• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analytical long-term evolution and perturbation compensation models for BeiDou MEO satellites

    2018-03-21 05:28:59LiFANMinHUChoJIANG
    CHINESE JOURNAL OF AERONAUTICS 2018年2期

    Li FAN,Min HU,Cho JIANG,c

    aSchool of Aerospace Engineering,Tsinghua University,Beijing 100084,China

    bSpace Engineering University,Beijing 101416,China

    cCollege of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China

    1.Introduction

    The Chinese BeiDou Navigation Satellite System(BDS)completed regional deployment phase on December 27,2012,which comprises five Geostationary Earth Orbit(GEO),five Inclined Geosynchronous Satellite Orbit(IGSO),and four Medium Earth Orbit(MEO)satellites.1The eventual BDS constellation will consist of five GEO,twenty-seven MEO,and three IGSO satellites.2The long-term evolution of the relative motion among the satellites under the perturbations plays a crucial role for the constellation performance.Frequent station keeping maneuver will consume the fuel,reduce the satellite lifetime, and interrupt the service of navigation constellation.To maintain a stable configuration and provide a better navigation service,the long-term perturbation model and perturbation compensation method should be focused,which aims to reduce the station keeping frequency as few as possible.

    The main perturbations of the BDS MEO satellites include the non-spherical perturbations,the luni-solar perturbations,and the solar radiation pressure perturbations.Considering the order of the perturbations,theJ2perturbation is the main factor,with the magnitude of 10-5–10-3.For a group of satellites with the same semi-major axis,eccentricity,and inclination,the long-term evolution law under theJ2perturbation is identical.When there are some deviations of the semimajor axis,eccentricity or inclination,the relative in-plane motion will drift in the long term,and the cross-track amplitude will increase.3,4For the MEO region,the luni-solar perturbations are important influence factors except for theJ2perturbation,with the magnitude of 10-7–10-5.5–7Ref.7shows that the luni-solar perturbations will lead to the long-periodic variations of the inclination,and the variations are relevant to the longitude of ascending node.For satellites in the same orbital plane,the long-term evolution law of the inclination is almost identical;for satellites in different orbital planes,the long-term evolution law of the inclination is evidently different.The magnitude of the solar radiation pressure perturbations for MEO region could achieve 10-7.8–10The solar radiation pressure perturbations usually cannot be exactly modeled due to the solar activity and the precision of the area-to-mass ratio.In the sight of the analysis method,for the effects of theJ2perturbation,the analytical approach is adopted,and for the effects of the perturbations on the constellation configuration,the semi-analytical method or numerical simulation method is usually adopted.

    To achieve a ground track that closely repeats from day to day,the orbit period of the GPS satellite is commonly given as half a sidereal day.The GPS satellites experience deep resonance with the Earth gravity,which affects the long stability of the constellation.About two GPS satellites should be maneuvered per month to maintain the configuration,and about four hours should be needed to complete the orbit maneuver and recover the navigation service.5,11As to the Galileo constellation,the station keeping requirements are fulfilled by selecting adequate initial offsets of the orbital parameters for each satellite,and at most one maintenance control is needed for each satellite during the lifetime span.7,12Although the perturbation compensation approach is adopted for Galileo constellation control,little literature introduces the implementation algorithm in detail.The orbital deviations and the perturbations are the fundamental reasons for the secular drifts of the periodical relative motion.Based on the longterm evolution law of relative motion under various perturbations,and by actively offsetting the orbital deviations to compensate the perturbations,the long-term variations of relative motion can be eliminated or mitigated.Therefore,the constellation configuration with certain deviations could be set as the target configuration,and by eliminating or mitigating the relative drift velocity,the control frequency and control budget can be reduced.In current literature,the orbital deviations for perturbation compensation are usually calculated by using the numerical simulation method.Daniel designed the deviations of semi-major axis,inclination,and argument of latitude for Galileo constellation,and by offsetting the initial configuration deviations,the constellation configuration can be maintained within a stable boundary.Zhang et al.proposed the semi-analytical design method of offsetting the orbital elements,which describes the approximate linear relationship between the semi-major axis deviation Δa,the inclination deviation Δiand the longitude of ascending node offset ΔΩ,the mean argument of latitude offset Δλ.13,14The existing perturbation compensation approach demonstrated the effectiveness of offsetting the configuration deviations to maintain the constellation stability.However,these methods are usually semianalytical or numerical,they always need several iterations to obtain the satisfied results,and they cannot reveal the essential relationship between the orbital element offsets and the secular drifts of the constellation configuration.

    The purpose of the current study is to develop analytical methods of describing the long-term evolution and perturbation compensation.The perturbation analysis models are established,which consider the initial configuration deviation,theJ2perturbation,and the luni-solar perturbations.An analytical method for calculating the offset of the orbit elements is proposed,which is applied to the constellation maintenance of the BDS MEO satellites.

    2.Theoretical analysis of long-term evolution of BDS MEO satellites

    2.1.Perturbation analysis model

    The canonical conjugate variables are constructed based on the Delaunay variables15:

    wherea,e,i,Ω,M,ω and λ correspond to the semi-major axis,eccentricity,inclination,right ascension of the ascending node,mean anomaly,argument of perigee,and mean argument of latitude,respectively;μEis the gravitational constant of the earth.

