• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prognosis of Gas Turbine Engines Using Ensemble Dual Particle Filters

    2022-01-11 14:53:04JingYangKhashayarKhorasaniYingqingGuo
    風機技術 2021年6期

    Jing Yang Khashayar Khorasani Ying-qing Guo

    (1.School of Power and Energy,Northwestern Polytechnical University,Xi’an,Shaanxi,China.2.Department of Electrical and Computer Engineering,Concordia University,Montreal,Quebec,Canada.)

    Abstract:A problem of interest to aircraft maintainers is automatic detection,classification,and prognosis of potential critical component failures in the gas turbine engines.Automatic monitoring offers the promise of substantially reducing the cost of repair and replacement of defective parts and may even result in saving lives.In this paper,an integration architecture is proposed for gas turbine engine prognosis through utilization of dual particle filters and ensemble learning methods.In our proposed framework,dual particle filters are utilized to estimate the states as well as the health parameters of the gas turbine engine system.An Long-short term memory neural network based observation forecasting scheme is developed to extend the system observation profiles to future time horizon.Moreover,we develop multiple predictors,each with differing properties so that multiple estimates can be made based on different possible scenarios.A data fusion architecture is presented that combines multiple prognostic techniques weighted by their individual prediction uncertainty for the remaining useful life(RUL)of a gas turbine engine asset.The architecture is based on the concept of ensemble learning method.To verify and validate the above results and as a case study,our proposed ensemble approach is applied to predict the health condition of a dual spool jet engine.The developed ensemble architecture provides improved decision support in comparison to the existing single prognostic technique methods that are available in the literature.

    Keywords:Prognosis;GasTurbine Engine; Particle Filter; Ensemble Learning

    Nomenclature

    mass flow rate

    CCcombustion chamber

    HChigh-pressure compressor

    LClow-pressure compressor

    HThigh-pressure turbine pressure

    LTlow-pressure turbine

    N1,N2rotational speeds

    Vvolume

    ηefficiencies

    θfault vector

    0 Introduction

    The process of performing operational action based on the information available from the equipment and its interacting environment is termed Equipment Health Management(EHM).Advantages such as lowering sustainment costs and improving maintenance decision making are significant motivations to enhance EHM capabilities.Asset health prognosis(prediction of future health states) has an important role in providing informed EHM.Effective prognosis demands projection of the estimated health state forward in time to produce a bounded estimate for when the component health crosses a preset threshold at which it can no longer perform its function to the satisfaction of the requirements.The time remaining before this threshold is reached is termed as the remaining useful life (RUL) of a component or system,which is generated and estimated from predictive models of the future health state.

    Linear and Gaussian models that are developed to achieve satisfactory performance in diagnosis and prognosis applications utilize lower complicated representations of the actual nonlinear dynamic models.Although these models may have acceptable performance for short-term interval applications,as the prediction horizon extends to include longterm behavior of the system,such as the case in the prognosis application,the linear models would not necessarily lead to an accurate solution.Therefore,development of innovative model-based algorithms must be investigated that can satisfy the prediction requirements for both short-term and long-term behaviors of the system.

    Particle Filters(PF)is one of the most popular recursive nonlinear state estimation methods that addresses the Bayesian recursive relations using Sequential Monte Carlo (SMC)methods.SMC methods represent as a set of simulationbased techniques that provide an interesting approach to compute the states posterior distributions so that statistical estimates can be easily computed.In the work of Daroogheh et al.(2018a),nonlinear Bayesian and Sequential Monte-Carlo(SMC) methods are applied to develop a consistent framework for both state and parameter estimation objectives for fault diagnosis and prognosis problem of a gas turbine engine system.

    For the long-term prediction of the system states and health parameters as required in the dual particle filter-based prognosis framework,an adaptive scheme for observation profile forecasting is proposed in Daroogheh et al.(2018b).In this work,a Long-Short Term Memory (LSTM) based recurrent neural network (RNN) is developed and applied.RNN is a network having internal loops allowing information to persist.Moreover,RNNs using LSTM units solve the vanishing gradient problem,since the LSTM units allow gradients to also flow unchanged,as mentioned in Greff et al.(2017).

    However,due to the influence of the system,environmental noise,among others,the system is subject to strong uncertainty,which will make predictions less accurate.Therefore,the ensemble learning method is used to solve this problem.Ensemble methods use multiple learning algorithms to obtain an improved predictive performance than that could be obtained by any of the constituent learning algorithms alone,as has been applied in fault prognosis in van Heeswijk et al.(2009),Zuo et al.(2010),and Lim et al.(2017).In this work,we apply this methodology to ensemble regression to further improve the prediction stability of the particle filters.To construct the ensemble model presented in this paper,a number of Dual Particle Filters (DPF) of varying process noise are generated,each of which is individually trained on the data.After training,these individual models are combined in an ensemble model to achieve our final prognosis strategy.

