• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Machine Learning-Enabled Power Scheduling in IoT-Based Smart Cities

    2021-12-16 07:51:38NabeelaAwanSalmanKhanMohammadKhalidImamRahmaniMuhammadTahirNurAlamMDRyanAlturkiandIhsanUllah
    Computers Materials&Continua 2021年5期

    Nabeela Awan,Salman Khan,Mohammad Khalid Imam Rahmani,Muhammad Tahir,Nur Alam MD,Ryan Alturki and Ihsan Ullah

    1Department of Computer Science,Government Girls Degree College Mardan,KPK,23200,Pakistan

    2Department of Electrical Energy System,UET,Peshawar,25000,Pakistan

    3Department of Computer Science,College of Computing and Informatics,Saudi Electronic University,KSA

    4Department of Smart Computing,Kyungdong University,Global Campus,Gosung,24764,South Korea

    5Department of Information Sciences,College of Computer and Information Systems,Umm Al-Qura University,Makkah,Saudi Arabia

    6Robotics Engineering,Daegu Gyeongbuk Institute of Science and Technology,South Korea

    Abstract:Recent advancements in hardware and communication technologies have enabled worldwide interconnection using the internet of things (IoT).The IoT is the backbone of smart city applications such as smart grids and green energy management.In smart cities,the IoT devices are used for linking power,price,energy,and demand information for smart homes and home energy management(HEM)in the smart grids.In complex smart gridconnected systems,power scheduling and secure dispatch of information are the main research challenge.These challenges can be resolved through various machine learning techniques and data analytics.In this paper,we have proposed a particle swarm optimization based machine learning algorithm known as a collaborative execute-before-after dependency-based requirement,for the smart grid.The proposed collaborative execute-before-after dependencybased requirement algorithm works in two phases,analysis and assessment of the requirements of end-users and power distribution companies.In the first phases,a fixed load is adjusted over a period of 24 h,and in the second phase,a randomly produced population load for 90 days is evaluated using particle swarm optimization.The simulation results demonstrate that the proposed algorithm performed better in terms of percentage cost reduction,peak to average ratio,and power variance mean ratio than particle swarm optimization and inclined block rate.

    Keywords:PSO;IBR;machine learning;IoT;smart cities;CDBR

    1 Introduction

    The Internet of Things (IoT) and drones have enabled various smart city applications.Drones are dynamic flying nodes whose connectivity is established by intelligent IoT gadgets.The use of smart drones can improve energy utilization,information compilation,security and privacy,disaster management,living standards,and public safety [1].The quality of life in smart cities rests on health protection,public security,disaster management,traffic tracking,and efficient power and energy utilization in the smart home.Inefficient use of devices in smart homes consumes much energy.Reinforcement learning can control energy consumption through proper scheduling of appliances,and numerous techniques can be used to learn from the environment and perform intelligent scheduling.For example,Q-learning connects agents to every home appliance and determines a plan to minimize energy consumption [2].The implementation of renewable energy sources and smart meters has resulted in large-scale changes to the smart grid.The power grids have been improved due to innovation and the use of the latest technologies.However,programmable devices in smart grids need improvements because they still face numerous challenges to perform better.Innovative techniques have improved power grids and made it easy to program power devices Earliglow-based algorithms minimize the usage of household devices,and avoidance of critical peak prices can save on electricity costs [3].

    Machine learning techniques,including Q-learning and reinforcement learning,have provable strategies and are considered the best solutions.Fully automatic machines are installed,such as in safety,shipping,water control,and self-instructed smart bins that learn from the environment and reduce energy costs.Optimization is another new paradigm that can be used to reduce electricity bills.Renewable power sources like energy storage systems,wind,and photovoltaic panels can reduce costs.The energy management system is used for renewable energy in smart grids.Some home appliances are used in this scenario to examine loads that are managed by the energy management system (EMS).Three case studies are evaluated,considering parameters such as timeof-use and pricing schemes,where the simulation results clearly show the efficiency of the EMS [4].The smart-grid approach varies by context;for instance,Americans focus on the distribution network,service levels,and user interaction,while Europeans stress the use of renewable energy and ease of use.The Chinese have developed a bidirectional power system,where current and data flow from different points on a power grid to clients,and vice versa,which they call a fully automated power system with real-time monitoring [5].Another important concept in efficient energy utilization is the use of unmanned aerial vehicles (UAVs) in smart cities.These vehicles play an important role in smart cities because solar and hydrogen energy are used by the aerial vehicles that provide a basis for hybrid power systems.The energy management strategy applied to UAVs is in its infancy,and more research is needed.Similarly,an energy stabilization threshold is introduced in eAntHocNet to preserve drones’ energy and improve the meshwork lifespan [6].

