• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ln depth understanding of retinitis pigmentosa pathogenesis through optical coherence tomography angiography analysis: a narrative review

    2021-12-17 02:41:52BingWenLuGuoJunChaoGaiPingWuLiKeXie
    International Journal of Ophthalmology 2021年12期

    Bing-Wen Lu, Guo-Jun Chao, Gai-Ping Wu, Li-Ke Xie

    Department of Ophthalmology, Ophthalmology Hospital of China Academy of Traditional Chinese Medicine, Beijing 100040, China

    Abstract

    ● KEYWORDS: retinitis pigmentosa; optical coherence tomography angiography; vascular dysfunction; microglia activation

    INTRODUCTION

    Progress degeneration of photoreceptors in retinitis pigmentosa (RP) eventually leads to blindness. The worldwide incidence of RP is about 1 in 4000, making it one of the most common causes of visual impairment[1]. Patients with RP typically experience impaired dark adaption, night blindness, followed by progressive visual field constriction,and eventually central vision deterioration[2].

    A major goal for RP research is to determine how various rod specific gene mutations lead to subsequent cone degeneration,accompanied by retinal ganglion cells (RGCs) and retinal pigment epithelium (RPE) changes. Fundus examination shows peripheral bone-spicule deposits and reduced retinal blood vessels[3]. Electroretinogram (ERG), which is the golden diagnostic standard, demonstrates reduced rod and cone response amplitudes coupled with a delay in their timing[4]. Visual field (VF) loss is an important indicator of disease progression and treatment efficacy, changing from patchy loss of peripheral VF to a ring scotoma, tunnel vision,and eventually blindness[5]. Vascular dysfunction has been recognized to play a role in RP development recently. Imaging evidence from the novel high-resolution optical coherence tomography angiography (OCTA) of retinal and choroidal vasculature may be essential for elucidating the progression of retinal degeneration in this disease and developing effective therapies[6].

    Reductions in retinal blood flow have been established in RP using OCTA, however, questions have yet to be answered regarding the relationship between vascular dysfunction and RP and the underlying pathogenesis. In this review, we propose a hypothesis of RP pathogenesis linked with the summarily findings of OCTA studies in RP patients. We also address pertinent future perspectives, providing an overview of how animal studies may help, how OCTA technology should develop, and what potential treatment options can be anticipated with the enhanced understanding.

    WHAT ARE THE POSSIBLE FACTORS RELATED TO RETINITIS PIGMENTOSA PATHOGENESIS?

    Hereditary degenerations of the human retina are a diverse group of clinically and genetically heterogeneous blinding diseases with more than 260 causal genes identified to date[7]. The pathogenesis of RP is complicated, which is mainly related to photoreceptor genetic alterations, leading to primary degeneration of rods, and secondary degeneration of cones. Further changes in RGCs and RPE, the inner retina disorganization as well as the vascular supply attenuation,following the outer retina damage ultimately cause the vision loss.The role of microglial activation in RP, a common hallmark of many retinal disease[8-10], has been proved by both clinical and pre-clinical studies[11-12]. In the normal retina, microglia mainly accumulate in the plexiform layers (restricted to the inner layers of the retina) with long protrusions continuously monitoring the micro-environmental homeostasis; however,different triggers originating from photoreceptors degeneration rapidly alert microglia, leading to their migration into the damaged layers and transformation into phagocytes, interacting with infiltrating blood cells[8-12]. In addition to phagocytosis of degenerated cells, these reactive microglia in the outer retina exacerbate photoreceptor cell death as well as secrete large amounts of pro-inflammatory neurotoxic factors[8-12].

    Also, changes in the retina vasculature and hemodynamics have long been associated with RP. Fundamentally, retinal blood vessels have a pronounced autoregulation ability,whereas the choroidal tissue is regulated by the sympathetic and parasympathetic nervous systems. Either hyperoxic or hypoxic state could trigger the autoregulation of blood vessels to maintain retinal homeostasis. Histopathological studies in RP eyes showed an important vascular remodeling in both retina and choroid[13]. Also, significant evidences have been established recently to support the theory that vascular dysfunction is associated with but not the cause of photoreceptors death in RP.

    Hence, we propose a pattern of etiologic and pathogenic factors leading to retinal degeneration of RP based on the current understandings, highlighting the two key factors(Figure 1).

    WHAT IS OUR HYPOTHESIS ON RETINITIS PIGMENTOSA PATHOGENESIS WITH OCTA FINDINGS?

    We propose our hypothesis of the possible pathogenesis of RP linked with current OCTA findings in RP patients as well as histopathological findings (Figure 2). The whole process is likely to include four stages: the initiate stage, the early stage,the middle stage, and the advanced stage. In correspondence to the time course of the progression of the VF defects in RP patients detected by Goldmann kinetic perimetry, the VF progression of the four stages changes beginning with no VF loss, scotomas in the peripheral regions, scotomas in the midperipheral regions, and the end stage when only the central VF remains[14].