    According to Eq.(1)and the Hamiltonian model for MEO orbit,the canonical motion equations caused by the perturbations can be expressed as

    whereHfis Hamiltonian function for the perturbation motion of spacecraft.Thus,the long-term variations of the orbital elements due to theJ2perturbation and the luni-solar perturbations can be analyzed.

    The secular linear drifts of the longitude of ascending node and the mean argument of latitude can be expressed as

    the subscripts L and S represent the corresponding variables of the moon and the sun.oεis the inclination of the ecliptic of the Earth.The long-periodical perturbation terms related to Ω only affect orbital inclination.Based on Eq.(4),we can obtain

    Based on the long-periodical motion of inclination,the secular linear drifts of the longitude of ascending node and the mean argument of latitude,we can find the long-term evolution law between the orbital elements and the relative motion.When the perturbation compensation is the secular linear drift of the reference satellites,the accelerations of the deviations of the longitude of ascending node and the mean argument of latitude can be expressed as

    Therefore,we can see that the fundamental reason for the nonlinear variations of the longitude of ascending node and the mean argument of latitude in the MEO region is the long-periodical variation of inclination due to the luni-solar perturbations.

    2.2.Long-term evolution law of MEO constellation

    The BDS MEO satellites usually deploy on the same orbital altitude and inclination,and form a certain geometry structure by distributing the longitude of ascending node and the mean argument of latitude.The nominal constellation configuration satisfies the condition Δa= Δe= Δi=0 in the case of twobody assumption.

    For any two satellites in the same orbital plane,the condition Δa= Δe= Δi= ΔΩ0=0 can be established,where Δa,Δeand Δimean the relative semi-major axis,the relative eccentricity,and the relative inclination,respectively.According to the long-term perturbation analysis model shown as Eq.(3),the secular drifts of the longitude of ascending node and the mean argument of latitude are almost identical.Moreover,the long-periodical motion of inclination is almost the same.Then,the main influences causing the secular relation drift are initial orbital injection error and the analytical model error.The secular relative drifts are approximately linear,which can be compensated by offsetting the orbital elements and on-orbit identification.

    Based on the perturbation analysis of the luni-solar perturbations,with the assumption of small eccentricity,the following constraints can lead to the approximately linear variations of the inclination:

    wherem,sare natural numbers,respectively.In fact,when the left parts of Eq.(7)are less than 0.03(°)/day,the long periodical variation of Δicannot be neglected,which may destroy the long-term stability of MEO constellation.19In this case,the method of offsetting the initial orbital elements cannot compensate the secular relative drifts completely;it only can maintain the configuration in a certain timescale.

    For MEO orbits with the altitude above 20,000 km and the inclination within the range of 50–60°,we can always find the perturbation terms of the moon or the sun.To keep a stable constellation configuration,it is imperative to analyze and compensate the effects of the luni-solar perturbations.

    3.Design method of offsetting orbital elements

    3.1.Perturbation coefficients of offset value

    When the semi-major axis,eccentricity,and inclination vary secularly under the perturbations,the deviations of the longitude of ascending node and the mean argument of latitude satisfy the following constraints:

    where Δλ0and ΔΩ0represent the initial relative mean argument of latitude and the longitude of ascending node,respectively;Kλ1andKΩ1represent the linear variation velocities of the mean argument of latitude and the longitude of ascending node,respectively;Kλ2andKΩ2represent the variation accelerations of the mean argument of latitude and the longitude of ascending node,respectively.

    The relationship amongKλ1,KΩ1,Kλ2andKΩ2,the initial semi-major axis,eccentricity,inclination deviation,and the rate-of-change of the semi-major axis,eccentricity,inclination deviation are given as follows:

    whereKλ2andKΩ2are determined by the perturbations inducing Δ˙a,Δ˙eand Δ˙i;Kλ1andKΩ1are determined by the initial deviations of the orbital elements.

    When theJ2perturbation is considered,the Hamiltonian functions of the motion can be expressed as

    Thus,the secular drift rates of the longitude of ascending node and the mean argument of latitude can be calculated as

    wherendenotes the angular velocity.

    According to Eq.(11),the perturbation coefficients of the offsets are given as follows:

    In view of the magnitude,the following equations can be obtained:

    We can see that offsetting the semi-major axis to eliminate the secular relative drifts of the mean argument of latitude is the most efficient way to compensate the perturbations.

    3.2.Calculation model for orbital offsets

    whereKλ1andKΩ1are the design parameters,which are determined by the offsets of the orbital elements.To prolong the control time span of configuration maintenance,the initial mean argument of latitude Δλ0should be set as one boundary of the control range [Δλb,Δλg],and the extreme value should be set as another boundary of the control range [Δλb,Δλg].Then,we can obtain

    In the same way,the initial longitude of ascending node ΔΩ0should be set as one boundary of the control range[ΔΩb,ΔΩg],and the extreme value should be set as another boundary of the control range [ΔΩb,ΔΩg].Then,we can also obtain

    By combining Eqs.(21)and(22),the initial offsets of the orbital elements can be calculated.

