)再生稻頭季成熟期根、莖、葉、穗等器官鎘含量、鎘積累量、日均鎘積累速率、轉(zhuǎn)移系數(shù)及富集系數(shù)一般均小于再生季,葉與穗的鎘分配系數(shù)以頭季大于再生季,Y兩優(yōu)9918與甬優(yōu)4149再生季總鎘積累量分別是頭季的4.28和2.67倍,再生季糙米鎘含量為0.13和0.17 mg/kg,分別是頭季的1.63和1.42倍,差異顯著。任天舉等[20]研究表明頭季對(duì)15N的吸收率低于再生季。唐祖蔭等[21]發(fā)現(xiàn)再生季有60%~70%32P分配到穗中,而頭季僅25%,可見再生稻對(duì)鎘的吸收與轉(zhuǎn)運(yùn)與氮元素相似,但分配表現(xiàn)與磷元素存在差異。頭季對(duì)鎘的吸收與積累小于再生季,可能是溫光條件不同所致,Ge等[23]認(rèn)為升溫增加了細(xì)根(直徑≤0.5 mm)數(shù)量,擴(kuò)大根系表面活性位點(diǎn),促進(jìn)了根系對(duì)Cd的吸收,同時(shí),升溫增加了葉片的蒸騰作用,促進(jìn)了木質(zhì)部從營(yíng)養(yǎng)液向上部器官的流動(dòng),從而促進(jìn)了Cd的轉(zhuǎn)運(yùn)。羅玲等[24]研究發(fā)現(xiàn)不同溫度處理下,糙米鎘含量隨溫度升高而上升。倪中應(yīng)等[25]認(rèn)為水稻分蘗期到灌漿期是水稻鎘積累最主要的時(shí)期,而灌漿到成熟是控制鎘轉(zhuǎn)運(yùn)至籽粒的關(guān)鍵時(shí)期。本研究結(jié)果表明,灌漿中期-成熟期是頭季穗鎘積累最主要的時(shí)期,與倪中應(yīng)等[25]結(jié)果一致,但再生季穗鎘積累主要在齊穗前,與頭季存在差異,再生稻頭季生育前期所處溫度較低,對(duì)鎘的吸收與轉(zhuǎn)運(yùn)效率較低,而灌漿中期-成熟期溫度高,鎘積累量與鎘積累速率均較高,再生季生育前期溫度高,鎘積累量大,積累速率較高,為后期鎘的轉(zhuǎn)運(yùn)打下基礎(chǔ)??梢?,再生季鎘超標(biāo)風(fēng)險(xiǎn)大于頭季,在鎘污染稻作區(qū)應(yīng)慎重發(fā)展再生稻,同時(shí),再生季降鎘措施的應(yīng)用應(yīng)以齊穗前為重點(diǎn)。
稻樁是頭季稻留下的老樁,是再生稻產(chǎn)量形成與物質(zhì)來源的基礎(chǔ)。稻樁內(nèi)營(yíng)養(yǎng)物質(zhì)的輸出對(duì)腋芽萌發(fā)及生長(zhǎng)有決定性的影響[26]。因此,在稻樁中殘留的營(yíng)養(yǎng)物質(zhì)向再生苗快速轉(zhuǎn)移的同時(shí),其頭季積累的鎘可能會(huì)隨營(yíng)養(yǎng)物質(zhì)的轉(zhuǎn)移而進(jìn)一步轉(zhuǎn)移至再生苗中,對(duì)再生季植株鎘含量可能會(huì)造成較大影響。本研究關(guān)注了水稻稻樁鎘積累量的變化規(guī)律,發(fā)現(xiàn)兩品種的稻樁在再生季內(nèi)會(huì)繼續(xù)累積鎘;同時(shí),本研究發(fā)現(xiàn),稻樁在再生季各生育階段的表現(xiàn)存在組合間差異,Y兩優(yōu)9918灌漿中期以前稻樁鎘積累量下降,但灌漿中期后又增長(zhǎng);甬優(yōu)4149再生季稻樁鎘積累量在齊穗前與灌漿中期后增長(zhǎng),而齊穗-灌漿中期下降。為降低再生季糙米鎘含量,應(yīng)在頭季采取各種降鎘措施以降低稻樁鎘的殘留量,且在再生季收割后采取淹水[27-29]、阻控或土壤鈍化[30-32]等方式,以降低再生季生育前期鎘積累量,為降低再生季稻米鎘含量奠定基礎(chǔ)。本研究?jī)H進(jìn)行了初步研究,作為再生稻的重要組成部分,有關(guān)稻樁鎘積累變化規(guī)律還有待進(jìn)一步研究。