    Figure 1 Pattern of etiologic and pathogenic factors leading to retinal degeneration of retinitis pigmentosa.

    Initiate Stage-Retinal Hyperoxia Primary defect of RP lies in rod degeneration caused by various rod specific gene mutations. The reduction of the oxygen consumption due to photoreceptors loss has been suggested to cause oxygen diffusion from the choroidal vessels into the inner retina,which decreases the need for oxygen delivery from the retinal circulation in the pathology of eyes with RP, leading to a hyperoxic state[15]. We consider it as the initiative trigger of subsequent consecutive changes leading to irreversible retinal degeneration.

    Early Stage-Oxidative Stress and Microglial Activation Excess reactive oxygen species (ROS) are produced consequently under hyperoxic environment which eventually leads to microglial activation[16]. Apoptosis of rods is followed by the migration of microglia from the inner retina to the outer retina. Activated microglia participate in phagocytosis of dead rods, which also exacerbate cone injury through synaptic changes conversely.

    Primary photoreceptor death and secondary death of the rods causes thinning of the outer retina[17]. The inner retina including the ganglion cell-inner plexiform layer (GCIPL) and retinal nerve fiber layer (RNFL) maintains gross integrity with retinal remodeling longer than the photoreceptor layer in RP[18].

    Figure 2 Hypothesis of retinitis pigmentosa pathogenesis A: The initiate stage; B: The early stage; C: The middle stage; D: The advanced stage. RGC: Retinal ganglion cell; RPE: Retinal pigment epithelium; FAZ: Foveal avascular zone; SCP: Superficial capillary plexus; DCP: Deep capillary plexus; ECM: Extracellular matrix; CCP: Choroicapillaries plexus; VD: Vessel density; INL: Inner nuclear layer.

    Meanwhile, such change of oxygen diffusion (the hyperoxic state) in turn results in a reflex vasoconstriction of retinal arteries at the level of superficial capillary plexus (SCP), which possess high autoregulatory properties[19-22]. Histopathological studies showed that the features of RP included vessel narrowing and sclerosis, followed by thickening of the blood vessel wall and finally, lumen occlusion[23]. Reduced retinal blood flow velocity and vascular diameter were demonstrated with the usage of magnetic resonance imaging (MRI)[24]as well as colour doppler flow imaging (CDFI)[25]in RP patients.A reduced flow starts at the level of deep capillary plexus(DCP), which can be explained by a vascular constriction at the level of DCP due to the reduced oxygen demand by photoreceptors, as well as a redistribution of blood flow in DCP located near the inner nuclear layer (INL) in order to meet the needs of a high metabolic demands. In agreement with this, Battaglia Parodiet al[26]has shown a more profound involvement of the deep layer with reduced parafoveal vessel density (VD; DCP,P=0.001; SCP,P=0.009). This finding was later proved by Sugaharaet al[27], whose study included 110 eyes of RP patients and 32 control eyes, showing that the more severe vascular impairment happened in the DCP (parafoveal VD: DCP,P<0.001; SCP,P=0.66). Also, Takagiet al[28]demonstrated that flow area in the deep retinal layer was more easily to be affected when compared to that of the SCP and choriocapillaris plexus (CCP; DCP,P=0.004; SCP,P=0.007;CCP,P=0.353). Most recently, Falfoulet al[29]also verified that vascular alteration in RP might begin at the level of DCP,while the change of the SCP would occur later in the evolution of the disease.

    Many studies have suggested that macular microvasculature changes caused by decreased blood flow might be indicated in the development of RP including foveal avascular zone(FAZ) enlargement. Although not remarkably significant,FAZ area was found to be firstly enlarged in the superficial retinal layer at the early stage when compared to normal subjects (DCP,P=0.309; SCP,P=0.890), but not the deep layer until mid-to-late stages[30]. Most recently, quantitative OCTA biomarkers that describe the abnormalities of geometric vascular features, including vessel density, vessel tortuosity(VT), vessel dispersion (VDisp), vessel rarefaction (VR),vessel diameter index and increased vessel length density(VLD) were developed to analyze vascular alterations in RP patients for early detection[31-33]. Comparing RP patients and controls, RP patients showed higher VDisp, VR, and lower VT in both retinal layers (P<0.01)[32]. Also, larger vessel diameter indexes and decreased VLDs in both SCP and DCP were shown in RP patients (P<0.001)[31]. These parameters considered to be associated with different RP clinical forms,RP pathophysiology, as well as with different progression.