    3.3.Perturbation compensation for luni-solar perturbations

    The general method of offsetting the orbital elements to compensate the perturbations should be further improved,while the luni-solar perturbations are included.The magnitude of the secular perturbations of the luni-solar perturbations is one tenth of that of theJ2perturbation.Therefore,the lunisolar perturbations must be considered while the perturbation coefficients of the offsets are determined.

    Then,the perturbation coefficients of the offsets can be expressed as17

    where theJ2perturbation coefficients are shown in Eqs.(12)–(17);the subscript Z represents the coefficients of the zonal perturbations,the superscriptJ2represents theJ2perturbation,the subscripts L and S represent the perturbation coefficients of the luni-solar perturbations.17

    Meanwhile,Δ˙ishould be determined according to the main perturbation terms of the luni-solar perturbations.Without loss of generality,according to the analysis about Eq.(7),the long-periodical perturbation terms of the luni-solar perturbations can be calculated by the following equations:

    To increase the precision of perturbation compensation,the calculation formula for Δ˙ican be obtained as

    To compare the analytical perturbation compensation approach with the traditional numerical approach,we introduce the principle of the numerical perturbation compensation approach.

    According to theJ2perturbation,the following linear relationship between Δa,Δiand ΔΩ,Δλ exists.20

    Based on Eq.(26),to eliminate the secular drifts of ΔΩ and Δλ,the offsets of Δaand Δican be obtained as follows:

    According to Eq.(27),Fig.1 presents the calculation flow of using the numerical approach to compensate the perturbations of MEO constellation.

    As seen in Fig.1,the secular drifts of ΔΩ and Δλ can be obtained after high precision numerical propagation,and the offsets of Δaand Δican be obtained by using Eq.(27).To compensate the influences of many perturbations and obtain the satisfied constellation stability,the calculation flow,as shown in Fig.1,should be iterated.

    4.Case study for perturbation compensation of BDS MEO satellites

    4.1.Requirements of constellation stability

    The altitude of the BDS MEO constellation is 21528 km,the inclination is 55°,and the constellation configuration is Walker 24/3/1.15The orbital elements of the constellation are as shown in Table 1.

    To ensure the system service performance,the requirements of the constellation configuration can be given as follows:

    (1)The drift of the inclination should be smaller than ±2°;

    (2)The relative drift of the longitude of ascending node should be smaller than ±2°;

    (3)The relative drift of the mean argument of latitude should be smaller than ±5°.

    4.2.Long-term evolution of BDS MEO constellation

    A long-term evolution for the BDS MEO constellation is conducted to verify the effectiveness of the presented analytical method.A high precision orbital dynamical environment is built,which includes an EGM96 Earth’s gravity field with 20×20 order,the luni-solar perturbations,and the solar radiation pressure perturbations.Random orbital injection errors of semi-major axis with hundreds of meters are considered in the simulation.The calculation time is 10 years.The results of the long-term evolution before compensation are shown in Fig.2.

    Fig.1 Calculation flow of using numerical perturbation compensation approach.

    Fig.2 Long-term evolution of BDS MEO satellites before compensation within 10 years.

    As shown in Table 1,there are eight satellites in each orbital plane,therefore,each legend in Fig.2(c)represent the secular relative drifts of the mean argument of latitude for eight satellites.Orbital injection errors lead to the secular relative drifts of the mean argument of latitude,which can be corrected by using the on-orbit identification method.

    As shown in Fig.2,we can see that the long-term evolution law is consistent with the analytical results discussed in Section 2.2:

    (1)For any two satellites in the same orbital plane,the secular drifts of the longitude of ascending node and the mean argument of latitude are almost identical;the long-periodical motion of inclination is almost the same.

    (2)For any two satellites in different orbital planes,the long-periodical variations caused by the luni-solar perturbations are not identical anymore.

    The long-term evolution of the BDS MEO nominal configuration exceeds the requirement configuration maintenance range,which needs to be controlled.

    4.3.Maintenance control for BDS MEO constellation

    4.3.1.Results of proposed analytical perturbation compensation approach

    The analytical perturbation compensation approach of offsetting the orbital elements is adopted to control the BDS MEO constellation.Based on Eqs.(21)and(22),we calculated the initial deviations.The orbital elements after compensation are shown in Table 2.

    The results of the long-term evolution after compensation are shown in Fig.3.

    As shown in Fig.3,we can see that the proposed analytical perturbation compensation method is effective.For the BDS MEO constellation,the configuration does not require any control during 10 year mission lifetime.

    4.3.2.Results of traditional numerical perturbation compensation approach

    The traditional numerical perturbation compensation approach for offsetting the orbital elements is adopted to control the BDS MEO constellation.We did eight iterations to obtain the orbital offsets,and the results of perturbation compensation are shown in Fig.4.

    4.3.3.Comparisons and discussions

    Comparing Fig.3 with Fig.4,we can see that the long-term evolution performance of the inclinations,the longitude of ascending node and the mean argument of latitude of the proposed analytical perturbation compensation approach are better than those of the traditional numerical perturbation compensation approach.The advantages of the analytical model are shown in two aspects.One is that it needs no iteration for computing the offsets of the orbital elements,and the other is that the offsets of the orbital elements can be calculated with respect to the mean argument of latitude and the longitude of ascending node directly.The comparisons validate the effectiveness of superiority of the proposed analytical perturbation compensation approach.

