• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of crystal orientation for turbine blades with anisotropy materials

    2018-03-21 05:29:16YunqiuTANChopingZANGBioZHOUXioweiWANGPETROV
    CHINESE JOURNAL OF AERONAUTICS 2018年2期

    Yunqiu TAN,Choping ZANG,*,Bio ZHOU,Xiowei WANG,E.P.PETROV

    aJiangsu Province Key Laboratory of Aerospace Power System,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    bSchool of Engineering of Informatics,University of Sussex,Brighton BN19QT,United Kingdom

    1.Introduction

    Turbine blades are operated on complex thermal and mechanical loads with thermal resistance,thermomechanical fatigue,creep and stress rupture problems.1–3In order to improve the performance capabilities of turbine blades in the operating environments such as high temperature and the conditions of high and low cycle fatigues,nickel-based superalloys are widely used as materials for gas turbine blades.Generally,nickel-based crystal superalloys include Single Crystal(SC)and Directionally Solidified(DS)alloys,and furthermore their materials are Face-Centred Cubic(FCC).4The single crystal blade consists of one columnar grain and can be modelled as orthotropic material in the lattice directions,while the directionally solidified blade consists of several columnar grains and can be modelled as transverse isotropic by assuming that the number of the columnar grains included in the blade is large.5Nickel-based turbine blades are directionally solidified during the casting process with the crystallographic direction[0,0,1]aligned with the blade stacking axisZ.Practically,this alignment of blade stacking axis,Z,with crystal primary axis,[0,0,1],is variable and controlled within 15°,known as the primary angle,marked as θ.6

    Actually,the characteristics of dynamics,fatigue failure and elastic stresses are variable for the turbine blades with different crystal orientations.So,it is paramount to achieve the crystal orientations of arbitrary turbine blades before processing numerical calculations for them.Until now,two methods,which are Electro-Back Scattered Diffraction(EBSD)and Rotating Orientation X-Ray Diffraction(RO-XRD),have been developed to measure the crystal orientation of turbine blades with anisotropy materials.7–9Both methods can provide approximate results in measuring the crystal orientation angles.However,increasing the withdrawal velocity will result in a higher misorientation during directional solidification and a higher initial deviation will cause a more severe increase in misorientation after withdrawal transition.Besides,complex and expensive equipment is essential in the measuring process for previously developed methods.

    In this paper,a method based on enhanced mode basis is developed to linearly express the mode shapes of arbitrary turbine blades.The proposed enhanced mode basis can be effectively used for modal analysis of blades with arbitrary crystal orientations.Surrogate model based on Kriging method is also introduced for solving the eigenproblem of blades under arbitrarily distributed crystal orientation with high efficiency and accuracy during the process.Finally,genetic algorithm is employed to identify the crystal orientations of turbine blades by optimizing the defined fitness functions that were constructed by considering the variation of frequencies and correlation of mode shapes.

    The content of this paper is arranged as follows:in the first section,characteristics of turbine blades with anisotropy materials and some previous work on the crystal orientation identification are brie fly presented;in the second section,the properties of blades with anisotropy materials are described and the construction of enhanced mode basis are explored.Furthermore,the identification process based on surrogate model and the genetic algorithm are provided;Then,various examples of numerical studies are utilized to demonstrate the validity of the proposed method;conclusions are drawn and discussion is made in the end.

    2.Method for crystal orientation identification

    2.1.Blades with anisotropy materials

    The single crystal and directionally solidified superalloys can be modelled as orthotropic material properties.The orthotropic material is expressed with three mutually perpendicular axes of symmetry and nine independent material coefficients.10,11The compliance matrix ECis usually defined by the so-called engineering constants:Eiis elastic modulifor tension compression with respect to the directions of orthotropic axes;νijis the Poisson’s ratio for the transverse strain in thejth direction when the material is stressed in theith direction;G12,G13andG23are the shear moduli for the planes of coordinate axes designed by subscripts,as Eq.(1).For SC alloys,the elements,(Ei,Gij,νij),of the compliance matrix are the same in three perpendicular directionsX,YandZ.For directionally solidified alloys,however,these kinds of materials are transversely isotropic.For example,DS alloys have one isotropic plane and the same values of engineering constants corresponding to transverse,namely,E2=E3,G12=G13,ν12= ν13and the directions of subscript 1 and 2 with transverse plane are according.

    According to the generalised Hook’s law,the stiffness matrix D and compliance matrix ECare related as

    Practically,the primary axis of blades is usually within a cone spanning up to 15°of the stacking line as shown in Fig.1.And the coordinate transformation of stress and strain between two Coordinate Systems(CS)is as follows:

    where the subscript G and M denote the specimen and material coordinate systems,respectively;Tσand Tεare formulated as6

    Fig.1 Material(x,y,z)and specimen(X,Y,Z)coordinate systems.