    Middle Stage-Retinal Ischemia The morphological transformation and migration of activated microglia mark the third stage of this response. At this stage, microglia accumulate in the damaged layers and interact with infiltrating blood cells.SCP is affected lateron during the progression of the disease,affected by the reduced flow at the level of DCP, causing ischemia of the inner retina and progressive RGC loss. OCTA studies have shown that both SCP and DCP vessel densities are significantly decreased in middle- and late-stage RP after comparison with healthy objects[34]. Vascular density of the SCP was 42.2%±3.4% in the RP group and 51.4%±2.3% in the control group (P<0.001), whereas those of the DCP were 42.7%±6.2% versus 56.6%±2.2%[34].

    At this stage, FAZ area was found to be significantly enlarged at the level of DCP than SCP in RP eyes compared to normal controls (DCP,P<0.001; SCP,P=0.350)[26]. Linet al[35]addressed significant cone losses in mid-to-late stage RP patients with objectively quantified cone density (CD) in all retinal layers, demonstrating the macular structural and functional alterations. AttaAllahet al[36]demonstrated macular microvascular density reduction in all studied layers on OCTA as well as macular structural changes such as ellipsoid zone(EZ) disruption and FAZ enlargement. The reduction of parafoveal VD was more significant in the DCP and CCP when compared to controls (DCP,P<0.001; CCP,P<0.001; SCP,P=0.191)[36].

    Expression of a variety of inflammatory factors, adhesion molecules and chemokines under retinal ischemia accelerate cells apoptosis and retinal edema. The presence of cystoid macular edema (CME) in eyes with RP is considered to occur mainly at this stage.

    These recruited inflammatory cells, together with accumulated microglia seem to play an important role in the extracellular matrix (ECM) deposition, increased vascular permeability and on RPE atrophy.

    Advanced Stage-Retinal Degeneration Pronounced RPE atrophy and breakdown of Bruch’s membrane occur in the more advanced stages, leading to additional clinical hallmarks of the disease such as attenuation of retinal vessels and intraretinal pigment migration. Vascular density of choroicapillaris is slightly attenuated due to loss of photoreceptor metabolism, allowing choroidal oxygen to reach the inner retina. Remarkably decreased choriocapillaris blood flow occurs at late stage of RP, which could in turn accelerate the late phase of retinal degeneration[37]. Early histopathology studies have shown the missing of choriocapillaris[23]. However,when analyzing the blood flow at the CCP layer, there were controversies on the OCTA findings among different studies.Vessel densities of CCP in mid-to-late stage RP patients were reported to be remarkably lower[34], while other studies reported no differences in CCP vessel densities between RP patients and controls[26,28]. These discrepancies could be explained by the limitation of conventional OCTA devices suffering from projection artifacts and penetrating depth. With advanced OCTA technology, accurate choroidal changes could be detected. Flow voids (FVs) in RP patients were significantly reduced, indicating the compromised choriocapillaris in pathogenesis[38]. For deep choroid closer to the Bruch’s membrane,a more significant reduction of vascular density could be found[39].Recently, wide-angle OCTA has been applied to investigate choriocapillaris defects, since the peripheral retina is more likely to be affected at the earlier stages in RP patients[40-41].Choroidal vascularity index (CVI), which was used to reflect middle/large choroidal vascularity, decreased in the perifoveal(P=0.003), pararetinal (P=0.001) and periretinal regions(P=0.002) in the RP eyes, compared to controls[41].

    HOW WILL ANIMAL STUDIES PROVIDE EVIDENCES FOR THE HYPOTHESIS?

    Since the literature lacks histopathological studies in the early phases of RP, it is still unknown whether vascular changes occur first during the disease, or secondary to the degeneration of photoreceptors due to the close interdependence. Moreover,it is unknown whether the retinal capillary plexuses can be reestablished after photoreceptors transplantation and RPE relocation because of the importance of vascular bed restoration to cell survival and function. Therefore, using animal models that recapitulate aspects of human disease with advanced retinal imaging technologies that can show retinal and choriodal microvasculature is of great value to prove the hypothesis of RP pathogenesis. At present, only one study investigated vascular impairment in wild-type (WT) andrd10mouse retinas with OCTA longitudinally[42]. Further animal studies could be designed with other transgenic mouse models with specific labels to correlate OCTA findings with retinal function, retinal oxymetry[43]and histopathology, enhancing our understanding of RP pathophysiology.

    TO WHAT EXTENT WILL ADVANCED OCTA TECHNOLOGY IMPROVE UNDERSTANDING FOR RP?