    1 Fault Prognosis of a Gas Turbine Engine

    In this paper,our proposed prediction framework is applied to the problem of the prognosis of a nonlinear model of a dual spool gas turbine engine.The details of the model are briefly included below for sake of reader convenience.

    1.1 Model Overview

    Based on the available literature in Camporeale et al.(2006) on modeling of aircraft jet engines,a Matlab Simulink model for a dual spool engine is developed.Rotor and volume dynamics are considered in order to obtain a nonlinear dynamics for the system.In order to take into account the volume dynamics,the engine components are considered to model an imbalance mass flow rate.This results in elimination of large algebraic loops in the model.The detailed mathematical expressions corresponding to the overall engine dynamics as well as each specific component are developed and presented in the literature as in Meskin,Naderi,and Khorasani (2013).A schematic depicting the main modules and the overall information flows and interdependencies that are present in the gas turbine engine is shown in Fig.1.The states,health parameters and the output measurements in the dual-spool jet engine are selected as

    Fig.1 The aircraft jet engine modules and information flowchart and interdependencies.

    1.2 Simulation Scenarios

    Two scenarios,namely fouling and erosion,are chosen to verify the proposed methodology and algorithm.As stated in Li and Nilkitsaranont(2009),the critical values for the parameter degradations are considered to be a 3% decrease in the compressor efficiencyalong with a 1.5% decrease in the mass flow capacitydue to the fouling phenomenon.This implies that after achieving this level of deficiency in any of these parameters,the compressor must be taken for maintenance and wash-up.On the other hand,the critical values for detecting erosion in the gas turbine are considered to be a 6% decrease in the turbine efficiencyand a 3% increase in the mass flow capacity.The output measurements associated with these two scenarios are shown in Fig.2.

    2 Problem Statement and Dual Particle Filters

    In model-based prognosis and health monitoring approaches,the first step in formulating the problem is to characterize the damage model.Let us consider the following nonlinear dynamical system,

    whereis the system state,is a known differentiable function that determines the relationship between the health parameters and the system states,θt∈is an unknown and possibly time-varying multiplicative fault vector that represents the damage effects on the system health parameters (for the healthy systemθtis set to 1),yt∈is the output measurement,ωtandvtare uncorrelated noise sequences with covariance matricesWtandVt,and mean valuesμωandμv,respectively(although without loss of generality the meanμv≡0 subsequently),φt:×R×andγt:×R×are known nonlinear functions representing the relationship between the states,parameters and the output measurements (observations).The degradation phenomenon in mechanical systems can,in general,be identified from the changes it causes on the efficiency of the system,where the efficiency is designated as the health parameter that can be analytically obtained from the states and measurements of the system.The process noise is not considered as an additive noise since corresponding to our main focused application problem(that is,a mechanical aircraft gas turbine engine system) the additive process noise assumption is not necessarily valid.

    A brief background corresponding to the dual state and parameter estimation algorithm,as has been developed in Daroogheh et al.(2013),is now presented in this section.In the developed dual state and parameter estimation structure two concurrent filters are implemented for the state and parameter estimation tasks.At each time step for the state (parameter) estimator filter,the parameters (states) are treated as being known inputs to the filter from the parameter (state) estimator.Our main goal in the dual state and parameter estimation problem is to approximate the following conditional expectations,

    wherey1:t=(y1,y2,…,yt)denotes the available observations up to the time instantt,are functions of states and parameters,respectively,that are to be estimated. The conditional probability functionsare to be approximated by the designed particle filters(PFs) through determining the filtering distributions according to,

    3 Prediction Framework

    Fig.3 provides the main idea for the ensemble learning based fault prognostic method.At first,applying the DPF to future time instants where the weight update in the long-term prediction using particle filters cannot be easily implemented in absence of future observations.Long-short term memory network is a special kind of RNN,capable of learning longterm dependencies.Then,multiple DPFs can be applied to evalute the states and health parameters.Finally,by performing ensemble on prediction results of multiple models,a final more accurate prediction result can be obtained.

    Fig.3 Ensemble regression by combining different dual particle filters.

    3.1 Observation Forecasting with Long-Short Term Memory(LSTM)Networks

    LSTMs are explicitly designed to avoid the long-term dependency problem and proposed by Hochreiter and Schmidhuber (1997).Restoring information for long periods of time is practically the default behavior and not challenging to learn.All recurrent neural networks have the form of a chain of repeating modules.In standard RNNs,this repeating module will have a very simple structure,such as a single tanh layer.As Fig.4 shows the LSTMs also have this chainlike structure,but the repeating module has a different structure.Instead of having a single neural network layer,there are four,interacting in a very special way.