    Table 2 Orbital elements after compensation.

    Fig.3 Long-term evolution of BDS MEO satellites within 10 years by using analytical perturbation compensation approach.

    5.Conclusions

    In this study,the analytical models for long-term evolution and perturbation compensation of BeiDou Navigation Satellite System(BDS)Medium Earth Orbit(MEO)constellation are proposed.The proposed methods are intuitive,and can reveal the essential relationship between the orbital element offsets and the secular drifts of the constellation configuration.Moreover,they do not need any iteration compared with the traditional semi-analytical or numerical methods.The presented analytical methods are validated by the case study of the BDS MEO constellation maintenance.The results show that the perturbation compensation approach is effective,and the BDS MEO constellation needs no control during 10 years by using the analytical methods.

    Fig.4 Long-term evolution of BDS MEO satellites within 10 years by using traditional numerical perturbation compensation approach.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China(No.61403416).

    Appendix A.Supplementary material

    Supplementary data associated with this article can be found,in the online version,at https://doi.org/10.1016/j.cja.2017.10.010.

    1.China Satellite Navigation Office[Internet].BeiDou Navigation Satellite System open service performance standard(Version 1.0).[updated 2013 December;cited 2016 Oct 18].Available from:http://en.beidou.gov.cn/.

    2.China Satellite Navigation Office[Internet].BeiDou Navigation Satellite System signal in space interface control document open service signal(Version 2.0).[updated 2013 December;cited 2016 Oct 18].Available from:http://en.beidou.gov.cn/.

    3.Schaub H,Alfriend KT.J2-invariant relative orbits for spacecraft formations.Celestial Mech Dyn Astron2001;79(2):77–95.

    4.Koon WS,Marsden JE.J2dynamics and formation flight.Reston:AIAA;2001 Aug 6–9.Report No.:AIAA-2001-4090.

    5.Schutz BE,Craig DE.GPS orbit evolution:1998–2000.Reston:AIAA;2000 Aug 14–17.Report No.:AIAA-2000-4237.

    6.Ricardo P,Belen MP,Miguel RM.The Galileo constellation design:a systematic approach.Proceedings of the 18th international technical meeting of the satellite division of the institute of navigation(ION GNSS 2005);2005 Sep 13–16;Long Beach,CA,USA,2005.p.1296–306.

    7.Cambriles AP.Galileo station keeping strategy.20th international symposium on space flight dynamics;2007 Sep 24–28;Annapolis,Maryland,USA,2007.p.1–14.

    8.Marek Z,Sima A,Ant S,Paul C.Taking the long view:the impact of spacecraft structural design and high precision force modeling on long-term orbit evolution.ION GPS/GNSS 2003;2003 Sep 9–12;Portland,OR,USA,2003.p.1002–8.

    9.Rodriguez SC.Adjustable box-wing model for solar radiation pressure impacting GPS satellites[dissertation].Munchen:Technische Universitat Munchen;2012.

    10.Stefanelli L,Metris G.Solar gravitational perturbations on the dynamics of MEO:increase of the eccentricity due to resonances.Adv Space Res2015;55(7):1855–67.

    11.Chao C,Schmitt D.Eliminating GPS stationkeeping maneuvers by changing the orbit altitude.Proceedings of the AAS/AIAA astrodynamics conference;1989 Aug 7–10;San Diego,CA,USA,1990.p.623–43.

    12.Peiro AM,Beech TW,Garcia AM,Merino MR.Galileo in-orbit control strategy.Proceedings of the IAIN world congress in association with the U.S.ION Annual Meeting;2000 Jun 26–28;San Diego,CA,USA,2000.p.469–80.

    13.Zhang YL,Fan L,Zhang Y,Xiang JH.Theory and design of satellite constellation.Beijing:Science Press;2008[Chinese].

    14.Xiang JH,Fan L,Zhang YL.Design and capability analysis of an aircraft with in flatable wing.Flight Dyn2007;25(4):81–5[Chinese].

    15.Kamel A,Ekman D,Tibbitts R.East-west station keeping requirements of nearly synchronous satellites due to Earth’s triaxiality and luni-solar effects.Celestical Mech1973;8(1):129–48.

    16.Jiang C.Perturbations of spacecraft relative motion and its compensation control[dissertation].Beijing:Tsinghua University;2015.

    17.Kaula WM.Development of the Lunar and Solar disturbing functions for a close satellite.Astron J1962;67:300–3.

    18.Delhaise F,Morbidelli A.Luni-solar effects of geosynchronous orbits at the critical inclination.Celestial Mech Dyn Astron1993;57(1–2):155–73.

    19.Li HN,Li JS,Jiao WH.Analyzing perturbation motion and studying con figuration maintenance strategy for Compass-M navigation constellation.J Astron2010;31(7):1756–61[Chinese].

    20.Qian S,Li HN,Wu SG.Perturbation compensation strategy for MEO non-resonant navigation constellation maintenance.J Natil Univ Defense Technol2014;36(2):53–60[Chinese].