    The advancements in home energy management systems (HEMSs) have transformed life in the digital world.This paper describes HEMS architecture and functionalities like monitoring,logging,control,management,and alarms,which results in balanced energy prices.We briefly explain renewable energy management,which alters peak load utilization to save power [7].In smart cities,novel energy-based strategies are used to minimize energy consumption and maximize the sources of renewable energy.The EMS learns from the environment and shifts energy demand during peak hours to reduce energy utilization [8,9].The community-based home energy-management system is a new model that is applied to renewable energy to reduce the peak-to-average ratio on the smart grid.The technique is based on a circular shifted real-time price,which is a basic moderation in electricity pricing strategy via particle swarm optimization (PSO) in conjunction with other techniques.A HEMS simulation shows a reduction up to 45.3% in electricity cost and 37.98% reduction in PAR [10].We propose a collaborative execute-before-after dependency-based requirement (CDBR) technique,which performs better than PSO and cluster-based EMS.The contributions of this paper are as follows.

    1.The CDBR technique is used in a smart grid to reduce electricity pricing for automatic appliances.

    2.The proposed scheme is evaluated in terms of convergence time,peak-to-average ratio,power utilization,and ratio of mean value.

    3.Electricity cost is calculated for 90 days using MATLAB-based simulations,and CDBR is compared to benchmark algorithms with and without optimization.

    The rest of this article is structured as follows.Section 2 reviews related work.Section 3 introduces the proposed CBDR algorithm for smart cities.Results are discussed in Section 4.Section 5 relates our conclusions and discusses future research directions.

    2 Related Work

    The idea of solar energy management was introduced in the early 1980s [11],and optimization techniques were formulated to manage power scheduling and reduce electricity cost [12].In 2003,Japan launched a new architecture in which home appliances are connected to an energy management controller that is controlled by a personal computer [13].In 2006,a patent was filed by Whirlpool,in which an HEMS controller was designed for home appliances [14].Researchers around the world worked on improvements including fuzzy systems and scheduling optimization,such as the artificial bee colony [15]to schedule home devices.Honda implemented hardware equipment to control,schedule,and monitor home appliances [16].

    In smart grid architecture,automated metering infrastructure was implemented between electric power utilities and end users [17].Smart cities provide energy-management utilities for energy storage and monitoring using smart home energy-management systems [18].Devices in IoT-based smart homes are controlled through PCs or mobile phones,and unmanned aerial vehicles (UAVs)read smart meters.Some houses schedule their loads at lower-priced times.A HEMS is connected wirelessly using 802.11 technology.Every home’s optimized power usage is acquired by inclined block rate (IBR),CDBR,and circular shift real-time electricity pricing,and with little shift each gets real-time electricity pricing.Using our proposed CDBR technique,the power grid distributes the load among homes according to their needs.In this way,the electricity usage of every home is supervised and a fair share is guaranteed.However,some home appliances have device operating systems using a tariff structureinperiodic time slots (TSs).The energy price in each TS is different according to its usage and thetariff structure.A TS with a predicted low price may result in higher usage of electricity in the next TS,causing peak utilization.This is due to circular shift where other community population devices will inhabit the slot,which will build the peak.Fig.1 shows a drone-assisted IoT-enabled secure smart city.