    Table 1 Direction cosines.

    whereli,miandniare direction cosines between material-CS and specimen-CS of turbine blades.Moreover,the position of the material system(x,y,z)with respect to the specimen system(X,Y,Z)is determined by the direction cosines shown in Table 1.Therefore,when the alignment of two coordinate systems is not exactly parallel,the varied stiffness matrix,DG,is

    For the description of two coordinate systems,we adopt the first kind of Eulerian angles,where the order of three involving rotations are:(A)the first rotation is by the angle ψ about theZaxis of specimen system;(B)the second rotation is by the angle θ aboutX′axis of the first rotated system;(C)the third rotation is by the angle φ aboutZaxis of the second rotated system,as shown in Fig.2.In Cartesian coordinate system,the transformation matrices with respect toZandXaxes are as follows12,13:

    Fig.2 Eulerian angles involving three rotations.

    where α is the generalised rotation angle with respect to the corresponding specified axis.With the stipulated Eulerian angles,the final rotation matrix R,can be achieved by multiplying the three order rotation transformation matrices as

    In consequence,the direction cosines between two coordinate systems can be obtained as14

    2.2.Modal properties of blades with arbitrary crystal orientations

    The eigenproblem for turbine blades has the form:

    where K and M are the stiffness and mass matrices of original turbine blades,i.e.the material-CS of turbine blades exactly parallels to specimen-CS; δK and δM are the perturbed matrices of stiffness and mass due to variation of material-CS with respect to specimen-CS;~Λ and~Φ are the eigenvalue and eigenvector matrices,correspondingly.Actually,the crystal orientation variation only has influence on the stiffness of blades,while the mass is constant.So,the perturbed matrix of stiffness is a function of varied angles while the perturbed matrix of mass is a full zero matrix,i.e.δK= δK(ψ,θ,φ),δM=0.

    Practically,the turbine blades inevitably suffer from angle variation of crystal orientation,which leads to different stiffness perturbed matrices for arbitrary blade.The enhanced mode basis has been deliberately established to represent the modal properties of arbitrary turbine blades.Namely,the mode shapes of turbine blades with arbitrary crystal orientation can be approximately expressed as a linear combination of enhanced mode basis:

    where c is the coefficient matrix of blade mode shapes expanded over the enhanced mode basis; Φj(j=1,2,···,n)is a set of mode shapes obtained by blades with different crystal orientations;ΦEis the notation of the enhanced mode basis.Substituting Eq.(11)into Eq.(10)and pre-multiplying the transposition of enhanced mode basis,the eigenproblem equation can be formulated as

    where only the stiffness perturbed matrix δK,is unknown for arbitrary provided crystal orientations of turbine blades,when the eigenproblem is solved.

    By the presented rotation way shown in Fig.2,CS&DS alloys are both transversely isotropic.It is explicit that the primary angle is equal to the second order rotation angle,θ,and the first and third order rotation angles,ψ and φ,describe the position of a cone with a conical angle,θ,and the rotation level,φ,around its primary axis.For the turbine blade with single crystal and directionally solidified alloys,the position of primary axis is critical and it primarily influences its mechanical behavior such as the natural frequencies,mode shapes,stress and strain,etc.Generally,to meet the properties of anisotropic blades and visualize the primary axis in a planar polar figure for convenience,the primary angle,θ,and its circumferential position,β,referenced toXaxis are presented.The circumferential position angle,β,under the introduced rotation order can be derived from Eq.(9)as

    when we calculate the angle,β,the limit of angle from antitangent solution should be taken into account.The visualized figure of the primary axis description and notations is shown in Fig.3(a).In the picture,three red circles are presented and show primary axes of three blades.The primary angles,θ,and circumferential angles,β,in plane of these three blades are(5°,10°,and 15°)and(0°,120°,and 240°),respectively.Based on the visualization of primary angle position,the construction of enhanced mode basis,ΦE,is shown in Fig.3(b).Generally,the enhanced mode basis is constructed by a large number of mode sets of blades.Considering the requirements of accuracy and efficiency in calculation,the number of mode sets is usually truncated with optimal efficiency.Here the enhanced mode basis is constructed by a mode set obtained from the blade without any variation of primary axis and four mode sets obtained from the blade whose primary angle is 13°and uniformly distributed in the circumferential position,that is,the number of enhanced mode sets is 5,i.e.n=5 in Eq.(11).

    2.3.Crystal orientation identification based on surrogate model and genetic algorithm

    For convenience,Eq.(12)can be rewritten as

    where Ko= ΦTEKΦE,δK=ΦTEδKΦEand M=ΦTEMΦEdenote the corresponding condensed matrix of original stiffness matrix,perturbed stiffness matrix and mass matrix of turbine blades respectively.The enhanced mode basis can be obtained from blades with crystal orientations shown in Fig.3(b).In addition,the enhanced mode basis is constant and can be used for arbitrary blades with any crystal orientation.So,Koand M are constant matrices for any case.In order to efficiently describe the condensed matrix of stiffness perturbation,the Kriging method15,16is introduced to approximate the condensed perturbed matrix δK.The dimension of δK depends on the modal truncation number,i.e.the total dimension is 5 times the modal truncation number for the construction of the enhanced mode basis as shown in Fig.3(b).So,it is efficient to perform the approximation of elements of matrix δK.Under the ordering of the defined Eulerian angles,only the first two angles(ψ,θ)are important for the dynamic characteristics of turbine blades,so the condensed perturbed matrix is formulated as

    and moreover δK= [δK]T,so only the elements of upper/lower triangle of the condensed perturbed matrix need to be approximated.

    When the surrogate model is constructed based on Kriging method for the condensed perturbed stiffness matrix δK,the employed design points are visualized in Fig.4.Because the elements of δK are complex functions of angles θ and β,the total number of design points is 361(i.e.the angles θ and β within the considered range are uniformly partitioned into 11 and 36 points),which can obtain enough accuracy for approximating the elements of the condensed stiffness perturbed matrix with higher efficiency.Consequently,for an arbitrary blade,the eigenproblem of Eq.(14)can be solved directly based on δK that is achieved from a surrogate model with the corresponding crystal orientation of this turbine blade.