    亚洲av免费在线观看| 亚洲成人一二三区av| 18禁裸乳无遮挡免费网站照片| 韩国高清视频一区二区三区| a级一级毛片免费在线观看| 一个人看的www免费观看视频| 只有这里有精品99| 色哟哟·www| 国产亚洲av嫩草精品影院| 国产单亲对白刺激| 日韩国内少妇激情av| 婷婷色麻豆天堂久久| 丰满人妻一区二区三区视频av| 日日摸夜夜添夜夜爱| 午夜激情欧美在线| 精品久久久久久久人妻蜜臀av| 三级男女做爰猛烈吃奶摸视频| 欧美日韩精品成人综合77777| 一级毛片电影观看| 最近2019中文字幕mv第一页| 少妇的逼水好多| 国产黄片美女视频| 亚洲国产av新网站| 国产av国产精品国产| 国产精品一二三区在线看| 午夜免费观看性视频| 日本-黄色视频高清免费观看| 日本wwww免费看| 日本爱情动作片www.在线观看| 一级黄片播放器| 美女被艹到高潮喷水动态| 亚洲欧美精品自产自拍| 国产成人精品婷婷| 99久国产av精品国产电影| 色尼玛亚洲综合影院| 黄色配什么色好看| 国产一区二区在线观看日韩| 男女视频在线观看网站免费| 高清毛片免费看| 久久鲁丝午夜福利片| 亚洲精品,欧美精品| 男女国产视频网站| 欧美丝袜亚洲另类| 国产一区二区三区综合在线观看 | 色5月婷婷丁香| 男女啪啪激烈高潮av片| 青春草亚洲视频在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲三级黄色毛片| 亚洲精品乱码久久久久久按摩| 久久久国产一区二区| 亚洲最大成人手机在线| 中文字幕av在线有码专区| 国产免费一级a男人的天堂| 97超视频在线观看视频| 毛片女人毛片| 一级爰片在线观看| 精品人妻偷拍中文字幕| 激情 狠狠 欧美| 午夜激情欧美在线| 91狼人影院| 免费高清在线观看视频在线观看| 国产国拍精品亚洲av在线观看| 校园人妻丝袜中文字幕| 在线观看免费高清a一片| 自拍偷自拍亚洲精品老妇| 色综合亚洲欧美另类图片| 搡老妇女老女人老熟妇| 91在线精品国自产拍蜜月| 亚洲国产精品成人久久小说| 成人二区视频| 亚洲人成网站高清观看| 久久久精品免费免费高清| 少妇熟女aⅴ在线视频| 午夜福利网站1000一区二区三区| 国产午夜精品久久久久久一区二区三区| 免费av毛片视频| 亚洲欧洲日产国产| 卡戴珊不雅视频在线播放| 午夜福利在线观看吧| 99久国产av精品国产电影| 国产一级毛片在线| 又黄又爽又刺激的免费视频.| 91精品一卡2卡3卡4卡| 亚洲av二区三区四区| 一级毛片黄色毛片免费观看视频| 亚洲av国产av综合av卡| 久久精品久久久久久噜噜老黄| 99久久中文字幕三级久久日本| 噜噜噜噜噜久久久久久91| 国国产精品蜜臀av免费| 天美传媒精品一区二区| 日本一二三区视频观看| 女人被狂操c到高潮| 天堂影院成人在线观看| 欧美97在线视频| 色5月婷婷丁香| 大陆偷拍与自拍| 亚洲精品,欧美精品| 在线观看一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 日韩强制内射视频| 国产免费视频播放在线视频 | 亚洲国产日韩欧美精品在线观看| 国产白丝娇喘喷水9色精品| 欧美xxⅹ黑人| ponron亚洲| 深夜a级毛片| 国产成人免费观看mmmm| 午夜激情久久久久久久| 一级毛片久久久久久久久女| 卡戴珊不雅视频在线播放| 国产精品久久久久久精品电影小说 | 中国美白少妇内射xxxbb| 网址你懂的国产日韩在线| 免费观看av网站的网址| 日日啪夜夜撸| 蜜臀久久99精品久久宅男| 草草在线视频免费看| 亚洲精品色激情综合| 我要看日韩黄色一级片| 午夜福利视频精品| 久久久色成人| 亚洲精品中文字幕在线视频 | 中文字幕亚洲精品专区| 午夜精品一区二区三区免费看| 欧美激情国产日韩精品一区| 白带黄色成豆腐渣| 国产高潮美女av| 男人舔女人下体高潮全视频| 777米奇影视久久| 搡老妇女老女人老熟妇| 午夜精品在线福利| 免费看av在线观看网站| 欧美一级a爱片免费观看看| 久久久久免费精品人妻一区二区| 欧美日韩综合久久久久久| 汤姆久久久久久久影院中文字幕 | 最后的刺客免费高清国语| 国产中年淑女户外野战色| 别揉我奶头 嗯啊视频| 97超碰精品成人国产| 国产白丝娇喘喷水9色精品| 久久久午夜欧美精品| 777米奇影视久久| 国产高清有码在线观看视频| 在线免费十八禁| 蜜桃亚洲精品一区二区三区| 亚洲在线自拍视频| 成人高潮视频无遮挡免费网站| 