    As the arterial and venous system are differently affected in RP pathogenesis, classification of retinal vessels as arteries and veins is of high importance[44]. Differential artery-vein analysis in OCTA is still challenging to date, despite its highquality capillary level resolution. Several methods have been lately introduced for artery-vein differentiating on OCTA images guided by color fundus image[45], OCT[46], nearinfrared oximetry[47], or realized through incorporating the use of vortices in the DCP to identify venous origin[48]. Besides,benchmark data and clinically relevant metrics for OCTA retinal image segmentation have been established recently[49-52].We believe that the developing differential artery-vein analysis and vessel segmentation could increase the performance of OCTA detection, classification of various stages of RP and treatment evaluation.

    WHAT ARE THE PROSPECTS FOR TREATMENT OPTIONS WITH BETTER UNDERSTANDING OF RP?

    At present, there are no established treatments for RP. New encouraging treatments have been proposed for RP, including gene therapy, stem cell transplantation, neurotrophic growth factors, and retinal prosthesis. We believe that novel treatment options like microglia modulating therapy which involves either immune modulation and neuroprotection in early phases of activation may reduce the production of several proinflammatory mediators and may therefore result in broader therapeutic effects, while OCTA analysis can help with the identification of early phases of RP. Based on the conceptthat microglia modulation or deactivation can improve retinal function and survival, potential candidate compounds can be envisioned (Table 1)[53-59].

    Table 1 Candidate compounds for microglia modulation approaches

    CONCLUSIONS

    As a healthy vascular system is required to support the cells in the retina, any forms of deterioration to retinal and choroidal vasculatures may restrict the impact of the available therapies for RP. Understanding the role of vascular dysfunction in retinal degeneration and the RP pathogenesis with the most advanced OCTA technology may help with the diagnostic,prognostic and potential therapeutic directions. Our hypothesis of RP pathogenesis combined with the OCTA findings suggests the important role of microglial activation and vascular dysfunction in the whole process of retinal degeneration.Further animal studies and longitudinal trials with improved OCTA technique are needed to prove provide evidence for this hypothesis.

    ACKNOWLEDGEMENTS

    Authors’ contributions: Lu BW contributed to the conception and design of the study, data collection, analysis, and interpretation of data, drafting of the manuscript. Supervision by Xie LK. All authors contributed to critical revision of the manuscript for important intellectual content.

    Foundations: Supported by National Natural Science Foundation of China (No.82174445); China Post-doctoral Science Foundation in 2019 (No.2019M650987); Natural Science Foundation of Beijing of China (No.7192235).

    Conflicts of Interest:Lu BW, None; Chao GJ, None; Wu

    GP, None; Xie LK, None.