    2.1 Machine Learning and IoT-Enabled Smart Cities

    Machine learning in smart homes uses datasets as input to forecast output values.Smart homes use machine learning and sensors to gather information from nodes that can be utilized to find broken links or sensors.The system learns and improves from experience to make better decisions.Residential energy management systems use automatic switches.Switching decisions are based on artificial neural networks (ANNs) and support vector machines (SVMs) that will efficiently switch the load to local energy storage called renewable energized systems,which results in reduced power utilization in the power grid.A simulation analysis using SVM shows better results in terms of convergence time,peak-to-average ratio,power utilization,and ratio of mean value compared to artificial neural networks [19].Smart homes use IoT and local area network connectivity using 802.11 technology to allow sensor nodes to exchange information.In [20],the authors presented a model with three parts:1.Raspberry Pi;2.Google Colab;and 3.Matplotlib.A Raspberry Pi-based smart plug reads the information from each home appliance,and Google Colab stores the trained data for monitoring.Matplotlib records the energy consumption of end-users.The proposed model is better in terms of accuracy.

    Figure 1:Drone-assisted IoT-based secure smart cities

    2.2 Smart Cities

    The integration of various devices and applications leads to the concept of smart homes,and new dynamics of this area will cover security and data privacy.Some key long-term goals include secrecy,authenticity,availability,and authorization [21].At the abstract level in a smart grid,the demand-side unit uses a security protocol to control a home area network (HAN).Securing communication over the HAN network is endorsed by end-user connectivity with the internet,which directly compromises security [22].In addition to the development process of the microgrid,renewable energy systems with improper energy management systems are particularly ineffective and inefficient.Current systems cannot be deployed on existing home infrastructures without compromising security to home appliances due to the low cost of home energy.Cloud computing techniques use renewable energy capacity to schedule home devices by designing and implementing information-centric HEMS (iHEMS) systems [23,24].Secure communication between network nodes in a smart grid is the main issue.To solve this issue,a secure communication protocol using key management (public and private key) is implemented in information-centric networking for home data,and researchers have developed information-centric HEMS (iHEMS) [25].Wireless technology such as 802.11 or Zigbee is used to connect different nodes,or to establish a secure connection between two workstations.An authentication protocol is designed to authenticate the devices and broadcast the information securely using Zigbee devices.The Zigbee device monitor,control,and record information are broadcast by any device [26].

    Figure 2:Collaborative execute-before-after dependency-based requirement

    3 Proposed Scheme

    Smart homes include automatically operating devices like air conditioners,washing machines,fans,televisions,water pumps,solar panels,and windmills.A real-time pricing (RTP) model is used that charges consumers on a time-slot basis.One hour is divided into six slots of 10 min,which makes 144 time slots in a day.The proposed algorithm is used to schedule power in smart homes,showing a tendency to reduce and smooth high load peaks to attain a preferable peakto-average ratio.The proposed technique works in two phases.In the first stage,a fixed load is adjusted over a period of 24 h,and the second stage is evaluated using a rand function to randomly produce a population load for 90 days using PSO.The technique is repeatedly used to obtain simulation results for CDBR optimization,which results in a reduction in the peak-toaverage ratio.In the proposed scenario,a house can have a minimum of eight appliances,and a maximum of 16.Appliances may run 24 h on a daily basis,i.e.,continuous usage.The proposed collaborative execute-before-after dependency-based requirement is shown in Fig.2.

    Algorithm 1:Proposed algorithm for smart cities (CDBR)Input:Requirements,Pri (a,b,c,d,e,f,g,h,i,j),1:initialization of particles with random priorities (Pri).2:Adjust the limitations for positions and velocity 3:Regulate no.of iterations 4:Default value of global best (gbest) will be infinity (∞)5:Disagreement must be zero at the initial stage 6:while (the main objective is to minimize the disagreement value)7:for Pri (a,b,c,d,e,f,g,h,i,j) each iteration 8:Population do 9:Compute disagreement using Eqs.(1)-(5)10:else 11:Update gbest=pbest if gbest>pbest 12:end if 13:Update best_position=Pri,position for which gbest>pbest 14:for every particle 15:Update the particle’s velocity using Eq.(6)16:else 17:Updating of particle’s position according to velocity 18:Calculation and finding limits for random priorities using Eq.(7)19:end if 20:Return the final minimized disagreement value,which is equal to gbest and Pri (disagreement is lowest or near zero)21:Return to line 7 22:End

    Providing the optimal solution in a smart grid,the PSO plays a vital role.However,to get a better decision support system,CDBR is the best strategy by which to secure the communication channel.CBDR incorporates PSO to get better results,while the disagreement in a priority value pair is calculated using Eqs.(1)-(5).