    For exactly identifying the crystal orientation with high efficiency,genetic algorithm is employed.17,18The modal information of blades is used to construct the fitness functions of genetic algorithm.The variations of modal properties obtained from Eq.(14)based on the surrogate model with respect to the unidentified structure are quantified as

    where Freqiis the frequency of theith mode obtained from Eq.(14),i.e.searching from constructed surrogate model;freqiis the frequency of theith mode of an unidentified blade;mis the number of modal truncation;MACiiis the Modal Assurance Criterion(MAC)of theith mode between mode shapes obtained from Eq.(11)and from the unidentified blade.The MAC values can be obtained as19

    whereiandjdenote the index of modes;φAand φBdenote the mode shapes of two compared structures respectively.

    Fig.3 Plan visualization of primary axis position.

    Fig.4 Crystal orientation distribution of design points for surrogate model construction.

    Consequently,considering the variations of modal properties between that achieved from Eq.(14)and from the unidentified blade,construction of three kinds of fitness functions for genetic algorithm is introduced and formulated as follows:

    The procedure of crystal orientation identification based on surrogate model and genetic algorithm is described as follows:

    (1)Construct the surrogate model based on Kriging method for condensed perturbed matrix of stiffness,δK.And,calculate the condensed matrices Koand M using enhanced mode basis with nominal/initial stiffness and mass matrices.

    (2)Prepare the modal properties(frequencies and mode shapes)for unidentified structures.

    (3)Optimize the fitness functions in Eq.(18)using genetic algorithm tool.The crystal orientation angles are identified when steady convergence emerges.

    3.Numerical studies

    3.1.Accuracy of enhanced mode representation and surrogate model

    In this section,the accuracy of using an enhanced mode basis to represent the mode shapes of turbine blade with arbitrary crystal orientation and the description of the condensed perturbed matrix,δK,by using a surrogate model are demonstrated.In general,the first 30 modes are considered for calculation in this paper.The anisotropy material employed for numerical calculations is DZ12520,21and the employed blade model is shown in Fig.5.This turbine blade model has about 47000 Degrees of Freedoms(DoFs)and is meshed by Solid 187 in ANSYS.The boundary condition of the blade is set to be fixed at the root.

    Accuracy of frequencies by using enhanced mode basis to express modes of arbitrary turbine blades is shown in Fig.6(a).From this picture,the maximum error of the first 30 modes is less than 0.0026%.The MAC values between the mode shapes derived from Eq.(11)and that from directly solving the finite element model of blade are plotted in Fig.6(b).The diagonal elements of MAC matrix are all equal to 1.It illustrates high accuracy of the proposed method by using an enhanced mode basis to linearly represent the mode shapes of arbitrary turbine blades with anisotropy materials.

    In order to perform the modal analysis of Eq.(14)in high efficiency,Kriging method is introduced to construct a surrogate model for the elements of the condensed perturbed matrix δK.For visualizing the variation of elements of the condensed perturbed matrix with respect to the position of primary axis,θ and β,the variation distribution of the first element of matrix δK is shown in Fig.7.The variation values are normalized to the maximum component.The variation distribution of other elements of condensed perturbed matrix possesses the same complex varied properties.Actually,any element of δK has a surrogate model as shown in Fig.7,but the variation distribution is different when the upper/lower triangle of matrix is considered(because δK is a symmetric matrix).

    Fig.5 Finite element model of employed turbine blade.

    Fig.6 Accuracy of enhanced mode representation versus original finite element model.

    Fig.7 Normalized variation distribution of the 1st element of condensed perturbed stiffness matrix.

    Fig.8 Accuracy of surrogate model versus original model.

    In order to illustrate the accuracy of the surrogate model based on Kriging method,an example is employed.The surrogate model is constructed as the previously mentioned method.Frequencies obtained from the directly-condensed perturbed matrix with respect to those from the condensed perturbed matrix based on the surrogate model are compared and the corresponding errors are shown in Fig.8(a).It can be seen that the maximum error from the surrogate model is less than 6.0×10-6%,almost no error being introduced by employing the surrogate model.Furthermore,the MAC values corresponding to this case are shown in Fig.8(b).It is shown that all the diagonal components of MAC matrix are equal to 1.That is,both mode shapes obtained from the directly condensed perturbed matrix and from the condensed perturbed matrix based on the surrogate model are in good agreement.Therefore,the surrogate model based on Kriging method for the condensed perturbed matrix is demonstrated with high accuracy and efficiency and shows significant advantage for approximating the elements of the condensed perturbed matrix.

    Fig.9 Convergences of fitness functions constructed by three different ways.

    3.2.Examples of crystal orientation identification

    The process of crystal orientation identification is based on the surrogate model and genetic algorithm.There into,surrogate model is employed to achieve the condensed perturbed matrix of stiffness for Eq.(14)of blades with arbitrary crystal orientation,while the genetic algorithm is used to search the optimal value of fitness functions.Comprehensively,constructions of three fitness functions are employed to separately identify the crystal orientation angles as Eq.(18).For options of genetic algorithm,the number of population is 50;the number of iteration is 15(because 15 iterations can achieve convergence for three kinds of fitness functions).Various optimizations below are discussed to investigate the identification capability of the proposed method by using different fitness functions:

    (1)The fitness function only considers the variation of frequency as f1:From Eq.(18),four cases with different combinations of angles ψ and θ are discussed.Convergence curves of these four cases are plotted in Fig.9(a).Obviously,the fitness functions in four cases all converge to a steady value after 10 iterations.

    (2)The fitness function only considers the percentage variation of MAC values as f2.The relationships between the fitness function value and the iteration number in four cases above are overlaid in Fig.9(b).It can be seen clearly that in all cases convergence is achieved after several or over ten iterative processes.