    Fig.4 Recurrent neural network and LSTM cell.

    The key to LSTMs is the cell statect.The cell state at time steptis given by

    whereftis the forget gate,itis the input gate,gtis a cell candidate as given in Table 1.⊙denotes the Hadamard product (element-wise multiplication of vectors).The LSTM cell uses the hyperbolic tangent function (tanh) to compute the state activation function and uses the sigmoid function given byσ(μ)=(1 +e-μ)-1to compute the gate activation function.

    Tab.1 Inner Gates of a Long-Short Term Memory(LSTM)Cells

    The hidden state at the time steptis given by

    Consequently,an LSTM layer withytas input andhtas output can be constructed.In order to achieve prediction of the measurementsyt,a regression network ? is needed to be constructed as follows

    whereandytare vectors with lengthny.

    The network ? is composed of two layers.The first layer is the LSTM layer to obtain the hidden outputht,and the second layer is the fully connected layer to obtain the output.The fully connected layer is applied as,

    In order to achieve the predictive capability of the regression network ?,the network ? is trained to minimize the following loss function,which represents the half-meansquared-error of the predicted responses corresponding to each time step

    One step ahead prediction results are shown in Fig.5,where the network ? is trained with 500 points of degradation process data using the LSTM network.First 100 pointsyare evaluated by the true observed datayt,then the following 400 pointsyare predicted by the predicted.Three solvers to deal with loss function are tested,which are SGDM (Stochastic Gradient Descent with Momentum),ADAM (adaptive moment estimation),introduced in Kingma and Lei Ba(2015),and RMSprop(root mean square propagation),introduced by Wang and Manning(2013).

    Fig.5 Evaluation and prediction results of the normilized state parameter using the LSTM network and various solvers.

    As shown in Fig.4,the SGDM has the best training accuracy.However,the ADAM has the best testing accuracy,meanwhile its training accuracy is also good.Therefore,for this case study the ADAM is applied as the solver method for the LSTM training.

    3.2 States and Health Parameters Prediction using Dual Particle Filter and LSTM Network

    When performing predictions,the system state functionφand the observation functionγare assumed to be known.In addition,the measurements decay process foryhas been initiated.Therefore,one can construct the degredation model ofyfrom past measurements.

    State and parameters can be estimated as described in detail in Daroogheh et al.(2018b),according to the designed dual particle filters(DPF).Specifically,we have

    In this part,ytuses the prediction result of the LSTM networkL,that is,yt=L(yt-1).

    The details corresponding to states and parameters predictions procedures (DPF) are provided and summarized below.Specifically,

    1) Perform the one step aheada prioristate prediction as follows:

    b) Calculate the first step a posteriori parameter estimation distribution,

    c)Resampling to approximate a posteriori parameter estimate distribution,

    d)Obtain the posteriori parameter estimate:

    3.3 Ensemble Dual Particle Filter And Fault Prognosis

    Ensemble learning explores the diversity of models and fuses the results from different models.The proposed ensemble DPF consists of two stages.In the first stage,mdifferent DPF models are constructed from knownx,θandyto obtain a set of prediction resultsand.In the second step,the prediction results are integrated to obtain the final prediction result

    From the DPF calculation method introduced in the previous section,it can be seen thatωtin(13)is a changing factor in the DPF calculation process,and the noise of the system environment can affect the estimation process.Meanwhile,vtin(2)did not appear during the calculation of DPF.Therefore,in the first step of ensemble DPF,we obtain different models by modifying the process noiseωtin (1) of the DPF,whereωtis computed from

    whererandn is a Normally distributed random numbers,δωis the weight coefficient.The experimental results ofδωchanges from 0.02 to 0.05 are given in Fig.6,and five tests are performed under each data.It can be seen that by changingδω,the distribution of the predicted data has changed.

    Fig.6 Predicted states of diverse dual particle filters(the number of particles is 200).

    Therefore,the ensembled predicted state (or health parameters)are obtained from the results,j=1,…,Ncorresponding to different models according to

    The specific computational procedure of parametersβx,βθ,εx,εθis described in the next section.

    To calculate the system RUL when multiple health parameters are estimated,we first denote and selectθcras the critical value for the health parameters.The following rule is now utilized for evaluating the RUL at timet,namely:RUL(t)=tj-t,wheretjis the time at which the first parameter associated with the specific degradation damage reaches its critical value.Once reaching the critical value in one of the parameters,maintenance must be performed.Choosing the suitable value forθcris application specific and is generally determined based on the system performance and operator experience.In most applications and problems defining an exact value for the RUL is not possible.Therefore,an acceptable bound is considered as a confidence interval for the RUL prediction.The above procedure is used for estimating the RUL for a k-step ahead horizon before the occurrence of a failure.