2019年頭季遭遇極端天氣,導(dǎo)致頭季產(chǎn)量明顯下降,甬優(yōu)4149生育期較Y兩優(yōu)9918長(zhǎng),受極端天氣影響較小,故頭季產(chǎn)量下降幅度較Y兩優(yōu)9918小。綜合兩組合來看,Y兩優(yōu)9918頭季產(chǎn)量明顯下降,但再生季對(duì)全年產(chǎn)量有彌補(bǔ)作用,由此可見,當(dāng)頭季生長(zhǎng)情況不佳時(shí),可加強(qiáng)再生季田間管理以挽回?fù)p失。再生季產(chǎn)量與產(chǎn)量構(gòu)成表現(xiàn)不弱于頭季,可能因?yàn)轭^季結(jié)實(shí)率低,水稻收割后殘茬內(nèi)儲(chǔ)存較多營(yíng)養(yǎng)物質(zhì),加之再生季溫光條件較好,使得植株生長(zhǎng)較為旺盛,且下半年溫光條件較好,低節(jié)位再生苗有充足時(shí)間成熟。徐富賢等[33]研究表明,頭季結(jié)實(shí)率低可為再生季積累豐富的物質(zhì)基礎(chǔ),與本研究結(jié)果一致。
本研究表明,甬優(yōu)4149各器官鎘含量、積累量、日均積累速率及富集系數(shù)基本表現(xiàn)為高于Y兩優(yōu)9918的趨勢(shì)。王科等[34]認(rèn)為粳稻鎘富集率比秈稻低,本研究結(jié)果與其存在差異,這可能與供試品種不同有關(guān)。因?yàn)橄嗤愋偷牟煌贩N的鎘積累分配可能存在差異,水稻籽粒中重金屬的積累與土壤性質(zhì)和品種有關(guān)[35],同時(shí)不同水稻品種的鎘積累特性存在差異[36]。
本研究?jī)H以一個(gè)雜交秈稻和一個(gè)雜交粳稻組合進(jìn)行試驗(yàn),但同一類型的不同品種可能也存在差異,且考查年份不夠,考慮到品種、土壤鎘水平及溫光條件對(duì)水稻植株鎘的吸收積累與轉(zhuǎn)運(yùn)的影響,應(yīng)對(duì)再生季鎘吸收積累與轉(zhuǎn)移規(guī)律進(jìn)行多年研究,進(jìn)一步總結(jié)其中規(guī)律,為再生稻安全穩(wěn)定發(fā)展提供科學(xué)支撐。
[1] 環(huán)境保護(hù)部, 國土資源部. 全國土壤污染狀況調(diào)查公報(bào)[J]. 中國環(huán)保產(chǎn)業(yè), 2014(5): 10-11.
Ministry of Environmental Protection, Ministry of Land and Resources. National Soil Pollution Survey Bulletin [J]., 2014(5): 10-11. (in Chinese with English abstract)
[2] Chaney R L, Reeves P G, Ryan J A, Simmons R W, Welch R M, Angle J S. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks [J]., 2004, 17(5): 549-553.
[3] Wlostowski T. Joint effects of dietary Cd and poly-chlorinated biphenyls on metallothionein induction, lipid peroxidation and histopathology in the kidneys and liver of bank voles[J]., 2008, 69: 403-410.
[4] 路子顯. 糧食重金屬污染對(duì)糧食安全、人體健康的影響[J]. 糧食科技與經(jīng)濟(jì), 2011, 36(4): 14-17.
Lu Z X. The Influence of heavy metal pollution of grain on food security and human health [J]., 2011, 36(4): 14-17. (in Chinese with English abstract)
[5] 林肖, 任艷芳, 張艷超, 王艷玲, 何俊瑜. 鎘污染對(duì)水稻分蘗期植株生長(zhǎng)及鎘積累的影響[J]. 浙江農(nóng)業(yè)科學(xué), 2017, 58(5): 743-746.