    (3)The fitness functions,f1and f2,are both considered as f3:When considering both variation of frequencies and modal assurance criterion of mode shapes in the fitness function,the iterative process still converges in fourcases as shown in Fig.9(c).Clearly,when the number of iterations is equal to 15,four cases are all converged to a steady value.

    Table 2 Parameters of crystal orientation identification.

    From Fig.9,it can be seen that the convergence rates among three different fitness functions are different.The fitness function only considering the frequency information converges in the fastest rate,while the one considering both frequency and mode shapes simultaneously converges slowly.In summary,identification results of these four cases are provided in Table 2.The fitness functions constructed asf1,f2andf3can exactly identify the crystal orientation angles,ψ and θ,although time consumption of these three fitness functions is quite different.The fitness function constructed based on the frequency variation is considered preponderant within 82 s for 15 iterations.

    4.Conclusions

    The method of enhanced mode basis has been developed to linearly express the mode shapes of arbitrary turbine blades with any crystal orientation variation of anisotropy materials.The proposed method can be utilized for blades with any stiffness perturbed matrix,with high accuracy and efficiency.

    Surrogate model based on Kriging method has been introduced for solving the eigenproblem of blades with crystal orientation arbitrarily distributed.The solution is highly effective and efficient without any loss of accuracy.

    Genetic algorithm has been employed to optimize the defined fitness functions,which were constructed by considering the variation of frequencies and correlation of mode shapes.The crystal orientation angles are identified according to the convergence curves of fitness functions.

    A computer program for identification of crystal orientation for turbine blades with anisotropy materials has been developed.The accuracy and the computational efficiency of the proposed method have been demonstrated with a realistic turbine blade on several random cases.

    There are still several issues that require further exploration.For example,an effective procedure of finite element modelling including the mesh quality and the trusted fixed conditions is required,and the experimental test to capture the effective modal information of turbine blades with anisotropy materials in order to validate the proposed method is also essential.Nowadays,the non-contact measurement,such as the scanning laser Doppler vibrometry,that is capable of measuring the natural frequencies and the detailed mode shapes of a structure in a fast way,looks very promising.The techniques of modeling error identification,model correlation and updating similarly show great potential to validate the practical application of the proposed method.The further research on these issues is currently underway and the results will be reported in another paper in the future.

    Acknowledgements

    This work was co-supported by the National Natural Science Foundation of China (Nos.51405460,11372128 and 51175244)and National Safety Academic Foundation of China(No.U1730129).The supports from the Collaborative Innovation Center of Advanced Aero-Engine,Jiangsu Province Key Laboratory of Aerospace Power System,the Key Laboratory of Aero-Engine Thermal Environment and Structure,Ministry of Industry and Information Technology are also gratefully acknowledged.

    1.Manetti M,Giovannetti I,Pieroni N,Horculescu H,Peano G,Zonfrillo G,et al.The dynamic influence of crystal orientation on a second generation single crystal material for turbine bucketsASME turbo expo 2009:Power for land sea and air.2009.p.125–33.

    2.Chang JC,Yun YH,Choi C.Failure analysis of gas turbine buckets.Eng Fail Anal2003;10(5):559–67.

    3.Kiyak Y,Fedelich B,May T.Simulation of crack growth under low cycle fatigue at high temperature in a single crystal superalloy.Eng Fract Mech2008;75(8):2418–43.

    4.Savage MWR.The influence of crystal orientation on the elastic stresses of a single crystal nickel-based turbine blade.ASME 2011 turbo expo:turbine technical conference and exposition.2011.p.37–46.

    5.Kaneko Y.Study on vibration characteristics of single crystal blade and directionally solidified blade.ASME 2011 turbo expo:turbine technical conference and exposition.2011.p.931–40.

    6.Arakere NK,Swanson GR.Effect of crystal orientation on fatigue of single crystal nickel base turbine blade superalloys.J Eng Gas Turb Power2000;124(1):161–76.

    7.Sadeghi F,Kermanpur A,Sarami N,Heydari D,Nematollahi M,Bahmani M.A comparison on the EBSD and RO-XRD techniques for measuring crystal orientation of the singlecrystal Ni-based superalloys.Metallogr Microstruct Anal2016;5(4):1–8.

    8.Ai C,Zhou J,Zhang H.Misorientation induced by withdrawal rate transition and its effect on intermediate temperature stress rupture properties of a Ni3Al based single crystal superalloy.J Alloys Compd2015;637:77–83.

    9.Guo Z,Fu T,Fu H.Crystal orientation measured by XRD and annotation of the butter fly diagram.Mater Charact2000;44(4):431–4.

    10.Petrov E,Ge′radin M.Finite element theory for curved and twisted beams based on exact solutions for three-dimensional solids part 2:anisotropic and advanced beam models.Comput Methods Appl Mech Eng1998;165(1–4):93–127.

    11.Skrzypek JJ,Ganczarski AW.Mechanics of anisotropic materials.Berlin:Springer International Publishing;2015.

    12.Slabaugh GG.Computing Euler angels from a rotation matrix.[Internet].[ctied 2017 September 7]1999;6(2000):1-6.Available from:http://gregslabaugh.name/publication/euler.pdf.

    13.Piovan G,Bullo F.On coordinate-free rotation decomposition:Euler angles about arbitrary axes.IEEE Trans Robot2012;28(3):728–33.

    14.Lesk?AM.On the calculation of Euler angles from a rotation matrix.Int J Math Educ Sci Technol1986;17(3):335–7.