    Here,Eqs.(1) and (2) calculate the disputed pairs,which means the values representing a dispute or variation between two standard values (Piand Si).

    Similarly the disagreement between Pi and Si is calculated using Eq.(3).

    Eqs.(4) and (5) compute overall disagreement.

    The current solution represents the prime concern list,which is the basic requirement for available iterations in the sequence using the position vector.V is the particle velocity,and pbestand gbestare the best possible solutions to be obtained individually.In Eq.(6),the rand function is used to initiate random values in the interval (0,1).Two parameters are used;cognition (c1)shows the last position a particle visited,and social (c2) indicates information about the locality of the optimal position.

    Fig.3 shows a directed graph that represents objects a,b,c,d,e,f,g,h,i,and j.The dependencies between these objects are shown,and their transitive relations are modeled as S={a,b,c,d,e,f,g,h,i,j} and R={(a,d),(d,g),(g,h),(g,e),(h,j),(e,f),(f,i),(b,c),(c,e)}.Hence,d must be calculated before a,and these are called circular dependencies.

    Figure 3:Dependency graph

    Inclined Block Rate(IBR)

    The electricity prices using IBR are better because the price of electricity is computed based on the actual usage and real-time estimation.The RTP-IBR electricity pricing scheme for every time slot is different.Some end users know when electricity prices will be low,and try to make use of home appliances during those periods.Many people use electricity simultaneously,thinking that this is the low-price time based on IBR estimation.This results in a high load.Consequently,prices are driven higher before IBR can signal this to consumers/users.

    4 Simulation Results and Discussion

    A description of the simulation results is presented in the form of graphs and tables to verify the performance of the proposed scheme compared to traditional evolutionary algorithms with IBR.Various metrics are used,such as power usage patterns,cost of electricity,and average-tomean ratio.

    4.1 Configuration for PSO

    We used MATLAB for simulation to evaluate computational techniques such as PSO and CDBR.The group size,i.e.,the number of houses,was about 100,with 16 subcomponents.The results shown are the average of many simulations.We ran simulations 50 times and present the average values here.

    4.2 Configuration for CDBR

    We trained our proposed CDBR techniques using the data of four months,from May 27,2018,to August 24,2018,from a U.S.-based company named Ameren.The power usage pattern for 45 days is shown in Fig.3,which depicts that PSO and IBR reduce the PAR slightly,while the proposed scheme reduces the PAR significantly.

    The proposed CDBR in combination with IBR gives better results than PSO in conjunction with IBR.The mean values are tabulated in Tab.1.

    Table 1:Mean values of Fig.4

    Fig.5 shows the PAR values,and PAR reduction for 90 days using CDBR,PSO,and without optimization.It shows that the proposed CDBR algorithm reduces PAR significantly compared to PSO.Tab.2 shows the mean values of PSO and CDBR.

    The simulation results of the proposed CDBR scheme show a reduction compared to PSO.CDBR gives an average improvement of 0.26 in peak-to-average ratio (PAR),and without optimization it gives an improved average of 0.866.Tab.3 shows the mean values of PSO and CDBR.

    Fig.7 shows the power average usage pattern of consumers.Without optimization,the usage is high,and with PSO,it is better that without optimization.However,the proposed CDBR outperforms all schemes.

    The peak-to-average ratio of power usage is better when using CDBR than with PSO.It also increases the number of users,as shown in Figs.8 and 9.

    Figure 4:Power usage pattern (45 days)

    Figure 5:Electricity cost for 90 days using CDBR

    Table 2:Mean values of Fig.5

    Table 3:Mean values of Fig.6

    Figure 6:PAR for 90 days using CDBR

    Tab.4 summarizes the average of simulations for 90 days,where CDBR results show optimality compared to PSO.