国产熟女欧美一区二区| 久久久午夜欧美精品| 99久久中文字幕三级久久日本| 欧美性感艳星| 国产亚洲av嫩草精品影院| 久久久久久久国产电影| 中国美白少妇内射xxxbb| 久久热精品热| 免费不卡的大黄色大毛片视频在线观看 | 午夜老司机福利剧场| 国产单亲对白刺激| 精品久久久噜噜| 伦理电影大哥的女人| 亚洲真实伦在线观看| 亚洲自偷自拍三级| 亚洲aⅴ乱码一区二区在线播放| 国产麻豆成人av免费视频| 欧美成人午夜免费资源| 欧美激情久久久久久爽电影| 亚洲在久久综合| 成人欧美大片| 成人美女网站在线观看视频| 精品亚洲乱码少妇综合久久| 国产久久久一区二区三区| 亚洲精品国产av蜜桃| 中文字幕免费在线视频6| 欧美日韩亚洲高清精品| 非洲黑人性xxxx精品又粗又长| 午夜爱爱视频在线播放| 99热全是精品| 麻豆av噜噜一区二区三区| 精品99又大又爽又粗少妇毛片| 久久久欧美国产精品| 免费大片黄手机在线观看| 日本与韩国留学比较| 免费电影在线观看免费观看| 在线观看免费高清a一片| 欧美成人精品欧美一级黄| av在线亚洲专区| 男人舔奶头视频| 久久久久久久午夜电影| 麻豆成人午夜福利视频| 午夜久久久久精精品| 亚洲在久久综合| 日韩欧美精品v在线| 激情 狠狠 欧美| 亚洲成人久久爱视频| 人人妻人人看人人澡| av网站免费在线观看视频 | 麻豆精品久久久久久蜜桃| av在线亚洲专区| 黄片无遮挡物在线观看| 视频中文字幕在线观看| 少妇人妻精品综合一区二区| 最近最新中文字幕大全电影3| 欧美最新免费一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 成人午夜高清在线视频| 国产麻豆成人av免费视频| 中文字幕av在线有码专区| 男女边摸边吃奶| 亚洲国产欧美人成| 久久久久精品性色| 久久精品熟女亚洲av麻豆精品 | 亚洲av免费在线观看| 国产片特级美女逼逼视频| 亚洲在线自拍视频| 成人毛片60女人毛片免费| 久久久久久久久久黄片| 一本一本综合久久| 一级毛片aaaaaa免费看小| 国产免费一级a男人的天堂| 精品一区二区三区人妻视频| 国产午夜精品久久久久久一区二区三区| 青青草视频在线视频观看| 国产成人a区在线观看| 色5月婷婷丁香| 亚洲精品久久久久久婷婷小说| 国产成人精品婷婷| 成年人午夜在线观看视频 | 插逼视频在线观看| 国产一区亚洲一区在线观看| 一本一本综合久久| 国产淫语在线视频| 永久网站在线| 免费不卡的大黄色大毛片视频在线观看 | 婷婷色av中文字幕| 欧美激情国产日韩精品一区| 亚洲成人中文字幕在线播放| 欧美一区二区亚洲| 欧美成人午夜免费资源| 天堂中文最新版在线下载 | 日本与韩国留学比较| 一个人免费在线观看电影| 最近2019中文字幕mv第一页| 91精品一卡2卡3卡4卡| 街头女战士在线观看网站| 久久久精品94久久精品| 国产美女午夜福利| 久久久精品免费免费高清| 2022亚洲国产成人精品| 超碰av人人做人人爽久久| 久久久久久久国产电影| 成人亚洲欧美一区二区av| 国产精品人妻久久久影院| 国产麻豆成人av免费视频| 午夜免费男女啪啪视频观看| 午夜日本视频在线| 一个人免费在线观看电影| 久久久久久久久久久丰满| 欧美不卡视频在线免费观看| 日韩大片免费观看网站| 毛片女人毛片| 可以在线观看毛片的网站| 国产黄色免费在线视频| 嫩草影院精品99| 国产视频内射| 欧美日本视频| 亚洲欧美精品专区久久| 校园人妻丝袜中文字幕| 国产久久久一区二区三区| av.在线天堂| 国产成人精品婷婷| 水蜜桃什么品种好| 国产伦一二天堂av在线观看| 男人舔女人下体高潮全视频| videossex国产| 黄色欧美视频在线观看| 在线观看av片永久免费下载| 有码 亚洲区| 非洲黑人性xxxx精品又粗又长| 国产亚洲精品av在线| 亚洲乱码一区二区免费版| 亚洲欧美日韩卡通动漫| 十八禁国产超污无遮挡网站| 亚洲性久久影院| 国产精品一及| 日本欧美国产在线视频| 成年女人在线观看亚洲视频 | 亚洲成人中文字幕在线播放| 六月丁香七月| 精品一区二区三卡| 人妻夜夜爽99麻豆av| 欧美性猛交╳xxx乱大交人| 秋霞在线观看毛片| 人妻制服诱惑在线中文字幕| 久久久午夜欧美精品| 日韩大片免费观看网站| 能在线免费看毛片的网站| 久久久久性生活片| 国产午夜精品一二区理论片| 国产精品福利在线免费观看| 观看美女的网站| 欧美日韩亚洲高清精品| av福利片在线观看| 