    15.Lophaven SN,Nielsen HB,S?ndergaard J.DACE—A MATLAB Kriging toolbox—version 2.0.Kgs.Lyngby,Denmark:Technical University of Denmark;2002.Report No.IMM-REP-2002-12.

    16.Couckuyt I,Forrester AI,Gorissen D.Blind Kriging:implementation and performance analysis.Adv Eng Softw2012;49(1):1–13.

    17.Boussaid I,Lepagnot J,Siarry P.A survey on optimization metaheuristics.Inform Sci2013;237:82–117.

    18.Konak A,Coit DW,Smith AE.Multi-objective optimization using genetic algorithms:a tutorial.Reliab Eng Syst Saf2006;91(9):992–1007.

    19.Pastor M,Binda M,Harcarik T.Modal assurance criterion.Procedia Eng2012;48(1):543–8.

    20.Hu XA,Yang XG,Shi DQ,Yu HC,Ren TT.Constitutive modelling of a directionally solidified nickel-based superalloy DZ125 subjected to thermal mechanical creep fatigue loadings.Rare Met2016,p.1–15.

    21.Hu XA,Yang XG,Shi DQ,Yu HC.Out of phase thermal mechanical fatigue investigation of a directionally solidified superalloy DZ125.Chin J Aeronaut2016;29(1):257–67.