    Figure 7:CDBR (average-to-mean ratio) power usage pattern

    Figure 8:Power usage of end user

    Figure 9:Peak-to-average ratio

    Table 4:Summary of simulation results

    5 Conclusion and Future Directions

    Smart cities are a promising area of research.Smart cities must provide cost-effective and efficient solutions to make humans comfortable.One such solution is energy management,i.e.,a smart grid.It is achieved by knowing the demand-to-supply ratio in a locality using machine learning algorithms.To balance demand and response at the power generation side,we have proposed a CDBR algorithm based on particle swarm optimization.The algorithm helps to maintain a smooth power usage pattern and reduce the peak-to-average ratio.The algorithm shows significant improvements in simulation-based results in terms of fast convergence.In the future,CDBR can be used with a cluster community home energy management system.The entities in a smart home and smart grid are interconnected using IoT.Wireless communication among these devices is an easy target of intruders.Securing the smart grid from cyber-attacks is mandatory,and warrants future work.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    妹子高潮喷水视频| 精品国产露脸久久av麻豆| 日韩av在线免费看完整版不卡| 99久久精品热视频| 久久6这里有精品| 国产黄色视频一区二区在线观看| tube8黄色片| 国产精品.久久久| 欧美精品一区二区免费开放| 午夜免费鲁丝| 丰满饥渴人妻一区二区三| 日韩一区二区视频免费看| 美女脱内裤让男人舔精品视频| 少妇被粗大猛烈的视频| 亚洲,一卡二卡三卡| 青春草国产在线视频| 日韩视频在线欧美| 91久久精品电影网| 久久久久久伊人网av| 日日摸夜夜添夜夜爱| 性色av一级| 欧美变态另类bdsm刘玥| freevideosex欧美| 丰满迷人的少妇在线观看| 2021少妇久久久久久久久久久| 乱系列少妇在线播放| 国产在视频线精品| 日本av手机在线免费观看| 91在线精品国自产拍蜜月| 久久韩国三级中文字幕| 亚洲欧美日韩卡通动漫| 国语对白做爰xxxⅹ性视频网站| 中文字幕av电影在线播放| 搡老乐熟女国产| 99九九线精品视频在线观看视频| 欧美国产精品一级二级三级 | 国产一级毛片在线| 日本黄色片子视频| 最近的中文字幕免费完整| 亚洲av免费高清在线观看| 欧美精品亚洲一区二区| 久久这里有精品视频免费| 