    国产真实伦视频高清在线观看 | 男女下面进入的视频免费午夜| 国产欧美日韩一区二区精品| 美女高潮喷水抽搐中文字幕| 男女啪啪激烈高潮av片| 午夜久久久久精精品| 国产欧美日韩一区二区精品| 观看美女的网站| 美女大奶头视频| 伊人久久精品亚洲午夜| 成人av在线播放网站| 亚洲无线在线观看| 精品人妻视频免费看| 日日摸夜夜添夜夜添av毛片 | 午夜影院日韩av| 亚洲avbb在线观看| a在线观看视频网站| 床上黄色一级片| av国产免费在线观看| 天天一区二区日本电影三级| 久久久久精品国产欧美久久久| 中文字幕精品亚洲无线码一区| 日本免费a在线| 久久国产乱子免费精品| 欧美区成人在线视频| 日韩欧美国产在线观看| 日本欧美国产在线视频| 露出奶头的视频| 黄片wwwwww| 变态另类成人亚洲欧美熟女| 国产色婷婷99| 联通29元200g的流量卡| 欧美zozozo另类| 亚洲乱码一区二区免费版| 变态另类成人亚洲欧美熟女| 国产精品美女特级片免费视频播放器| 欧美一区二区国产精品久久精品| 人人妻,人人澡人人爽秒播| 天天一区二区日本电影三级| 夜夜夜夜夜久久久久| 香蕉av资源在线| 免费看a级黄色片| 成人国产综合亚洲| 99热这里只有是精品在线观看| 少妇的逼好多水| 精品人妻视频免费看| 亚洲国产精品合色在线| 色视频www国产| www.www免费av| 18禁在线播放成人免费| 亚洲熟妇中文字幕五十中出| 亚洲专区中文字幕在线| 中文字幕久久专区| 色视频www国产| 久久久久久伊人网av| 精品一区二区三区视频在线观看免费| 亚洲色图av天堂| 久久人妻av系列| 久久99热6这里只有精品| 亚洲精华国产精华精| 九九热线精品视视频播放| www日本黄色视频网| 欧美区成人在线视频| 中国美白少妇内射xxxbb| 最近最新中文字幕大全电影3| 成年女人毛片免费观看观看9| 男女视频在线观看网站免费| 亚洲18禁久久av| 最好的美女福利视频网| 亚洲中文字幕一区二区三区有码在线看| 亚洲va日本ⅴa欧美va伊人久久| 久久久国产成人精品二区| 在线免费十八禁| 久久欧美精品欧美久久欧美| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精华国产精华液的使用体验 | 亚洲中文字幕日韩| 日韩在线高清观看一区二区三区 | 内射极品少妇av片p| 高清在线国产一区| 午夜精品久久久久久毛片777| 校园人妻丝袜中文字幕| 亚洲熟妇中文字幕五十中出| 五月伊人婷婷丁香| 久久久久久九九精品二区国产| 色5月婷婷丁香| 成人美女网站在线观看视频| 内地一区二区视频在线| 久久精品国产亚洲网站| 麻豆成人午夜福利视频| 丝袜美腿在线中文| 亚洲狠狠婷婷综合久久图片| 欧美bdsm另类| 午夜福利18| 国产精品无大码| 人人妻,人人澡人人爽秒播| 搞女人的毛片| 搞女人的毛片| 国产精品99久久久久久久久| 国产午夜精品论理片| 老熟妇乱子伦视频在线观看| 又黄又爽又免费观看的视频| 成人高潮视频无遮挡免费网站| 精品久久久久久久人妻蜜臀av| 人妻丰满熟妇av一区二区三区| 亚洲久久久久久中文字幕| 一级av片app| 久99久视频精品免费| 亚洲精品久久国产高清桃花| 日本爱情动作片www.在线观看 | 88av欧美| 日日啪夜夜撸| 一进一出抽搐gif免费好疼| av在线蜜桃| 国产一级毛片七仙女欲春2| 婷婷亚洲欧美| av在线亚洲专区| 麻豆一二三区av精品| 国产精品一区二区免费欧美| 男女那种视频在线观看| 精品久久久久久久久久久久久| 成人亚洲精品av一区二区| 99精品久久久久人妻精品| 狠狠狠狠99中文字幕| 国产精品精品国产色婷婷| 色哟哟·www| 亚洲18禁久久av| 黄色女人牲交| 日本 av在线| av国产免费在线观看| 成人国产麻豆网| 国产一区二区三区视频了| 国产精品久久电影中文字幕| 观看美女的网站| 精品人妻视频免费看| 一区二区三区激情视频| 午夜精品一区二区三区免费看| 熟女人妻精品中文字幕| 国产黄a三级三级三级人| 成年女人看的毛片在线观看| 精品一区二区三区av网在线观看| 禁无遮挡网站| 长腿黑丝高跟| 亚洲第一区二区三区不卡| 亚洲人成网站在线播| 丝袜美腿在线中文| 国产国拍精品亚洲av在线观看| 欧美最新免费一区二区三区| 成人亚洲精品av一区二区| 亚洲欧美日韩卡通动漫| 午夜影院日韩av| 国产精品一区二区三区四区免费观看 | 