    国产成人freesex在线 | 国产精品野战在线观看| 99热全是精品| 嫩草影院新地址| 一进一出好大好爽视频| 国产爱豆传媒在线观看| 又黄又爽又免费观看的视频| a级一级毛片免费在线观看| 麻豆av噜噜一区二区三区| 色播亚洲综合网| 国产黄a三级三级三级人| 亚洲乱码一区二区免费版| 综合色av麻豆| 色噜噜av男人的天堂激情| 欧美区成人在线视频| 中文资源天堂在线| 日韩欧美国产在线观看| 热99re8久久精品国产| 精品欧美国产一区二区三| 超碰av人人做人人爽久久| 亚洲精品色激情综合| 3wmmmm亚洲av在线观看| 国产爱豆传媒在线观看| 老熟妇乱子伦视频在线观看| 一级毛片aaaaaa免费看小| 老女人水多毛片| 欧美另类亚洲清纯唯美| 极品教师在线视频| 在线观看午夜福利视频| 午夜亚洲福利在线播放| 免费不卡的大黄色大毛片视频在线观看 | 日本 av在线| 午夜福利在线观看免费完整高清在 | 听说在线观看完整版免费高清| 久久精品国产亚洲av香蕉五月| 91久久精品电影网| 亚洲国产高清在线一区二区三| 少妇高潮的动态图| 欧美日本视频| 在线国产一区二区在线| 欧美最黄视频在线播放免费| 国产又黄又爽又无遮挡在线| 亚洲国产精品成人久久小说 | 午夜a级毛片| 欧美日韩在线观看h| ponron亚洲| 日韩欧美 国产精品| 变态另类成人亚洲欧美熟女| 看免费成人av毛片| av专区在线播放| 成人美女网站在线观看视频| 老司机午夜福利在线观看视频| 免费在线观看成人毛片| 亚洲精品国产av成人精品 | 欧美最黄视频在线播放免费| 日本在线视频免费播放| 亚洲不卡免费看| 亚洲精品456在线播放app| 午夜免费激情av| 亚洲婷婷狠狠爱综合网| 国产精品精品国产色婷婷| 97超视频在线观看视频| 无遮挡黄片免费观看| av中文乱码字幕在线| 波多野结衣高清无吗| 三级国产精品欧美在线观看| 亚洲成人av在线免费| 婷婷亚洲欧美| 两性午夜刺激爽爽歪歪视频在线观看| 精品久久久久久久人妻蜜臀av| 乱码一卡2卡4卡精品| 成熟少妇高潮喷水视频| 麻豆精品久久久久久蜜桃| 久99久视频精品免费| 亚洲欧美清纯卡通| 亚洲精品久久国产高清桃花| 18禁在线无遮挡免费观看视频 | 99热精品在线国产| 淫妇啪啪啪对白视频| 亚洲av不卡在线观看| 美女高潮的动态| 国产亚洲精品久久久com| 男人和女人高潮做爰伦理| 一区二区三区免费毛片| 久久6这里有精品| 偷拍熟女少妇极品色| 久久久久久久午夜电影| 免费av毛片视频| 亚洲欧美成人综合另类久久久 | 国内精品宾馆在线| 国产精品久久视频播放| 色播亚洲综合网| 最近中文字幕高清免费大全6| 淫秽高清视频在线观看| 亚洲18禁久久av| 久久久久久伊人网av| 99久久中文字幕三级久久日本| 国产黄色小视频在线观看| 日韩三级伦理在线观看| 99热网站在线观看| 黄片wwwwww| 成人三级黄色视频| 婷婷精品国产亚洲av在线| 麻豆久久精品国产亚洲av| 国产女主播在线喷水免费视频网站 | 国产精品伦人一区二区| 免费在线观看成人毛片| 毛片女人毛片| 老司机影院成人| 国产中年淑女户外野战色| 欧美xxxx性猛交bbbb| 久久精品国产99精品国产亚洲性色| 老司机午夜福利在线观看视频| 亚洲一区高清亚洲精品| 国产69精品久久久久777片| 亚洲成人久久爱视频| 久99久视频精品免费| 国产69精品久久久久777片| 麻豆av噜噜一区二区三区| 女的被弄到高潮叫床怎么办| 欧美极品一区二区三区四区| 中出人妻视频一区二区| 一级av片app| 欧美丝袜亚洲另类| 国产精品久久久久久久久免| 国产69精品久久久久777片| 蜜桃亚洲精品一区二区三区| 久久久国产成人精品二区| 99热这里只有精品一区| 午夜久久久久精精品| 啦啦啦观看免费观看视频高清| 免费一级毛片在线播放高清视频| 国产伦精品一区二区三区四那| 真人做人爱边吃奶动态| av在线老鸭窝| 别揉我奶头 嗯啊视频| 亚洲人成网站高清观看| 成人欧美大片| 欧美高清成人免费视频www| 久久久久久久久久成人| 国产黄片美女视频| 你懂的网址亚洲精品在线观看 | 99在线人妻在线中文字幕| 搡女人真爽免费视频火全软件 | 激情 狠狠 欧美| 久久久精品94久久精品| 国产一区二区三区在线臀色熟女| 中文字幕熟女人妻在线| 偷拍熟女少妇极品色| 成人午夜高清在线视频| 91在线精品国自产拍蜜月| 在线观看午夜福利视频| 最近在线观看免费完整版| 老司机影院成人| 久久久久性生活片| 美女 人体艺术 gogo| 成人二区视频| 高清毛片免费看| 午夜精品国产一区二区电影 | 能在线免费观看的黄片| 老司机影院成人| 亚洲成人久久爱视频| 久久精品国产99精品国产亚洲性色| 蜜桃久久精品国产亚洲av| 亚洲图色成人| 国产aⅴ精品一区二区三区波| 日日摸夜夜添夜夜添小说| 尾随美女入室| 国产伦一二天堂av在线观看| 欧美区成人在线视频| 两个人的视频大全免费| 久久久午夜欧美精品| 高清日韩中文字幕在线| 女生性感内裤真人,穿戴方法视频| 18禁在线播放成人免费| 在线观看午夜福利视频| 99热6这里只有精品| 久久精品国产亚洲av天美| 美女被艹到高潮喷水动态| 久久久久国产网址| 免费在线观看影片大全网站| av国产免费在线观看| 日韩制服骚丝袜av| 日韩强制内射视频| 亚洲aⅴ乱码一区二区在线播放| 嫩草影院入口| 午夜爱爱视频在线播放| 性欧美人与动物交配| 蜜桃久久精品国产亚洲av| 欧美潮喷喷水| 欧美激情国产日韩精品一区| 女同久久另类99精品国产91| 亚洲激情五月婷婷啪啪| 亚洲精品粉嫩美女一区| 国产精品免费一区二区三区在线| 国产黄a三级三级三级人| 噜噜噜噜噜久久久久久91| 91久久精品国产一区二区三区| 激情 狠狠 欧美| 欧美激情在线99| 久久国内精品自在自线图片| 精品人妻熟女av久视频| 国产久久久一区二区三区| 国产在线精品亚洲第一网站| a级一级毛片免费在线观看| 