中文天堂在线官网| 男女国产视频网站| 久热久热在线精品观看| 久久久久国产网址| 亚洲伊人久久精品综合| 婷婷色综合www| 十八禁高潮呻吟视频 | 国产免费一区二区三区四区乱码| 精品卡一卡二卡四卡免费| 色5月婷婷丁香| av专区在线播放| 91精品国产九色| 亚洲国产毛片av蜜桃av| 久久精品夜色国产| 熟女av电影| 午夜日本视频在线| 观看美女的网站| 天堂俺去俺来也www色官网| 久久毛片免费看一区二区三区| 成人毛片a级毛片在线播放| 我的女老师完整版在线观看| 婷婷色综合www| 亚洲国产毛片av蜜桃av| 永久网站在线| 欧美另类一区| 妹子高潮喷水视频| av天堂中文字幕网| 九色成人免费人妻av| 国产老妇伦熟女老妇高清| 午夜影院在线不卡| 男女啪啪激烈高潮av片| 久久人人爽av亚洲精品天堂| 久久人人爽人人片av| 久久毛片免费看一区二区三区| 亚洲精品日韩在线中文字幕| 国产精品一区二区在线不卡| 亚洲精品中文字幕在线视频 | 国产精品成人在线| 国产免费视频播放在线视频| av黄色大香蕉| 你懂的网址亚洲精品在线观看| 十分钟在线观看高清视频www | 亚洲,欧美,日韩| 亚洲熟女精品中文字幕| 精品卡一卡二卡四卡免费| 97在线人人人人妻| 边亲边吃奶的免费视频| 国产精品免费大片| 男人爽女人下面视频在线观看| 男人添女人高潮全过程视频| 国产亚洲5aaaaa淫片| 黄色怎么调成土黄色| 亚洲精品456在线播放app| 日韩成人伦理影院| 久久这里有精品视频免费| 精品午夜福利在线看| 久久久久久伊人网av| 午夜激情久久久久久久| 久久久久久久久大av| 国产极品天堂在线| 免费人妻精品一区二区三区视频| 亚洲欧美一区二区三区黑人 | 免费观看在线日韩| 午夜日本视频在线| 国产一区亚洲一区在线观看| av国产久精品久网站免费入址| 高清在线视频一区二区三区| 美女大奶头黄色视频| 丰满乱子伦码专区| 亚洲国产成人一精品久久久| 日本-黄色视频高清免费观看| 国产欧美另类精品又又久久亚洲欧美| 国产精品国产三级国产专区5o| 久久精品国产亚洲av涩爱| 观看av在线不卡| 国精品久久久久久国模美| 黑人巨大精品欧美一区二区蜜桃 | a级片在线免费高清观看视频| 国产精品福利在线免费观看| 18禁在线无遮挡免费观看视频| videos熟女内射| 天堂中文最新版在线下载| 2018国产大陆天天弄谢| 一级av片app| av有码第一页| 少妇的逼好多水| 在线免费观看不下载黄p国产| 亚洲国产精品999| 亚洲熟女精品中文字幕| 亚洲成人手机| 国产日韩欧美在线精品| 国产一区二区三区av在线| 国精品久久久久久国模美| 中文在线观看免费www的网站| 边亲边吃奶的免费视频| 日本av手机在线免费观看| 蜜桃久久精品国产亚洲av| 99精国产麻豆久久婷婷| 国产精品一区二区在线不卡| 新久久久久国产一级毛片| 制服丝袜香蕉在线| 人人澡人人妻人| 99热这里只有精品一区| 亚洲av欧美aⅴ国产| 中国国产av一级| 国产精品久久久久久久久免| 国产成人精品久久久久久| 免费av中文字幕在线| 在线观看www视频免费| 国产成人精品福利久久| 亚洲内射少妇av| 三级国产精品片| 国产欧美亚洲国产| 九色成人免费人妻av| 青春草国产在线视频| 国产白丝娇喘喷水9色精品| 18禁裸乳无遮挡动漫免费视频| 最近2019中文字幕mv第一页| h日本视频在线播放| 亚洲av福利一区| 久久人人爽人人片av| av有码第一页| 男女边吃奶边做爰视频| 亚洲av不卡在线观看| 久久久久久久久久人人人人人人| 丰满乱子伦码专区| 国产亚洲av片在线观看秒播厂| 亚洲av欧美aⅴ国产| 少妇裸体淫交视频免费看高清| 免费黄网站久久成人精品| 日本免费在线观看一区| 色视频在线一区二区三区| 老熟女久久久| 免费高清在线观看视频在线观看| 大香蕉97超碰在线| 国产在线视频一区二区| 国产精品欧美亚洲77777| 18禁动态无遮挡网站| 成年美女黄网站色视频大全免费 | 亚洲国产精品成人久久小说| 成人二区视频| 