    3.4 Simulation Results of the Ensemble DPF

    We have tested three methods for performing the ensemble operation,namely the Robust Linear Regression (RR),the Multivariate Normal Regression (MNR),and the mean value(average).

    Fig.7 Predicted error of state N1 (bar)and health parameter using different stacked regression methods(fouling phenomenon).

    Fig.8 Predicted error of state PLC (bar)and health parameter using different stacked regression methods(fouling phenomenon).

    By using the mean value method,the parameters in(14)-(15)are simply set intoε=0,βj=1/m.The linear regression is based on certain assumptions,such as a normal distribution of errors in the observed responses.If the distribution of errors is asymmetric or prone to outliers,model assumptions are invalidated and parameter estimates confidence intervals,and other computed statistics become unreliable.We use robust regression to create a model that is not much affected by outliers.The robust fitting method is less sensitive than ordinary least squares to large changes in small parts of the data.

    Robust regression works by assigning a weight to each data point.Weighting is done automatically and iteratively using a process called iteratively reweighted least squares.In the first iteration,each point is assigned equal weight and model coefficients are estimated using ordinary least squares.At subsequent iterations,weights are recomputed so that points farther from model predictions in the previous iteration are given a lower weight.Model coefficients are recomputed using weighted least squares.The process continues until the values of the coefficient estimates converge within a specified tolerance.

    Multivariate normal regression is the regression of addimensional response on a design matrix of predictor variables,with normally distributed errors.The errors can be heteroscedastic and correlated.Applied here can be considered as a missing partial response mission.

    As shown in Fig.s 7 and 8,ensemble regression can reduce the maximum residuals of the multiple single estimations.In the proposed three ensemble regression methods,the MNR method has the lowest predictor error than the other two methods.

    Since RUL calculate the predicted values based on health parameters,the smaller the residual between the predicted values and the true values,the more accurate the RUL predictions will be.The difference between the health parameters and the actual values MNR the three integrated algorithms proposed in this paper is the smallest,so it can be seen that the prediction of the RUL is also the most accurate.

    4 Conclusions

    In this paper,a novel ensembled estimation filtering scheme is proposed and developed based on dual particle filters(DPF),LSTM and ensemble learning methods for a dual spool gas turbine engine.Long-short term memory (LSTM)network is applied to forecast measurements that yielded an ideal prediction effect.States and health parameters are estimated by utilizing dual particle filter,which is corrected with the predicted measurements from the LSTM.Moreover,the multiple estimation results(states and health parameters)that are obtained by changing the process noise are further optimized by an ensemble mechanism.Simulation results show that the proposed ensemble DPF method can improve the stability of fault prognosis scheme by balancing different conditions.

    5 Acknowledgements

    This work was supported in part by the scholarship from the China Scholarship Council under Grant 201806290200.