Lin X, Ren Y F, Zhang Y C, Wang Y L, He J Y. Effects of cadmium pollution on plant growth and cadmium accumulation in rice at tillering stage[J]., 2017, 58(5): 743-746. (in Chinese with English abstract)
[6] 居學(xué)海, 張長(zhǎng)波, 宋正國, 韓立娜, 陸仲煙, 王景安, 劉仲齊. 水稻籽粒發(fā)育過程中各器官鎘積累量變化及其與基因型和土壤鎘水平的關(guān)系[J]. 植物生理學(xué)報(bào), 2014, 50(5): 634-640.
Ju X H, Zhang C B, Song Z G, Han L N, Lu Z Y, Wang J A, Liu Z Q. Changes in cadmium accumulation in rice organs during grain development and their relationship with genotype and cadmium levels in soil[J]., 2014, 50(5): 634-640. (in Chinese with English abstract)
[7] 熊麗萍, 謝運(yùn)河, 黃伯軍, 紀(jì)雄輝, 劉昭兵, 柏連陽. 水稻干物質(zhì)與鎘積累的動(dòng)態(tài)效應(yīng)[J]. 湖南農(nóng)業(yè)科學(xué), 2017(7): 43-46.
Xiong L P, Xie Y H, Huang B J, Ji X H, Liu Z B, Bai L Y. Dynamic? characteristic?of?the? dry? matter? accumulation? and ?Cd? absorption ?in ?rice[J]., 2017, 12(7): 43-46. (in Chinese with English abstract)
[8] 周鴻凱, 何覺民, 陳小麗, 莫俊杰, 黎華壽. 大田生產(chǎn)條件下不同品種水稻植株中鎘的分布特點(diǎn)[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2010, 29(2): 229-234.
Zhou H K, He J M, Chen X L, Mo J J, Li H S. The Cd uptake and distribution features in plant organs of four rice cultivars[J]., 2010, 29(2): 229-234. (in Chinese with English abstract)
[9] 陳喆, 張淼, 葉長(zhǎng)城, 毛懿德, 周細(xì)紅, 雷鳴, 魏祥東, 鐵柏清. 硅肥料和水分管理對(duì)稻米鎘污染阻控效果研究[J]. 環(huán)境科學(xué)學(xué)報(bào), 2015, 35(12): 4003-4011.
Chen Z, Zhang M, Ye C C, Mao Y D, Zhou X H, Wei X D, Tie B Q. Mitigation of Cd accumulation in rice (L.) with Si fertilizers and irrigation managements [J].35(12): 4003-4011. (in Chinese with English abstract)
[10] 帥澤宇, 谷子寒, 王元元, 陳基旺, 陳平平, 易鎮(zhèn)邪. 土壤耕作方式對(duì)雙季稻產(chǎn)量構(gòu)成與穗鎘積累的影響[J]. 水土保持學(xué)報(bào), 2019, 33(3): 348-357.
Shuai Z Y, Gu Z H, Wang Y Y, Chen J W, Chen P P, Yi Z X. Effects of soil tillage method on yield components and cadmium accumulation in panicles of double-cropping rice[J]., 2019, 33(3): 348-357. (in Chinese with English abstract)
[11] 李虹呈, 王倩倩, 賈潤(rùn)語, 辜嬌峰, 周航, 楊文弢, 張平, 彭佩欽, 廖柏寒. 外源鋅對(duì)水稻各部位鎘吸收與累積的拮抗效應(yīng)[J]. 環(huán)境科學(xué)學(xué)報(bào), 2018, 38(12): 293-302.
Li H C, Wang Q Q, Jia R Y, Zhou H, Yang W T, Zhang P, Peng P Q, Liao B H. Antagonistic effects of exogenous zinc on uptake and accumulation of cadmiumin various rice organs[J]., 2018, 38(12): 293-302. (in Chinese with English abstract)
[12] 封文利, 郭朝暉, 史磊, 肖細(xì)元, 韓曉晴, 冉洪珍, 薛清華. 控源及改良措施對(duì)稻田土壤和水稻鎘累積的影響[J]. 環(huán)境科學(xué), 2018, 39(1): 399-405.
Feng W L, Guo Z H, Shi L, Han X Q, Ran H Z, Xue Q H. Distribution and accumulation of cadmium in paddy soil and rice affected by pollutant sources control and improvement measures [J]., 2018, 39(1): 399-405. (in Chinese with English abstract)
[13] 周紅英. 再生稻輕簡(jiǎn)化高產(chǎn)栽培技術(shù)及其生理機(jī)制研究[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2012.