国产毛片a区久久久久| 国产高清视频在线播放一区| 午夜a级毛片| av在线天堂中文字幕| 免费观看的影片在线观看| 最新在线观看一区二区三区| 国产精品一区二区免费欧美| 国产亚洲精品av在线| 国产精品一区二区三区四区免费观看 | 此物有八面人人有两片| 最新中文字幕久久久久| 日韩强制内射视频| 成人无遮挡网站| 色av中文字幕| 日韩欧美在线乱码| 高清午夜精品一区二区三区 | 国产亚洲精品久久久久久毛片| 麻豆久久精品国产亚洲av| 精品久久久久久久久亚洲| 欧美性猛交黑人性爽| 美女cb高潮喷水在线观看| 校园春色视频在线观看| 97超碰精品成人国产| 午夜福利在线观看免费完整高清在 | 精品国内亚洲2022精品成人| av天堂中文字幕网| 国产精品无大码| 国产精品女同一区二区软件| 免费观看的影片在线观看| 干丝袜人妻中文字幕| av在线老鸭窝| 亚洲专区国产一区二区| 男女做爰动态图高潮gif福利片| 亚洲无线在线观看| 国产亚洲av嫩草精品影院| 亚洲图色成人| 色综合色国产| 欧美又色又爽又黄视频| 高清日韩中文字幕在线| 一区二区三区免费毛片| 99久国产av精品| 国产伦一二天堂av在线观看| 波多野结衣高清无吗| 亚洲内射少妇av| 99久国产av精品国产电影| 一本精品99久久精品77| 欧美激情久久久久久爽电影| 神马国产精品三级电影在线观看| 波多野结衣高清作品| 一区二区三区四区激情视频 | 亚洲婷婷狠狠爱综合网| 高清毛片免费观看视频网站| 久久人人爽人人片av| 欧美成人精品欧美一级黄| 在线播放无遮挡| 在线观看av片永久免费下载| 亚洲自拍偷在线| 国产精品国产三级国产av玫瑰| 男女下面进入的视频免费午夜| 精品久久久久久久久av| 国内精品宾馆在线| 国产精品伦人一区二区| 国产精品人妻久久久久久| 熟妇人妻久久中文字幕3abv| 黄色日韩在线| 麻豆久久精品国产亚洲av| www日本黄色视频网| 高清日韩中文字幕在线| 色综合站精品国产| 色播亚洲综合网| 老司机影院成人| 日本黄色片子视频| 直男gayav资源| 99热这里只有是精品50| 看黄色毛片网站| 婷婷精品国产亚洲av| 国产一级毛片七仙女欲春2| 嫩草影视91久久| 少妇人妻一区二区三区视频| 国产精品免费一区二区三区在线| 九九热线精品视视频播放| 97热精品久久久久久| 午夜精品在线福利| 在线免费观看不下载黄p国产| 成年女人毛片免费观看观看9| 中文字幕免费在线视频6| 国产色爽女视频免费观看| 欧美日本视频| 插逼视频在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲自拍偷在线| 国产精品久久久久久精品电影| 亚洲一级一片aⅴ在线观看| 狂野欧美激情性xxxx在线观看| 亚洲国产精品成人综合色| 在线免费十八禁| 97超级碰碰碰精品色视频在线观看| 日韩中字成人| 国产三级在线视频| 国国产精品蜜臀av免费| 国产精品久久久久久av不卡| 久久国内精品自在自线图片| 亚洲欧美精品综合久久99| 国产伦在线观看视频一区| .国产精品久久| 身体一侧抽搐| 婷婷亚洲欧美| 精品一区二区三区视频在线观看免费| 网址你懂的国产日韩在线| 日韩,欧美,国产一区二区三区 | 免费人成视频x8x8入口观看| 国产免费一级a男人的天堂| 亚洲av免费在线观看| 狠狠狠狠99中文字幕| 亚洲国产精品成人久久小说 | 美女黄网站色视频| АⅤ资源中文在线天堂| 久久精品国产清高在天天线| 日本一二三区视频观看| 久久精品国产亚洲网站| 国产久久久一区二区三区| 中文资源天堂在线| av在线蜜桃| 男人舔奶头视频| 国产成人91sexporn| 亚洲一级一片aⅴ在线观看| 天美传媒精品一区二区| 国产真实乱freesex| 99久国产av精品| 亚洲在线自拍视频| 欧美另类亚洲清纯唯美| 日韩欧美三级三区| 国产高清有码在线观看视频| av.在线天堂| 免费人成在线观看视频色| 国产一区二区在线观看日韩| 日韩人妻高清精品专区| 少妇丰满av| 一级毛片电影观看 | 九九爱精品视频在线观看| 又爽又黄a免费视频| 国产精品99久久久久久久久| 亚洲欧美精品自产自拍| 少妇人妻一区二区三区视频| 国产高清视频在线观看网站| 亚洲av第一区精品v没综合| 国产亚洲av嫩草精品影院| 麻豆精品久久久久久蜜桃| 国产av一区在线观看免费| 伦精品一区二区三区| 三级国产精品欧美在线观看| 日韩精品有码人妻一区| 听说在线观看完整版免费高清| 日韩欧美精品免费久久| aaaaa片日本免费| av在线老鸭窝| 国产精品乱码一区二三区的特点| 人妻夜夜爽99麻豆av| 日韩,欧美,国产一区二区三区 | 欧美区成人在线视频| 又粗又爽又猛毛片免费看| 久久久久久久久久黄片| 毛片一级片免费看久久久久| 99热6这里只有精品| 日本在线视频免费播放| 一个人看视频在线观看www免费| 老熟妇仑乱视频hdxx| 国产蜜桃级精品一区二区三区| 日本爱情动作片www.在线观看 | 精品一区二区三区av网在线观看| 国产精品人妻久久久久久| 国产极品精品免费视频能看的| 99久久精品热视频| 搡老妇女老女人老熟妇| 亚洲人成网站在线播| 国产精品乱码一区二三区的特点| 大型黄色视频在线免费观看| 成人国产麻豆网| 免费观看人在逋| 欧美3d第一页| 亚洲经典国产精华液单| 99国产极品粉嫩在线观看| 欧美一区二区国产精品久久精品| 久久久国产成人免费| 高清毛片免费看| 日韩欧美在线乱码| 午夜福利高清视频| 久久久久久久久大av| 欧美成人a在线观看| 最近2019中文字幕mv第一页| 欧美日韩国产亚洲二区| 99国产极品粉嫩在线观看| 国产一区二区激情短视频| 亚洲最大成人手机在线| 日本三级黄在线观看| 免费在线观看影片大全网站| 丰满人妻一区二区三区视频av| 丝袜美腿在线中文| 又黄又爽又刺激的免费视频.