    18禁动态无遮挡网站| 午夜精品在线福利| 亚洲精品亚洲一区二区| 日韩精品青青久久久久久| 黄片无遮挡物在线观看| 天天一区二区日本电影三级| 全区人妻精品视频| 国产乱人视频| 老女人水多毛片| 九九久久精品国产亚洲av麻豆| 亚洲国产日韩欧美精品在线观看| 国产淫片久久久久久久久| 久久综合国产亚洲精品| 亚洲国产精品sss在线观看| 午夜日本视频在线| 一级黄色大片毛片| 国产又黄又爽又无遮挡在线| 蜜桃亚洲精品一区二区三区| 国产精品熟女久久久久浪| 美国免费a级毛片| 国产亚洲最大av| 日韩三级伦理在线观看| 国产精品久久久久久av不卡| 最近的中文字幕免费完整| 青春草国产在线视频| videos熟女内射| 亚洲精品久久成人aⅴ小说| 免费大片黄手机在线观看| 天天操日日干夜夜撸| 免费高清在线观看视频在线观看| 国产精品人妻久久久影院| 亚洲精品久久午夜乱码| 中文字幕精品免费在线观看视频 | 侵犯人妻中文字幕一二三四区| 97人妻天天添夜夜摸| 国产精品久久久久久久久免| 80岁老熟妇乱子伦牲交| 日本黄大片高清| 男人操女人黄网站| 国产亚洲最大av| av国产久精品久网站免费入址| 9热在线视频观看99| 亚洲国产精品成人久久小说| 成人漫画全彩无遮挡| 欧美日韩亚洲高清精品| 夫妻午夜视频| 又粗又硬又长又爽又黄的视频| 亚洲av中文av极速乱| 久久99一区二区三区| 国产有黄有色有爽视频| 欧美日韩一区二区视频在线观看视频在线| 看免费成人av毛片| 国产又爽黄色视频| 黄网站色视频无遮挡免费观看| 日韩一区二区三区影片| 久久 成人 亚洲| 日韩中文字幕视频在线看片| 日本与韩国留学比较| 精品国产一区二区久久| av天堂久久9| 免费久久久久久久精品成人欧美视频 | 人人妻人人添人人爽欧美一区卜| 久久久久人妻精品一区果冻| 亚洲精品国产色婷婷电影| 在线观看美女被高潮喷水网站| av国产精品久久久久影院| 午夜免费鲁丝| 丝袜美足系列| 亚洲综合精品二区| a 毛片基地| 三级国产精品片| 久久久久久久国产电影| 九九爱精品视频在线观看| 97在线人人人人妻| 人妻 亚洲 视频| 国产毛片在线视频| 亚洲精品一二三| 亚洲人成网站在线观看播放| 少妇高潮的动态图| 99精国产麻豆久久婷婷| 久久免费观看电影| 久久久亚洲精品成人影院| 亚洲av日韩在线播放| 寂寞人妻少妇视频99o| 边亲边吃奶的免费视频| 大话2 男鬼变身卡| 免费观看在线日韩| 中文天堂在线官网| 日韩一本色道免费dvd| 18在线观看网站| 国产精品成人在线| 中文欧美无线码| 男人操女人黄网站| 国产欧美日韩综合在线一区二区| 菩萨蛮人人尽说江南好唐韦庄| 两个人看的免费小视频| 国产日韩欧美视频二区| 国产午夜精品一二区理论片| 亚洲一码二码三码区别大吗| av播播在线观看一区| 国产亚洲午夜精品一区二区久久| 欧美精品亚洲一区二区| 午夜福利乱码中文字幕| 22中文网久久字幕| 国国产精品蜜臀av免费| 一级a做视频免费观看| 青青草视频在线视频观看| 午夜福利在线观看免费完整高清在| 亚洲精品中文字幕在线视频| 欧美3d第一页| 久久久久久人妻| 国产日韩欧美亚洲二区| 久久国产精品男人的天堂亚洲 | 国产有黄有色有爽视频| 国产探花极品一区二区| 精品酒店卫生间| 满18在线观看网站| 欧美精品人与动牲交sv欧美| 国产成人91sexporn| 人人妻人人添人人爽欧美一区卜| 另类精品久久| 日韩一区二区视频免费看| 大陆偷拍与自拍| 日本午夜av视频| 在线观看国产h片| 国产精品久久久久久精品电影小说| 欧美精品高潮呻吟av久久| 欧美日韩综合久久久久久| 观看av在线不卡| 我的女老师完整版在线观看| 在现免费观看毛片| 欧美变态另类bdsm刘玥| 国产精品成人在线| 久久 成人 亚洲| 欧美 日韩 精品 国产| 亚洲在久久综合| 亚洲av中文av极速乱| 亚洲内射少妇av| 亚洲国产色片| 日韩精品免费视频一区二区三区 | 只有这里有精品99| 亚洲欧洲精品一区二区精品久久久 | 欧美激情国产日韩精品一区| 看非洲黑人一级黄片| 欧美日韩视频高清一区二区三区二| 国产乱来视频区| 国产精品国产av在线观看| 亚洲欧美一区二区三区黑人 | 天堂8中文在线网| 免费黄色在线免费观看| 亚洲av在线观看美女高潮| 看十八女毛片水多多多| 黑人猛操日本美女一级片| 国产无遮挡羞羞视频在线观看| 波野结衣二区三区在线| 欧美精品av麻豆av| 老女人水多毛片| 一级片免费观看大全| 9色porny在线观看| 免费少妇av软件| 免费人妻精品一区二区三区视频| 国产1区2区3区精品| 久久久国产欧美日韩av| 国产精品国产三级专区第一集| 亚洲 欧美一区二区三区| 97在线人人人人妻| 香蕉丝袜av| 午夜久久久在线观看| 久久99热这里只频精品6学生| 丰满饥渴人妻一区二区三| 蜜桃在线观看..