日韩大片免费观看网站| 99热6这里只有精品| 久久精品国产鲁丝片午夜精品| 插逼视频在线观看| 高清av免费在线| 一级av片app| 亚洲经典国产精华液单| 99久久中文字幕三级久久日本| 精品人妻熟女av久视频| 日韩国内少妇激情av| 美女主播在线视频| 亚洲国产最新在线播放| 日韩电影二区| 日本午夜av视频| 最近手机中文字幕大全| 国产亚洲精品av在线| 久久精品夜夜夜夜夜久久蜜豆| 亚洲综合精品二区| 久久久精品免费免费高清| av免费观看日本| 亚洲婷婷狠狠爱综合网| 国产色婷婷99| 亚洲乱码一区二区免费版| 嫩草影院入口| 久久精品熟女亚洲av麻豆精品 | 欧美性猛交╳xxx乱大交人| 欧美高清性xxxxhd video| 国产免费福利视频在线观看| 精品久久国产蜜桃| 麻豆乱淫一区二区| 大香蕉久久网| 精品午夜福利在线看| 国产美女午夜福利| 麻豆成人av视频| 搡女人真爽免费视频火全软件| 美女cb高潮喷水在线观看| 成年女人在线观看亚洲视频 | 日韩欧美精品v在线| 嫩草影院入口| 可以在线观看毛片的网站| av播播在线观看一区| 欧美成人一区二区免费高清观看| 国产色婷婷99| 国产真实伦视频高清在线观看| 午夜福利在线观看吧| 免费观看精品视频网站| 汤姆久久久久久久影院中文字幕 | 国产精品蜜桃在线观看| 久久久久久久久久久免费av| www.色视频.com| 麻豆成人午夜福利视频| 欧美人与善性xxx| 69av精品久久久久久| 亚洲av在线观看美女高潮| 大话2 男鬼变身卡| 少妇裸体淫交视频免费看高清| 久热久热在线精品观看| 日本-黄色视频高清免费观看| or卡值多少钱| 久久精品国产鲁丝片午夜精品| 亚洲精品亚洲一区二区| 综合色丁香网| 直男gayav资源| 神马国产精品三级电影在线观看| 一级毛片我不卡| 天堂av国产一区二区熟女人妻| freevideosex欧美| 天天躁日日操中文字幕| 真实男女啪啪啪动态图| 成人亚洲欧美一区二区av| 国产视频首页在线观看| 久久久久久久国产电影| 身体一侧抽搐| 最近中文字幕高清免费大全6| 亚洲天堂国产精品一区在线| 22中文网久久字幕| 久久97久久精品| 国产成人a区在线观看| 2021天堂中文幕一二区在线观| 插阴视频在线观看视频| 国产亚洲精品av在线| 国产伦精品一区二区三区视频9| 成人性生交大片免费视频hd| 国产午夜精品论理片| 国产亚洲91精品色在线| 成人鲁丝片一二三区免费| 欧美三级亚洲精品| 免费观看性生交大片5| 国产一区有黄有色的免费视频 | 午夜亚洲福利在线播放| 国产色爽女视频免费观看| 亚洲精品,欧美精品| 亚洲va在线va天堂va国产| 麻豆成人av视频| 国产成人精品婷婷| 蜜桃亚洲精品一区二区三区| 三级国产精品欧美在线观看| 久久6这里有精品| 天堂av国产一区二区熟女人妻| 免费播放大片免费观看视频在线观看| 最近2019中文字幕mv第一页| 久久久久久久久久久免费av| or卡值多少钱| 国产一区有黄有色的免费视频 | 免费观看无遮挡的男女| 精品国内亚洲2022精品成人| 热99在线观看视频| 午夜激情福利司机影院| 白带黄色成豆腐渣| 国产高清国产精品国产三级 | 18禁在线播放成人免费| 国产亚洲av片在线观看秒播厂 | 久久韩国三级中文字幕| 99久久精品一区二区三区| 亚洲综合色惰| 婷婷色av中文字幕| 一区二区三区高清视频在线| 亚洲婷婷狠狠爱综合网| 人妻一区二区av| 国产男人的电影天堂91| 中文字幕制服av| 久久久亚洲精品成人影院| 亚洲高清免费不卡视频| 久久久欧美国产精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩强制内射视频| 亚洲国产精品国产精品| 国产真实伦视频高清在线观看| 亚洲欧美中文字幕日韩二区| 色网站视频免费| 最近视频中文字幕2019在线8| 欧美97在线视频| 免费av毛片视频| 国产精品伦人一区二区| 久久久久久九九精品二区国产| 一区二区三区免费毛片| 国产精品99久久久久久久久| 国产黄a三级三级三级人| 国产乱人偷精品视频| 99热网站在线观看| 91精品伊人久久大香线蕉| 国产精品人妻久久久久久| 精品一区二区免费观看| 国产一级毛片在线| 欧美精品一区二区大全| 午夜福利视频1000在线观看| 免费无遮挡裸体视频| 久久综合国产亚洲精品| 日韩欧美一区视频在线观看 | 一级毛片久久久久久久久女| 国产欧美日韩精品一区二区| 亚洲综合色惰| 晚上一个人看的免费电影| 亚洲av中文av极速乱| 老司机影院成人| 熟妇人妻久久中文字幕3abv| 国产成人福利小说| 国产在视频线在精品| 欧美日韩在线观看h| 成人性生交大片免费视频hd| 国产av码专区亚洲av| 日韩av在线大香蕉| 熟妇人妻久久中文字幕3abv| 亚洲国产欧美人成| 又黄又爽又刺激的免费视频.