欧美日韩精品成人综合77777| 在线观看免费视频日本深夜| 国产黄片美女视频| 婷婷亚洲欧美| 欧美精品啪啪一区二区三区| 欧美绝顶高潮抽搐喷水| av在线亚洲专区| 亚洲成av人片在线播放无| 日韩一区二区视频免费看| 精品一区二区三区av网在线观看| 观看免费一级毛片| 尤物成人国产欧美一区二区三区| 久久国产精品人妻蜜桃| 成人欧美大片| 午夜视频国产福利| 在线国产一区二区在线| 国产亚洲精品av在线| 成人一区二区视频在线观看| 国产av麻豆久久久久久久| 亚洲av中文字字幕乱码综合| 免费在线观看日本一区| 日日夜夜操网爽| 久久久久久久亚洲中文字幕| 午夜精品一区二区三区免费看| 久久久精品大字幕| 国产aⅴ精品一区二区三区波| 亚洲精品乱码久久久v下载方式| 欧美极品一区二区三区四区| 亚洲人成网站在线播| 欧洲精品卡2卡3卡4卡5卡区| 成人综合一区亚洲| 99久久精品一区二区三区| 国产精品乱码一区二三区的特点| 动漫黄色视频在线观看| 免费av不卡在线播放| 国产毛片a区久久久久| 日韩,欧美,国产一区二区三区 | 亚洲专区中文字幕在线| 尾随美女入室| 九九爱精品视频在线观看| 亚洲精品影视一区二区三区av| 在线免费观看的www视频| 三级国产精品欧美在线观看| 色5月婷婷丁香| 亚洲av成人精品一区久久| 91精品国产九色| 日本在线视频免费播放| 淫妇啪啪啪对白视频| 中国美白少妇内射xxxbb| 男人舔奶头视频| 琪琪午夜伦伦电影理论片6080| av在线天堂中文字幕| 俺也久久电影网| 欧美xxxx性猛交bbbb| 欧美日韩亚洲国产一区二区在线观看| 成人一区二区视频在线观看| 久久精品国产亚洲av涩爱 | 天堂√8在线中文| 啪啪无遮挡十八禁网站| 亚洲av第一区精品v没综合| 春色校园在线视频观看| 日韩亚洲欧美综合| 韩国av在线不卡| 国产亚洲欧美98| 精品午夜福利视频在线观看一区| 内地一区二区视频在线| 亚洲在线自拍视频| 免费观看精品视频网站| 亚洲专区国产一区二区| 人妻夜夜爽99麻豆av| 国产成年人精品一区二区| 久久久久久久精品吃奶| 搡老妇女老女人老熟妇| 午夜福利在线观看吧| 简卡轻食公司| 国产精品久久久久久久久免| 精品久久久久久久久久久久久| 色综合婷婷激情| 成人国产综合亚洲| 亚洲av二区三区四区| 三级国产精品欧美在线观看| 日日啪夜夜撸| 五月玫瑰六月丁香| 日韩欧美免费精品| 俺也久久电影网| 国产精品永久免费网站| 欧美最黄视频在线播放免费| 国产黄片美女视频| 日韩精品青青久久久久久| 国产成年人精品一区二区| 五月玫瑰六月丁香| 免费人成视频x8x8入口观看| 午夜精品久久久久久毛片777| 女人被狂操c到高潮| 国产综合懂色| 赤兔流量卡办理| 欧美激情国产日韩精品一区| 成人国产综合亚洲| 亚洲专区中文字幕在线| 亚洲国产精品sss在线观看| 草草在线视频免费看| 日本一二三区视频观看| av女优亚洲男人天堂| 两人在一起打扑克的视频| 精品人妻一区二区三区麻豆 | 欧美zozozo另类| 少妇猛男粗大的猛烈进出视频 | 女人十人毛片免费观看3o分钟| 精品午夜福利在线看| 精品人妻视频免费看| 国产精品一区二区性色av| 日韩国内少妇激情av| 大又大粗又爽又黄少妇毛片口| 久久草成人影院| 能在线免费观看的黄片| 中亚洲国语对白在线视频| 嫩草影院精品99| 欧美黑人欧美精品刺激| 亚洲精品成人久久久久久| 美女大奶头视频| 日本五十路高清| 99国产极品粉嫩在线观看| 国产真实伦视频高清在线观看 | 国产黄片美女视频| 欧美又色又爽又黄视频| 国产91精品成人一区二区三区| 超碰av人人做人人爽久久| 国产人妻一区二区三区在| 尤物成人国产欧美一区二区三区| 亚洲性久久影院| 成人国产一区最新在线观看| 琪琪午夜伦伦电影理论片6080| 麻豆成人午夜福利视频| 国产在线精品亚洲第一网站| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品亚洲一区二区| 久久久久久久久久黄片| 成人特级av手机在线观看| 亚洲va在线va天堂va国产| 国产69精品久久久久777片| 国产探花在线观看一区二区| 变态另类成人亚洲欧美熟女| 少妇人妻一区二区三区视频| 精品久久久久久久久av| 免费人成视频x8x8入口观看| 中出人妻视频一区二区| 欧美+日韩+精品| 成人国产一区最新在线观看| 狂野欧美激情性xxxx在线观看| 51国产日韩欧美| 久久久精品大字幕| av天堂中文字幕网| 