| 一级片免费观看大全| 国产片内射在线| 国产高清国产精品国产三级| 丰满饥渴人妻一区二区三| 亚洲在久久综合| 久久99精品国语久久久| 少妇猛男粗大的猛烈进出视频| 亚洲人与动物交配视频| 97超碰精品成人国产| 纵有疾风起免费观看全集完整版| 免费久久久久久久精品成人欧美视频 | 久久热在线av| 久久精品久久久久久久性| 中文字幕制服av| 午夜福利乱码中文字幕| 侵犯人妻中文字幕一二三四区| 97超碰精品成人国产| 亚洲第一av免费看| 这个男人来自地球电影免费观看 | 久久ye,这里只有精品| 国产精品久久久久久av不卡| 亚洲国产精品国产精品| 成人毛片60女人毛片免费| 精品久久蜜臀av无| a级毛色黄片| 久久精品国产鲁丝片午夜精品| 黑丝袜美女国产一区| 不卡视频在线观看欧美| 成人手机av| 男女高潮啪啪啪动态图| 99热这里只有是精品在线观看| 日韩成人伦理影院| 伦理电影大哥的女人| 在线看a的网站| 黑人高潮一二区| 美女福利国产在线| 在线免费观看不下载黄p国产| 高清不卡的av网站| 亚洲av男天堂| 日本爱情动作片www.在线观看| 亚洲国产欧美日韩在线播放| av有码第一页| 大片电影免费在线观看免费| 秋霞在线观看毛片| 在线精品无人区一区二区三| 免费在线观看黄色视频的| 亚洲国产av新网站| 9热在线视频观看99| 国产又爽黄色视频| 2022亚洲国产成人精品| 国产片内射在线| 欧美老熟妇乱子伦牲交| 色婷婷av一区二区三区视频| 欧美xxxx性猛交bbbb| 国产成人午夜福利电影在线观看| 国产极品天堂在线| xxx大片免费视频| 交换朋友夫妻互换小说| 97在线人人人人妻| 男女午夜视频在线观看 | 成人影院久久| www日本在线高清视频| 一本色道久久久久久精品综合| 22中文网久久字幕| 国产精品偷伦视频观看了| 亚洲国产精品999| 97精品久久久久久久久久精品| 久久精品国产鲁丝片午夜精品| 水蜜桃什么品种好| 免费观看性生交大片5| 久久99精品国语久久久| 成人国产av品久久久| 精品一区在线观看国产| 一本色道久久久久久精品综合| 国产精品一区二区在线不卡| 欧美激情极品国产一区二区三区 | 日本黄大片高清| 久久久久久久久久成人| 精品熟女少妇av免费看| 免费高清在线观看视频在线观看| 精品一区二区三区四区五区乱码 | 国产一区二区激情短视频 | 熟女人妻精品中文字幕| 精品一区二区三区视频在线| 国产在线一区二区三区精| 熟女av电影| 国产成人午夜福利电影在线观看| 免费观看在线日韩| 少妇人妻 视频| 色哟哟·www| 日日爽夜夜爽网站| 国产69精品久久久久777片| 欧美亚洲日本最大视频资源| 欧美+日韩+精品| 亚洲成av片中文字幕在线观看 | 国产精品一区www在线观看| 一本色道久久久久久精品综合| 又粗又硬又长又爽又黄的视频| 91精品国产国语对白视频| 国产精品久久久久久久久免| 制服诱惑二区| 国产成人精品福利久久| 日日啪夜夜爽| 国产免费视频播放在线视频| 极品人妻少妇av视频| 日本av免费视频播放| 国产精品成人在线| 国产女主播在线喷水免费视频网站| 欧美最新免费一区二区三区| 亚洲av在线观看美女高潮| 精品国产国语对白av| 久久ye,这里只有精品| 成人影院久久| 高清不卡的av网站| 一本久久精品| 欧美精品国产亚洲| 精品一区在线观看国产| 18禁裸乳无遮挡动漫免费视频| 五月伊人婷婷丁香| 精品一区二区免费观看| 亚洲av成人精品一二三区| 久久久精品94久久精品| 9191精品国产免费久久| 热re99久久精品国产66热6| 国产精品一二三区在线看| 国产69精品久久久久777片| 久久精品夜色国产| 男人舔女人的私密视频| av黄色大香蕉| 久久久久久久亚洲中文字幕| 国产又爽黄色视频| 国产欧美亚洲国产| 中文欧美无线码| av免费在线看不卡| av一本久久久久| 又粗又硬又长又爽又黄的视频| 精品久久久久久电影网| 久久这里只有精品19| 国产免费一区二区三区四区乱码| 在线免费观看不下载黄p国产| 中文字幕亚洲精品专区| 国产成人欧美| 国产一级毛片在线| 天天影视国产精品| 久久婷婷青草| 成年动漫av网址| 免费看不卡的av| 久久久久精品人妻al黑| 女人久久www免费人成看片| 久久久亚洲精品成人影院| freevideosex欧美| 免费在线观看黄色视频的| 精品一区二区免费观看| 日韩大片免费观看网站| 九色成人免费人妻av| 啦啦啦中文免费视频观看日本| 日本爱情动作片www.