中国三级夫妇交换| 国产精品欧美亚洲77777| 免费观看性生交大片5| av卡一久久| 麻豆乱淫一区二区| 久久精品熟女亚洲av麻豆精品| 亚洲久久久国产精品| 男女边摸边吃奶| av又黄又爽大尺度在线免费看| 九色成人免费人妻av| 久久久久网色| 老司机影院成人| 91成人精品电影| 另类亚洲欧美激情| 亚洲av日韩在线播放| 观看美女的网站| 国产一区有黄有色的免费视频| 亚洲av国产av综合av卡| 亚洲精品国产av成人精品| 国产精品国产av在线观看| 99热国产这里只有精品6| 在现免费观看毛片| 在线精品无人区一区二区三| 久久久国产一区二区| 亚洲av综合色区一区| 国产有黄有色有爽视频| 久久6这里有精品| 日韩电影二区| 美女国产视频在线观看| 国产精品久久久久久精品古装| 精品国产露脸久久av麻豆| 成人18禁高潮啪啪吃奶动态图 | 青春草国产在线视频| 插逼视频在线观看| 91在线精品国自产拍蜜月| 国产免费又黄又爽又色| www.色视频.com| 51国产日韩欧美| 成人免费观看视频高清| 中国国产av一级| 老女人水多毛片| 日韩av不卡免费在线播放| 国产男女内射视频| 成人18禁高潮啪啪吃奶动态图 | 欧美精品高潮呻吟av久久| 91久久精品电影网| 亚洲国产欧美在线一区| 亚洲四区av| 免费黄频网站在线观看国产| 亚洲欧美精品自产自拍| 高清av免费在线| 99热这里只有是精品在线观看| h日本视频在线播放| 亚洲美女视频黄频| 美女xxoo啪啪120秒动态图| 老司机影院成人| 乱码一卡2卡4卡精品| a级一级毛片免费在线观看| 国产男女超爽视频在线观看| 久久精品国产自在天天线| 国产黄片视频在线免费观看| a级毛色黄片| 国产伦精品一区二区三区四那| 亚洲精品aⅴ在线观看| 爱豆传媒免费全集在线观看| 我要看黄色一级片免费的| 精品亚洲成国产av| 三级经典国产精品| 国产欧美日韩综合在线一区二区 | 欧美精品高潮呻吟av久久| 观看av在线不卡| 国产精品99久久99久久久不卡 | 精品国产一区二区久久| 极品教师在线视频| 日本与韩国留学比较| 日韩亚洲欧美综合| 99精国产麻豆久久婷婷| 久久 成人 亚洲| 在线播放无遮挡| 777米奇影视久久| 在线亚洲精品国产二区图片欧美 | 成人特级av手机在线观看| 乱码一卡2卡4卡精品| 日本午夜av视频| 人妻少妇偷人精品九色| av.在线天堂| 中文字幕av电影在线播放| 久久久欧美国产精品| 日韩中字成人| 在线观看www视频免费| 成人毛片60女人毛片免费| 王馨瑶露胸无遮挡在线观看| 成年人免费黄色播放视频 | 欧美一级a爱片免费观看看| 人人妻人人澡人人看| 国产精品久久久久久精品电影小说| av天堂中文字幕网| 精品少妇内射三级| 久久鲁丝午夜福利片| 久久久精品94久久精品| 成年女人在线观看亚洲视频| 自拍欧美九色日韩亚洲蝌蚪91 | 国产成人精品婷婷| 成人美女网站在线观看视频| 日日撸夜夜添| 亚洲图色成人| 亚洲av成人精品一二三区| 欧美3d第一页| 街头女战士在线观看网站| 成年人午夜在线观看视频| 波野结衣二区三区在线| 中文字幕av电影在线播放| 久久亚洲国产成人精品v| 亚洲av福利一区| 伊人久久国产一区二区| 视频区图区小说| 色视频www国产| 边亲边吃奶的免费视频| 国产淫片久久久久久久久| av福利片在线观看| 国产成人a∨麻豆精品| 在线播放无遮挡| 精品久久久久久久久av| 精品一区二区三卡| 亚洲精品色激情综合| 伊人久久国产一区二区| 日本vs欧美在线观看视频 | 777米奇影视久久| 国产乱人偷精品视频| 国产熟女午夜一区二区三区 | 欧美老熟妇乱子伦牲交| 在线观看国产h片| 久久这里有精品视频免费| 五月玫瑰六月丁香| 欧美97在线视频| 日日撸夜夜添| 久久久国产欧美日韩av| 日日撸夜夜添| 丝袜喷水一区| 色吧在线观看| 精品亚洲成a人片在线观看| 欧美日韩精品成人综合77777| 天堂俺去俺来也www色官网| 国产精品久久久久久精品古装| 亚洲成人av在线免费| 