| 搡女人真爽免费视频火全软件| a级毛色黄片| 亚洲av中文av极速乱| 成人性生交大片免费视频hd| 永久网站在线| 亚洲精品国产av成人精品| 白带黄色成豆腐渣| 午夜亚洲福利在线播放| 中文字幕av在线有码专区| 色哟哟·www| 一级爰片在线观看| 草草在线视频免费看| 如何舔出高潮| 亚洲真实伦在线观看| 亚洲人与动物交配视频| 亚洲精品aⅴ在线观看| 午夜老司机福利剧场| 黄色日韩在线| 一夜夜www| 亚洲性久久影院| 国产亚洲最大av| 国产欧美日韩精品一区二区| av免费在线看不卡| 久久久久久久国产电影| 日本色播在线视频| 三级国产精品片| 久久精品人妻少妇| 2021少妇久久久久久久久久久| 亚洲成人av在线免费| 91久久精品国产一区二区成人| 成人高潮视频无遮挡免费网站| 国产片特级美女逼逼视频| 国产高清不卡午夜福利| 91久久精品国产一区二区成人| 国产精品一区二区三区四区免费观看| 一级毛片久久久久久久久女| 18+在线观看网站| 乱人视频在线观看| 在线播放无遮挡| av免费在线看不卡| 亚洲不卡免费看| 少妇人妻一区二区三区视频| 麻豆av噜噜一区二区三区| 国产一区二区在线观看日韩| 国产中年淑女户外野战色| 日韩av不卡免费在线播放| 能在线免费观看的黄片| 国内少妇人妻偷人精品xxx网站| 一级毛片我不卡| 国产av码专区亚洲av| 最近手机中文字幕大全| 日本-黄色视频高清免费观看| 久久久久九九精品影院| 亚洲电影在线观看av| 久久久久久国产a免费观看| 国产在线男女| 欧美性猛交╳xxx乱大交人| 中文资源天堂在线| 免费大片18禁| kizo精华| 超碰av人人做人人爽久久| 麻豆成人av视频| 久久精品久久精品一区二区三区| 国内精品一区二区在线观看| av在线播放精品| 三级经典国产精品| 国精品久久久久久国模美| 岛国毛片在线播放| 免费观看无遮挡的男女| 日韩,欧美,国产一区二区三区| 女人十人毛片免费观看3o分钟| 亚洲最大成人中文| 女人十人毛片免费观看3o分钟| 成年版毛片免费区| videossex国产| 亚洲欧美日韩东京热| 国产黄色小视频在线观看| 少妇熟女aⅴ在线视频| 亚洲aⅴ乱码一区二区在线播放| 国产毛片a区久久久久| 午夜福利在线观看吧| 国产有黄有色有爽视频| 婷婷色综合www| 两个人的视频大全免费| 国产成人aa在线观看| 神马国产精品三级电影在线观看| 久久99热6这里只有精品| 亚洲真实伦在线观看| 91精品国产九色| 草草在线视频免费看| 精品人妻一区二区三区麻豆| 亚洲精品乱久久久久久| 精品久久久噜噜| 日韩av免费高清视频| 亚洲av中文字字幕乱码综合| 超碰av人人做人人爽久久| 日韩,欧美,国产一区二区三区| 91久久精品国产一区二区成人| 亚洲成人av在线免费| 免费观看的影片在线观看| 边亲边吃奶的免费视频| 最近2019中文字幕mv第一页| 国产亚洲5aaaaa淫片| 国产精品蜜桃在线观看| 精品久久久久久电影网| 国产一区有黄有色的免费视频 | 麻豆成人午夜福利视频| 男的添女的下面高潮视频| 少妇熟女欧美另类| 91av网一区二区| 欧美 日韩 精品 国产| 亚洲国产av新网站| 男女那种视频在线观看| 久久久久久久久大av| 国产色婷婷99| 久久久久久国产a免费观看| 尾随美女入室| 免费大片18禁| 国产精品一区二区三区四区免费观看| 六月丁香七月| 亚洲电影在线观看av| 国产精品美女特级片免费视频播放器| 亚洲精品久久久久久婷婷小说| 嘟嘟电影网在线观看| 久久久成人免费电影| 亚洲天堂国产精品一区在线| 久久久国产一区二区| 日韩成人伦理影院| 两个人视频免费观看高清| 精品不卡国产一区二区三区| 一本久久精品| 久久久亚洲精品成人影院| 超碰97精品在线观看| 美女主播在线视频| 国产在视频线在精品| 中文精品一卡2卡3卡4更新| 欧美变态另类bdsm刘玥| 综合色丁香网| 美女脱内裤让男人舔精品视频| 国产片特级美女逼逼视频| 只有这里有精品99| 午夜精品国产一区二区电影 | 搞女人的毛片| 欧美性猛交╳xxx乱大交人| 日韩国内少妇激情av|