Zhou H Y. Studies on simplified high-yielding cultivation technology and physiological mechanism of ratoon rice [D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese with English abstract)
[14] 周奧, 何可佳, 李曉剛. 湖南地區(qū)再生稻品種篩選及高產(chǎn)栽培技術(shù)研究[J]. 中國農(nóng)學(xué)通報(bào), 2016, 32(15): 1-5.
Zhou A, He K J, Liao X G. Variety screening and high yield cultivation techniques of ratoon rice in Hunan [J]., 2016, 32(15): 1-5. (in Chinese with English abstract)
[15] 楊堅(jiān), 陳愷林, 趙正洪, 劉洋, 周學(xué)其, 張玉燭. 不同種植方式對(duì)再生稻產(chǎn)量和品質(zhì)的影響[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào): 自然科學(xué)版, 2017, 43(3): 234-237.
Yang J, Chen K L, Zhao Z H, Liu Y, Zhou X Q, Zhang Y Z. Effect of different planting methods on yield and quality of ratoon crop[J]., 2017, 43(3): 234-237. (in Chinese with English abstract)
[16] 易鎮(zhèn)邪, 周文新, 屠乃美. 留樁高度對(duì)再生稻源庫性狀與物質(zhì)運(yùn)轉(zhuǎn)的影響[J]. 中國水稻科學(xué), 2009, 23(5): 509-516.
Yi Z X, Zhou W X, Tu N M. Effects of stubble height of the main crop on source-sink characteristics and assimilates transportation in ratoon crop[J]., 2009, 23(5): 509-516. (in Chinese with English abstract)
[17] 易鎮(zhèn)邪, 屠乃美, 陳平平. 雜交稻新組合再生稻頭季及再生季源庫特征分析[J]. 中國水稻科學(xué), 2005(3): 243-248.
Yi Z X, Tu N M, Chen P P. Source-sink characteristics of main crop and ratoon crop of several new hybrid rice combinations[J]., 2005(3): 243-248.(in Chinese with English abstract)
[18] 邱潔. 頭季稻與再生稻稻米品質(zhì)比較試驗(yàn)[J]. 福建稻麥科技, 2019, 37(2): 13-15.
Qiu J. Quality differences of main crop and ratoon crop rice[J]., 2019, 37(2): 13-15. (in Chinese with English abstract)
[19] 杜登科, 劉會(huì)桃. 頭季稻與再生稻的品質(zhì)比較研究[J]. 湖南農(nóng)業(yè)科學(xué), 2005(5): 17-18, 25.
Du D K, Liu H T. Comparison of rice quality between main crop and ratoon crop[J]., 2005(5): 17-18, 25. (in Chinese with English abstract)
[20] 任天舉, 李經(jīng)勇, 唐永群, 鄒亞蘭.15N示蹤研究再生稻施用氮肥的吸收分配和效應(yīng)[J]. 西南師范大學(xué)學(xué)報(bào):自然科學(xué)版, 2009, 34(3): 132-136.
Ren T J, Li J Y, Tang Y Q, Zou Y L.15N tracer study ratoon crop applied nitrogen absorption, assignment and effect[J]., 2009, 34(3): 132-136. (in Chinese with English abstract)
[21] 唐祖蔭, 李秀海. 再生稻對(duì)磷素的吸收和分配特性[J]. 湖北農(nóng)業(yè)科學(xué), 1992(7): 15-19.
Tang Z Y, Liu X H. Characteristics of phosphorus uptake and distribution in ratoon rice[J]., 1992(7): 15-19. (in Chinese with English abstract)
[22] 陳基旺, 陳平平, 王曉玉, 屠乃美, 易鎮(zhèn)邪. 不同節(jié)位再生稻鎘積累分配及其與頭季稻的差異[J]. 南方農(nóng)業(yè)學(xué)報(bào), 2020, 51(4): 790-797.
Chen J W, Chen P P, Wang X Y, Tu N M , Yi Z X. Cadmium accumulation and distribution in ratoon crop from different nodes and its differences with main crop[J]., 2020, 51(4): 790-797. (in Chinese with English abstract)
[23] Ge L Q, Cang L, Yang J, Zhou D M. Effects of root morphology and leaf transpiration on Cd uptake and translocation in rice under different growth temperature [J]., 2016(23): 24205-24214.
[24] 羅玲, 方寶華, 劉洋, 余鋒, 李強(qiáng), 張玉燭. 不同生育時(shí)期溫度處理對(duì)水稻鎘積累特性的影響[J]. 雜交水稻, 2020, 35(2): 52-59.