亚洲成人中文字幕在线播放| 欧美一区二区国产精品久久精品| 国产亚洲av嫩草精品影院| av黄色大香蕉| 免费无遮挡裸体视频| 欧美日韩精品成人综合77777| 欧美激情在线99| 欧美3d第一页| 在线国产一区二区在线| 嫩草影视91久久| 国产欧美日韩精品亚洲av| 日韩高清综合在线| 亚洲av不卡在线观看| netflix在线观看网站| 大型黄色视频在线免费观看| 波多野结衣高清作品| 嫩草影院入口| 成人亚洲精品av一区二区| 国产成人一区二区在线| 又粗又爽又猛毛片免费看| 精品午夜福利在线看| 国模一区二区三区四区视频| 国产综合懂色| 91久久精品电影网| 欧美性猛交黑人性爽| 韩国av在线不卡| 免费人成在线观看视频色| 亚洲经典国产精华液单| 亚洲成人精品中文字幕电影| 91在线精品国自产拍蜜月| 国产单亲对白刺激| 国产探花极品一区二区| 深夜a级毛片| 性插视频无遮挡在线免费观看| 国产精品久久电影中文字幕| 国产乱人伦免费视频| 精品久久久久久久久亚洲 | 精品久久久久久久久久免费视频| 成人特级黄色片久久久久久久| 他把我摸到了高潮在线观看| 午夜福利视频1000在线观看| 日韩一区二区视频免费看| 精品人妻偷拍中文字幕| 欧美一区二区国产精品久久精品| 久9热在线精品视频| 国产色婷婷99| 国产免费一级a男人的天堂| 露出奶头的视频| 免费黄网站久久成人精品| 麻豆久久精品国产亚洲av| 毛片一级片免费看久久久久 | 亚洲av中文字字幕乱码综合| 国产精品综合久久久久久久免费| 精品久久国产蜜桃| 国产麻豆成人av免费视频| 日日摸夜夜添夜夜添小说| 人妻夜夜爽99麻豆av| 天堂√8在线中文| 99精品久久久久人妻精品| 美女被艹到高潮喷水动态| 国内少妇人妻偷人精品xxx网站| 日本免费a在线| 尤物成人国产欧美一区二区三区| 999久久久精品免费观看国产| 精品久久国产蜜桃| 美女高潮的动态| 国产毛片a区久久久久| 99热网站在线观看| 久久九九热精品免费| 日日摸夜夜添夜夜添小说| 国产三级在线视频| 91久久精品国产一区二区成人| 久久国产精品人妻蜜桃| 老熟妇仑乱视频hdxx| 国内毛片毛片毛片毛片毛片| 最新在线观看一区二区三区| 久久久久国产精品人妻aⅴ院| 亚洲国产欧洲综合997久久,| 人妻少妇偷人精品九色| 天堂av国产一区二区熟女人妻| 波多野结衣高清无吗| av视频在线观看入口| 黄色欧美视频在线观看| 22中文网久久字幕| a级毛片a级免费在线| 欧美3d第一页| 一个人看的www免费观看视频| 免费av毛片视频| videossex国产| 成人综合一区亚洲| 亚洲人成网站在线播放欧美日韩| 午夜福利18| 嫩草影院入口| 天堂网av新在线| 免费看a级黄色片| 91久久精品国产一区二区成人| 天堂影院成人在线观看| 国产精品一区二区性色av| 日韩av在线大香蕉| 国产亚洲精品综合一区在线观看| 国产高清三级在线| 一区二区三区高清视频在线| 最近视频中文字幕2019在线8| 亚洲久久久久久中文字幕| 婷婷精品国产亚洲av| АⅤ资源中文在线天堂| 国产视频内射| 亚洲欧美日韩东京热| 91麻豆精品激情在线观看国产| 亚洲成人久久爱视频| 成年版毛片免费区| 亚洲av成人av| 成人二区视频| 日本-黄色视频高清免费观看| 久久久精品欧美日韩精品| 亚洲精品乱码久久久v下载方式| 精品一区二区三区视频在线观看免费| 国产黄a三级三级三级人| 男人狂女人下面高潮的视频| av.在线天堂| 一夜夜www| 99热精品在线国产| 一级a爱片免费观看的视频| 午夜老司机福利剧场| 国产精品亚洲美女久久久| 国产高清激情床上av| 国产精品美女特级片免费视频播放器| 看免费成人av毛片| 亚洲精品国产成人久久av| 欧美高清性xxxxhd video| 国产乱人视频| 亚洲五月天丁香| 不卡视频在线观看欧美| 91久久精品国产一区二区三区| 久久久精品大字幕| 国产精品免费一区二区三区在线| 精品99又大又爽又粗少妇毛片 | 精品久久国产蜜桃| 亚洲人成网站在线播| 国产乱人视频| 一边摸一边抽搐一进一小说| 久久久久久久久中文| 久久久久久伊人网av| 麻豆精品久久久久久蜜桃| 国产精品亚洲一级av第二区| 免费看美女性在线毛片视频| 天堂网av新在线| 亚洲精品成人久久久久久| 日韩 亚洲 欧美在线| 99视频精品全部免费 在线| 18禁黄网站禁片午夜丰满| 少妇的逼好多水| 老司机福利观看| av在线蜜桃| 