在线观看| 一区二区三区四区激情视频| 欧美日韩视频高清一区二区三区二| 亚洲精品国产av蜜桃| 丝袜喷水一区| 国产成人一区二区在线| 国产精品.久久久| 满18在线观看网站| 成人手机av| 看免费成人av毛片| 国产男女超爽视频在线观看| 两性夫妻黄色片 | 满18在线观看网站| 免费人妻精品一区二区三区视频| 一区二区av电影网| 国产片内射在线| 91精品伊人久久大香线蕉| 秋霞在线观看毛片| 香蕉精品网在线| 日本91视频免费播放| 国产xxxxx性猛交| videosex国产| 人人妻人人澡人人看| 亚洲情色 制服丝袜| 老司机影院成人| 另类精品久久| 少妇精品久久久久久久| 精品亚洲成国产av| 成年女人在线观看亚洲视频| 国产色爽女视频免费观看| 国产av精品麻豆| 男人操女人黄网站| 亚洲精品国产色婷婷电影| 亚洲欧美日韩另类电影网站| 午夜影院在线不卡| 亚洲,欧美精品.| 欧美日韩一区二区视频在线观看视频在线| 亚洲色图 男人天堂 中文字幕 | 欧美人与性动交α欧美精品济南到 | 欧美97在线视频| 国产毛片在线视频| 亚洲av中文av极速乱| 日本色播在线视频| xxx大片免费视频| 国产精品久久久久久av不卡| 美女国产高潮福利片在线看| 亚洲少妇的诱惑av| 亚洲久久久国产精品| 精品一区二区三区四区五区乱码 | 精品久久久精品久久久| 久久国产亚洲av麻豆专区| 丰满迷人的少妇在线观看| av卡一久久| 精品一区二区三区视频在线| 美女国产高潮福利片在线看| 麻豆精品久久久久久蜜桃| 亚洲人与动物交配视频| 亚洲少妇的诱惑av| 欧美老熟妇乱子伦牲交| 日本免费在线观看一区| 69精品国产乱码久久久| 免费不卡的大黄色大毛片视频在线观看| 九色成人免费人妻av| 精品久久久精品久久久| 一二三四在线观看免费中文在 | 欧美日韩av久久| 亚洲精品成人av观看孕妇| 成年女人在线观看亚洲视频| 精品人妻熟女毛片av久久网站| 久久久久久久久久人人人人人人| 亚洲av中文av极速乱| 七月丁香在线播放| 亚洲精品av麻豆狂野| www日本在线高清视频| 欧美亚洲日本最大视频资源| 日韩视频在线欧美| 国产精品一区二区在线观看99| 国产永久视频网站| 大码成人一级视频| 久久热在线av| 午夜激情av网站| 伊人久久国产一区二区| 美女脱内裤让男人舔精品视频| 中文欧美无线码| 久久人人爽av亚洲精品天堂| 久久精品久久久久久久性| 精品国产一区二区三区久久久樱花| 欧美bdsm另类| 有码 亚洲区| 免费日韩欧美在线观看| 亚洲国产成人一精品久久久| 国产成人一区二区在线| 免费人妻精品一区二区三区视频| 日日爽夜夜爽网站| 亚洲图色成人| 欧美xxⅹ黑人| 最新中文字幕久久久久| 国产视频首页在线观看| 美女内射精品一级片tv| 免费少妇av软件| 90打野战视频偷拍视频| 亚洲天堂av无毛| 亚洲欧美清纯卡通| 婷婷成人精品国产| 日韩精品免费视频一区二区三区 | 一二三四在线观看免费中文在 | 亚洲精品久久成人aⅴ小说| 免费观看av网站的网址| 少妇人妻久久综合中文| 久久国内精品自在自线图片| 97在线人人人人妻| 国产免费现黄频在线看| 一本色道久久久久久精品综合| 精品少妇内射三级| 美女国产高潮福利片在线看| 女人被躁到高潮嗷嗷叫费观| 久久久久久久久久成人| 亚洲精品久久久久久婷婷小说| 日韩av免费高清视频| 曰老女人黄片| 亚洲精品久久成人aⅴ小说| 男女下面插进去视频免费观看 | 欧美国产精品va在线观看不卡| 亚洲少妇的诱惑av| 你懂的网址亚洲精品在线观看| 男女边吃奶边做爰视频| 秋霞在线观看毛片| 欧美人与善性xxx| 亚洲精品久久久久久婷婷小说| 国产男人的电影天堂91| 丝袜美足系列| 伊人久久国产一区二区| 国产一区二区激情短视频 | 亚洲国产看品久久| 