Luo L, Fang B H, Liu Y, Yu F, Li Q, Zhang Y Z. Effects of temperature treatment in different growth stages on cadmium accumulation characteristics in rice[J]., 2020, 35(2): 52-59. (in Chinese with English abstract)
[25] 倪中應(yīng), 章明奎, 王京文, 李丹, 石一珺. 水稻不同生育期鎘吸收與積累特征研究[J]. 農(nóng)學(xué)學(xué)報(bào), 2020, 10(3): 49-54.
Ni Z Y, Zhang M K, Wang J W, Li D, Shi Y J. Cadmium uptake and accumulation in rice at different growth stages [J]., 2020, 10(3): 49-54. (in Chinese with English abstract)
[26] 林文雄, 陳鴻飛, 張志興, 徐倩華, 屠乃美, 方長(zhǎng)旬, 任萬軍. 再生稻產(chǎn)量形成的生理生態(tài)特性與關(guān)鍵栽培技術(shù)的研究與展望[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2015, 23(4): 14-23.
Lin W X, Chen H F, Zhang Z X, Xu Q H, Tu N M, Fang C X, Ren W J. Research and prospect on physio- ecological properties of ratoon riceyield formation and its key cultivation technology[J]., 2015, 23(4): 14-23. (in Chinese with English abstract)
[27] Hu P J, Li Z, Yuan C, Ouyang Y N, Zhou L Q, Huang J X, Huang Y J, Luo Y M, Christie P, Wu L H. Effect of water management on Cd and arsenic accumulation by rice (L.) with different metal accumulation capacities[J]., 2013, 13(5): 916-924.
[28] Tian T, Zhou H, Gu J F, Jia R Y, Li H C, Wang Q Q, Zeng M, Liao B H. Cd accumulation and bioavailability in paddy soil under different water regimes for different growth stages of rice (L.) [J]., 2019(440): 327-339.
[29] 易鎮(zhèn)邪, 蘇雨婷, 谷子寒, 王元元, 屠乃美, 周文新. 不同生育階段間歇灌溉對(duì)鎘污染稻田雙季稻產(chǎn)量構(gòu)成與鎘累積的影響[J]. 水土保持學(xué)報(bào), 2019, 33(5): 364-368.
Yi Z X, Su Y T, Gu Z H, Wang Y Y, Tu N M, Zhou W X. Effects of intermittent irrigation at different growth stages on yield components and Cd accumulation of double-cropping rice in Cd-contaminated paddy field[J]., 2019, 33(5): 364-368. (in Chinese with English abstract)
[30] 李杉杉. 鎘污染土壤高效鈍化-植物阻控效果與機(jī)理研究[D]. 北京: 中國地質(zhì)大學(xué)(北京), 2019.
Li S S. Effect and mechanism of Cd immobilization in Cd-contaminated farmland [D]. Beijing: China University of Geosciences (Beijing), 2019. (in Chinese with English abstract)
[31] 龍思斯, 宋正國, 雷鳴, 喻理, 王藝康, 蔣宏芳. 不同阻控劑阻控重度Cd污染區(qū)水稻富集Cd的效果[J]. 中國稻米, 2017, 23(3): 30-34.
Long S S, Song Z G, Lei M, Yu L, Wang K Y, Jiang H F. Effects of different inhibitor on reducing cadmium content of rice[J]., 2017, 23(3): 30-34. (in Chinese with English abstract)
[32] 楊發(fā)文, 涂書新. 水稻鎘污染葉面阻控和土壤鈍化的大田效果和機(jī)制//中國土壤學(xué)會(huì)土壤環(huán)境專業(yè)委員會(huì)第二十次會(huì)議暨農(nóng)田土壤污染與修復(fù)研討會(huì)摘要集[C]. 中國土壤學(xué)會(huì)土壤環(huán)境專業(yè)委員會(huì), 2018: 173-174.
Yang F W, Tu S X. Field effects and mechanisms of cadmium pollution on rice leaves and soil passivation// Abstract set of the 20th meeting of Soil Environment Committee of Soil Society of China and Symposium on farmland soil pollution and remediation[C]. Professional Committee of Soil Environment of China Soil Society, 2018: 173-174. (in Chinese with English abstract)
[33] 徐富賢, 熊洪, 朱永川, 王貴雄. 再生稻促芽肥高效施用量與頭季稻齊穗期庫源結(jié)構(gòu)關(guān)系[J]. 西南農(nóng)業(yè)學(xué)報(bào), 2006, 19(5): 833-837.