最近中文字幕高清免费大全6 | 国产亚洲精品av在线| 国产蜜桃级精品一区二区三区| 最近在线观看免费完整版| 国产亚洲精品av在线| 一进一出好大好爽视频| 三级毛片av免费| 黄色一级大片看看| 哪里可以看免费的av片| 色av中文字幕| 久久热精品热| 免费人成视频x8x8入口观看| 国产伦精品一区二区三区四那| 国产不卡一卡二| 人妻少妇偷人精品九色| 白带黄色成豆腐渣| 久久久久久国产a免费观看| 校园春色视频在线观看| 欧美一区二区精品小视频在线| 一区二区三区四区激情视频 | 亚洲av.av天堂| 欧美丝袜亚洲另类 | 免费观看人在逋| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 国产日本99.免费观看| 精品不卡国产一区二区三区| 亚洲黑人精品在线| 国产伦一二天堂av在线观看| 天堂√8在线中文| 老师上课跳d突然被开到最大视频| 国产 一区精品| 亚洲成人久久爱视频| 一级黄色大片毛片| 欧美一区二区亚洲| 国产成人a区在线观看| 五月伊人婷婷丁香| 国产麻豆成人av免费视频| 久久香蕉精品热| 天美传媒精品一区二区| 国产精品电影一区二区三区| 久久99热这里只有精品18| xxxwww97欧美| 免费在线观看影片大全网站| 久久久久国内视频| 日韩国内少妇激情av| 亚洲熟妇熟女久久| 别揉我奶头 嗯啊视频| 国产三级在线视频| 久99久视频精品免费| 国产免费一级a男人的天堂| 国模一区二区三区四区视频| 亚洲国产精品合色在线| 一区二区三区四区激情视频 | 亚洲18禁久久av| 中文字幕人妻熟人妻熟丝袜美| 亚洲自拍偷在线| x7x7x7水蜜桃| 免费在线观看影片大全网站| 免费观看的影片在线观看| 日韩精品中文字幕看吧| 九色成人免费人妻av| 老女人水多毛片| avwww免费| 亚洲男人的天堂狠狠| 97人妻精品一区二区三区麻豆| 中文字幕精品亚洲无线码一区| 国产女主播在线喷水免费视频网站 | 亚洲一区二区三区色噜噜| 亚洲狠狠婷婷综合久久图片| 国产探花在线观看一区二区| 人人妻人人澡欧美一区二区| 天天躁日日操中文字幕| 久久精品国产亚洲av涩爱 | 日韩强制内射视频| 国产色爽女视频免费观看| 国产不卡一卡二| 成人鲁丝片一二三区免费| 日韩欧美国产一区二区入口| 一进一出抽搐动态| 22中文网久久字幕| 日本欧美国产在线视频| 内射极品少妇av片p| 欧美性猛交╳xxx乱大交人| 看片在线看免费视频| 亚洲自偷自拍三级| 亚洲精品乱码久久久v下载方式| 搡老岳熟女国产| 无人区码免费观看不卡| 人妻夜夜爽99麻豆av| 禁无遮挡网站| 亚洲中文字幕日韩| 一个人观看的视频www高清免费观看| 一个人看视频在线观看www免费| 亚洲最大成人av| 午夜免费男女啪啪视频观看 | 床上黄色一级片| 久久久精品大字幕| 精品乱码久久久久久99久播| 黄色丝袜av网址大全| 色噜噜av男人的天堂激情| 性欧美人与动物交配| 精品人妻1区二区| 非洲黑人性xxxx精品又粗又长| 成人毛片a级毛片在线播放| 亚洲最大成人手机在线| 在线天堂最新版资源| 在线观看午夜福利视频| 国产白丝娇喘喷水9色精品| а√天堂www在线а√下载| 搡老熟女国产l中国老女人| 综合色av麻豆| 波多野结衣巨乳人妻| 国产黄a三级三级三级人| 亚洲三级黄色毛片| 国产精品人妻久久久影院| 国产又黄又爽又无遮挡在线| 99久久精品热视频| 亚洲avbb在线观看| 少妇丰满av| 色av中文字幕| 日韩精品有码人妻一区| 亚洲av不卡在线观看| 五月伊人婷婷丁香| 国产v大片淫在线免费观看| 日韩欧美精品v在线| 久久精品国产99精品国产亚洲性色| 最好的美女福利视频网| 欧美色欧美亚洲另类二区| 午夜福利在线在线| 桃色一区二区三区在线观看| 日韩欧美精品v在线| 99久国产av精品| 成人国产一区最新在线观看| 日韩亚洲欧美综合| 日本免费一区二区三区高清不卡| 国产成人aa在线观看| 人妻夜夜爽99麻豆av| 禁无遮挡网站| 不卡一级毛片| 国产成人aa在线观看| 日本五十路高清| 成人鲁丝片一二三区免费| 午夜福利欧美成人| 亚洲人成网站在线播| 亚洲av.av天堂| 国产精品一区二区免费欧美| 久久久久久久久久黄片| 99热精品在线国产| 淫秽高清视频在线观看| 亚洲性久久影院| 亚洲av第一区精品v没综合| 亚洲国产精品合色在线| 免费搜索国产男女视频| 在线天堂最新版资源| 毛片女人毛片| ponron亚洲|