国产在线视频一区二区| 最新的欧美精品一区二区| 国产精品久久久久久av不卡| 国产精品久久久久久精品古装| 韩国精品一区二区三区 | 亚洲av电影在线进入| 久久久久视频综合| 99九九在线精品视频| 中文字幕制服av| 国产伦理片在线播放av一区| 国产精品 国内视频| 国产成人av激情在线播放| 久久人人爽人人片av| 久久这里有精品视频免费| 亚洲国产精品一区二区三区在线| xxx大片免费视频| 国产精品一区www在线观看| 免费人成在线观看视频色| 久久久久久久久久成人| 国产熟女午夜一区二区三区| 免费观看无遮挡的男女| 黄色视频在线播放观看不卡| 日韩视频在线欧美| 亚洲精品美女久久av网站| 中文字幕人妻熟女乱码| av卡一久久| 亚洲国产看品久久| 最新中文字幕久久久久| 日韩欧美精品免费久久| 亚洲精品久久成人aⅴ小说| 欧美日韩成人在线一区二区| 国国产精品蜜臀av免费| 最近的中文字幕免费完整| 午夜视频国产福利| av在线观看视频网站免费| 精品少妇内射三级| 国产精品久久久久久精品古装| 在线精品无人区一区二区三| 午夜av观看不卡| 毛片一级片免费看久久久久| 国产在线一区二区三区精| 国产av精品麻豆| 精品第一国产精品| 欧美成人午夜免费资源| 永久免费av网站大全| 国产成人免费无遮挡视频| 午夜精品国产一区二区电影| 亚洲中文av在线| 精品一区在线观看国产| 啦啦啦啦在线视频资源| 国产在线免费精品| 久久午夜综合久久蜜桃| 建设人人有责人人尽责人人享有的| 97超碰精品成人国产| 爱豆传媒免费全集在线观看| 国产精品一区www在线观看| 亚洲欧美成人精品一区二区| 777米奇影视久久| 午夜激情av网站| 国产午夜精品一二区理论片| 日韩大片免费观看网站| 青春草国产在线视频| 99视频精品全部免费 在线| 黑人高潮一二区| 久久人人爽人人片av| 免费在线观看完整版高清| 亚洲av福利一区| a级毛色黄片| 男女下面插进去视频免费观看 | 老司机亚洲免费影院| 久久这里有精品视频免费| 美女主播在线视频| 亚洲精品久久午夜乱码| 男人舔女人的私密视频| 99精国产麻豆久久婷婷| 欧美性感艳星| 亚洲国产精品国产精品| 大香蕉久久成人网| 精品第一国产精品| 狠狠精品人妻久久久久久综合| 国产av精品麻豆| av在线播放精品| 一级爰片在线观看| 一区二区三区精品91| a级毛片黄视频| 深夜精品福利| 黑人高潮一二区| 韩国精品一区二区三区 | 国产熟女午夜一区二区三区| 人妻人人澡人人爽人人| 大香蕉久久网| 欧美精品国产亚洲| 久久精品久久久久久久性| 精品国产一区二区三区四区第35| 精品福利永久在线观看| 久久99热这里只频精品6学生| 亚洲三级黄色毛片| 免费高清在线观看视频在线观看| 一区二区三区四区激情视频| 国产午夜精品一二区理论片| 成人黄色视频免费在线看| 美国免费a级毛片| 色5月婷婷丁香| 精品久久久久久电影网| 亚洲国产精品成人久久小说| 国产男女超爽视频在线观看| 九色成人免费人妻av| 国产69精品久久久久777片| 亚洲精品aⅴ在线观看| 国产日韩一区二区三区精品不卡| 超碰97精品在线观看| 日韩人妻精品一区2区三区| 色视频在线一区二区三区| 高清毛片免费看| 波多野结衣一区麻豆| 国产精品久久久久成人av| 久久久久久久久久久免费av| 在线观看三级黄色| 国产无遮挡羞羞视频在线观看| 精品福利永久在线观看| 人人妻人人添人人爽欧美一区卜| av黄色大香蕉| 丝袜人妻中文字幕| 亚洲欧美一区二区三区国产| 免费看光身美女| 国产精品国产三级国产av玫瑰| 丝袜喷水一区| 美女主播在线视频| 午夜精品国产一区二区电影| 久久久久久久久久久久大奶| 热re99久久国产66热| 看十八女毛片水多多多| 亚洲欧洲日产国产| 久久久国产欧美日韩av| 国产成人免费观看mmmm| 国产一级毛片在线| 国产精品一区二区在线观看99| 最近中文字幕高清免费大全6| 亚洲国产成人一精品久久久| 欧美人与性动交α欧美精品济南到 | 老司机亚洲免费影院| 亚洲欧美精品自产自拍| 在线观看免费高清a一片| 免费av不卡在线播放| 大片免费播放器 马上看| 考比视频在线观看| 成人漫画全彩无遮挡| 少妇精品久久久久久久| 黑人高潮一二区| 如何舔出高潮| 亚洲欧美精品自产自拍| 亚洲高清免费不卡视频| 高清视频免费观看一区二区| 亚洲精品国产色婷婷电影|