Xu F X, Xiong H, Zhu Y C, Wang G X. Relationship between the efficient amount of nitrogen application for bud development and the source-sink structure at full heading stage of main crop[J]., 2006, 19(5): 833-837. (in Chinese with English abstract)
[34] 王科, 李浩, 張成, 鐘文挺, 楊勛. 不同類型土壤下水稻鎘的富集特征及與土壤鎘含量的關(guān)系[J]. 四川農(nóng)業(yè)科技, 2018, 374(11): 40-42.
Wang K, Li H, Zhang C, Zhong W T, Yang X. Accumulation characteristics of cadmium in rice and its relationship with soil cadmium content in different types of soils [J]., 2018, 374(11): 40-42. (in Chinese with English abstract)
[35] Li D Q, Wang L L, Wang Y H, Li H S, Chen G K. Soil properties and cultivars determine heavy metal accumulation in rice grain and cultivars respond differently to Cd stress [J]., 2019(26): 14638-14648.
[36] 薛濤, 廖曉勇, 王凌青, 張揚(yáng)珠. 鎘污染農(nóng)田不同水稻品種鎘積累差異研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2019, 38(8): 1818-1826.
Xue T, Liao X Y, Wang L Q, Zhang Y Z. Cadmium accumulation in different rice cultivars from cadmium-polluted paddy fields [J]., 2019, 38(8): 1818-1826. (in Chinese with English abstract)
Difference in Cd Accumulation and Distribution Between Main and Ratooning Crops of Hybrid Rice
JIANG Yanfang, CHEN Jiwang, CUI Can, WANG Xiaoyu, CHEN Pingping, ZHOU Wenxin*, YI Zhenxie*
(China; These authors contributed equally to this work; Corresponding author, E-mail: )
【】It is important to explore the difference of Cd accumulation and distribution between the main crop and the ratooning crop of hybrid rice to lay a scientific basis for safe production of ratooning rice. 【】Field experiments with random block design were conducted with Y Liangyou 9918 and Yongyou 4149 as materials to comparatively study the yield and Cd accumulation and distribution between main crop and ratooning crop. 【】1) The yield from ratooning rice of Yongyou 4149 was significantly lower than that from the main crop, while yield of Y Liangyou 9918 followed an opposite trend. The effective panicle number and seed setting rate from the two varieties in ratooning season were significantly higher than those of main crop, while the 1000-grain weight was significantly lower than that of main crop. 2) The Cd content in roots, stems, leaves and panicles of the two varieties in main season was significantly lower than that in the ratooning season, and Cd content of brown rice in ratooning crop ranged from 0.13 mg/kg to 0.17 mg/kg, significantly higher than that in main crop. 3) The Cd content, Cd accumulation, daily average Cd accumulation rate, Cd transfer coefficient and accumulation coefficient in all organs in ratooning crop were higher than those in main crop. The total Cd accumulation of Y Liangyou 9918 and Yongyou 4149 in ratooning crop was 4.28 and 2.67 times as much as that in main crop, and the Cd content in brown rice in the ratooning crop was 1.63 and 1.42 times as much as that in main crop, respectively. 4) In main crop, Cd was mainly accumulated during mid-filling stage to maturity stage, while it mainly accumulated before heading stage in ratooning crop. 5) Cd accumulation of rice stubble of the two varieties showed accumulative trend in whole growth duration of ratooning crop, but varied with variety. 6) Under the conditions of this experiment, yield of Y Liangyou 9918 in main crop was lower than that of Yongyou 4149, but it was opposite in ratooning crop, and the annual yield difference between the two varieties was not significant. Cd content, accumulation amount, daily average accumulation rate and enrichment coefficient of Yongyou 4149 were generally higher than those of Y Liangyou 9918. 【】It was concluded that the risk of Cd contamination in ratooning crop was higher than that in main crop. It was suggested that ratooning crop should be developed carefully in the Cd contaminated rice growing areas, and Cd reduction measures in ratoon season should be taken before full heading.
ratooning crop; main crop; ratooning season; Cd accumulation and distribution
2020-11-20;
2021-05-20。
國家重點(diǎn)研發(fā)計(jì)劃重點(diǎn)專項(xiàng)(2018YFD0301005,2017YFD0301501)。