| 在线观看66精品国产| 国产一区二区三区av在线 | 日本-黄色视频高清免费观看| 婷婷色综合大香蕉| 黄色视频,在线免费观看| 亚洲国产精品久久男人天堂| 内地一区二区视频在线| 国产精品人妻久久久久久| 免费观看在线日韩| 婷婷六月久久综合丁香| 日韩成人av中文字幕在线观看 | 午夜日韩欧美国产| 欧美三级亚洲精品| 在线观看一区二区三区| 日日干狠狠操夜夜爽| 美女高潮的动态| 国产成人a区在线观看| 亚洲欧美成人精品一区二区| 亚洲专区国产一区二区| 国产视频一区二区在线看| 日韩精品有码人妻一区| 在线观看美女被高潮喷水网站| 熟女人妻精品中文字幕| 国产色婷婷99| 一进一出抽搐gif免费好疼| 国产高清视频在线观看网站| 久久国内精品自在自线图片| 国产又黄又爽又无遮挡在线| 亚洲成人av在线免费| 一区二区三区高清视频在线| av天堂在线播放| 日日撸夜夜添| 亚洲四区av| 老司机午夜福利在线观看视频| 麻豆一二三区av精品| 日日啪夜夜撸| 中文字幕熟女人妻在线| 亚洲国产精品sss在线观看| 国产男靠女视频免费网站| 嫩草影院精品99| 麻豆成人午夜福利视频| 欧美不卡视频在线免费观看| 亚洲成人精品中文字幕电影| 一夜夜www| 国产v大片淫在线免费观看| 欧美+日韩+精品| 亚洲国产欧洲综合997久久,| 在线免费十八禁| 国产av麻豆久久久久久久| 少妇熟女aⅴ在线视频| 国产私拍福利视频在线观看| 男人的好看免费观看在线视频| 久久久久精品国产欧美久久久| 免费看a级黄色片| av视频在线观看入口| 国产精品久久电影中文字幕| 免费看光身美女| 久久精品夜夜夜夜夜久久蜜豆| 免费人成视频x8x8入口观看| 直男gayav资源| 国产一区二区三区av在线 | 日本免费一区二区三区高清不卡| 五月玫瑰六月丁香| 精品人妻熟女av久视频| a级一级毛片免费在线观看| 中文字幕av成人在线电影| 亚洲精品国产av成人精品 | 在线观看66精品国产| 国产精品精品国产色婷婷| 最近在线观看免费完整版| 真人做人爱边吃奶动态| 神马国产精品三级电影在线观看| 久久久久九九精品影院| 99久久成人亚洲精品观看| 一进一出抽搐gif免费好疼| 欧美成人a在线观看| 亚洲人与动物交配视频| 99精品在免费线老司机午夜| 大香蕉久久网| 婷婷精品国产亚洲av在线| 一区二区三区四区激情视频 | 久久韩国三级中文字幕| 校园春色视频在线观看| 亚洲精品亚洲一区二区| 国产成人福利小说| 久久精品国产亚洲网站| 中文字幕av在线有码专区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av第一区精品v没综合| 成人欧美大片| 日产精品乱码卡一卡2卡三| 色噜噜av男人的天堂激情| 国产亚洲欧美98| 黄色一级大片看看| 亚洲自偷自拍三级| 国产精品永久免费网站| 小说图片视频综合网站| 亚洲成人中文字幕在线播放| 简卡轻食公司| 久久久久免费精品人妻一区二区| 亚洲成人中文字幕在线播放| 午夜爱爱视频在线播放| av在线亚洲专区| 男女做爰动态图高潮gif福利片| 中文字幕熟女人妻在线| 美女高潮的动态| av天堂中文字幕网| 亚洲av第一区精品v没综合| 精品久久久久久久久久久久久| 亚洲欧美精品自产自拍| 在线观看午夜福利视频| 又黄又爽又刺激的免费视频.| 小说图片视频综合网站| 69人妻影院| 99久久精品热视频| 极品教师在线视频| 亚洲一区二区三区色噜噜| 亚洲最大成人手机在线| 久久久久久久久久成人| 变态另类丝袜制服| 99久久成人亚洲精品观看| 成人毛片a级毛片在线播放| 免费大片18禁| 久久亚洲国产成人精品v| 一进一出好大好爽视频| 麻豆国产av国片精品| 亚洲精品一卡2卡三卡4卡5卡| 日韩三级伦理在线观看| 成人亚洲精品av一区二区| 亚洲欧美精品自产自拍| 欧美激情在线99| 国产精品一区二区三区四区免费观看 | 久久久午夜欧美精品| 麻豆精品久久久久久蜜桃| 国产老妇女一区| 色综合站精品国产| 99久久成人亚洲精品观看| 22中文网久久字幕| 成人亚洲精品av一区二区| 精品人妻偷拍中文字幕| 别揉我奶头 嗯啊视频| 男女边吃奶边做爰视频| 午夜免费男女啪啪视频观看 | 人人妻人人看人人澡| 久久天躁狠狠躁夜夜2o2o| 国产精品国产高清国产av| 能在线免费观看的黄片| 国产探花极品一区二区| 最近在线观看免费完整版| 夜夜看夜夜爽夜夜摸| 久久久国产成人精品二区| 一级a爱片免费观看的视频| 亚洲三级黄色毛片| av在线播放精品| av天堂中文字幕网| 99热这里只有是精品在线观看| 99国产极品粉嫩在线观看| 乱码一卡2卡4卡精品| 色综合亚洲欧美另类图片| 亚洲欧美成人精品一区二区| 深夜精品福利| av在线亚洲专区| 99久国产av精品国产电影| 天天躁夜夜躁狠狠久久av| 国产精品永久免费网站| 免费电影在线观看免费观看| 搞女人的毛片| 丝袜美腿在线中文| 国产三级中文精品| 国产大屁股一区二区在线视频| 亚洲av美国av| 如何舔出高潮| 日日撸夜夜添| 午夜免费男女啪啪视频观看 | 啦啦啦韩国在线观看视频| 久久久久久国产a免费观看| av福利片在线观看| 毛片女人毛片| 少妇丰满av| 老司机福利观看| 久久久精品94久久精品| 九九在线视频观看精品| 成人av在线播放网站| 人妻制服诱惑在线中文字幕| 嫩草影院新地址| 国产探花极品一区二区| 少妇裸体淫交视频免费看高清| 国产免费一级a男人的天堂| 亚洲国产色片| 久久欧美精品欧美久久欧美| 极品教师在线视频| 日韩制服骚丝袜av| 国产精品久久久久久久久免| 亚洲综合色惰| 国产单亲对白刺激| 久久精品国产自在天天线| 久久久久精品国产欧美久久久| 我要搜黄色片| 午夜福利高清视频| 亚洲精品456在线播放app| 国产一区二区亚洲精品在线观看| 日本成人三级电影网站| 老司机影院成人| 久久99热这里只有精品18| 欧美国产日韩亚洲一区| 亚洲av一区综合| 国产免费一级a男人的天堂| 成年免费大片在线观看| 变态另类丝袜制服| 97超碰精品成人国产| 亚洲欧美日韩高清专用|