91精品伊人久久大香线蕉| 国产精品99久久久久久久久| 我要看日韩黄色一级片| 国产伦理片在线播放av一区| 人人澡人人妻人| 18+在线观看网站| 国产亚洲午夜精品一区二区久久| 久久狼人影院| 高清av免费在线| 精品久久久噜噜| 日日撸夜夜添| 国产精品麻豆人妻色哟哟久久| 搡女人真爽免费视频火全软件| 极品教师在线视频| 最新中文字幕久久久久| 亚洲av不卡在线观看| 成人黄色视频免费在线看| 黄色视频在线播放观看不卡| 成人亚洲精品一区在线观看| 国产亚洲5aaaaa淫片| 亚洲,欧美,日韩| 日韩精品有码人妻一区| 亚洲精品国产色婷婷电影| 亚洲人成网站在线播| 最近中文字幕2019免费版| 国产伦精品一区二区三区视频9| 国模一区二区三区四区视频| 成人综合一区亚洲| 成人毛片a级毛片在线播放| 久久久精品94久久精品| 亚洲国产成人一精品久久久| 色94色欧美一区二区| 亚洲内射少妇av| 韩国av在线不卡| av有码第一页| av又黄又爽大尺度在线免费看| 超碰97精品在线观看| 九九在线视频观看精品| 精品久久国产蜜桃| 亚洲国产欧美日韩在线播放 | 亚州av有码| 免费在线观看成人毛片| 国产免费一级a男人的天堂| 老司机影院成人| 我的老师免费观看完整版| 国产片特级美女逼逼视频| 午夜福利网站1000一区二区三区| 丝袜脚勾引网站| 高清黄色对白视频在线免费看 | 日本与韩国留学比较| 久久精品久久久久久久性| 日产精品乱码卡一卡2卡三| 国产精品国产三级国产专区5o| 亚洲精品视频女| 午夜激情福利司机影院| 91aial.com中文字幕在线观看| 久久99热6这里只有精品| 亚洲美女黄色视频免费看| 人妻系列 视频| 亚洲精品久久久久久婷婷小说| 狂野欧美激情性bbbbbb| 欧美精品人与动牲交sv欧美| 97精品久久久久久久久久精品| 亚洲精品日韩在线中文字幕| 久久99热6这里只有精品| 国产午夜精品久久久久久一区二区三区| 在线观看www视频免费| 国产精品无大码| 欧美成人精品欧美一级黄| 国产熟女午夜一区二区三区 | 久久久久久久久久久免费av| 插阴视频在线观看视频| 亚洲欧美一区二区三区黑人 | 亚洲熟女精品中文字幕| 自线自在国产av| 国产成人91sexporn| 久久久a久久爽久久v久久| 在线观看三级黄色| 国产又色又爽无遮挡免| 国产黄片视频在线免费观看| av天堂中文字幕网| 国产精品嫩草影院av在线观看| 交换朋友夫妻互换小说| 亚洲欧美日韩另类电影网站| 哪个播放器可以免费观看大片| 亚洲av不卡在线观看| 日本wwww免费看| 免费黄频网站在线观看国产| 午夜久久久在线观看| 国产成人午夜福利电影在线观看| 久久综合国产亚洲精品| 国产精品一区二区三区四区免费观看| 亚洲成人手机| 男女免费视频国产| 亚洲精品成人av观看孕妇| av在线观看视频网站免费| 久热久热在线精品观看| 99热网站在线观看| 精品一品国产午夜福利视频| 国产精品女同一区二区软件| 色94色欧美一区二区| 婷婷色综合www| 91久久精品电影网| 啦啦啦啦在线视频资源| 99热国产这里只有精品6| 精品人妻一区二区三区麻豆| 亚洲av福利一区| 赤兔流量卡办理| 国产精品女同一区二区软件| 亚洲经典国产精华液单| 大香蕉97超碰在线| freevideosex欧美| 狠狠精品人妻久久久久久综合| 九九久久精品国产亚洲av麻豆| av在线app专区| 亚州av有码| 80岁老熟妇乱子伦牲交| 在线观看美女被高潮喷水网站| 伦理电影大哥的女人| 六月丁香七月| 国产成人精品久久久久久| 狂野欧美白嫩少妇大欣赏| 亚洲欧美精品专区久久| 久久精品国产鲁丝片午夜精品| xxx大片免费视频| 国产午夜精品一二区理论片| 91在线精品国自产拍蜜月| 夫妻性生交免费视频一级片| 日韩亚洲欧美综合| av播播在线观看一区| 亚洲美女搞黄在线观看| 国产亚洲欧美精品永久| 亚洲av电影在线观看一区二区三区| 18+在线观看网站| 久久青草综合色| 国产精品一区二区在线观看99| 日本欧美国产在线视频| 亚洲真实伦在线观看| 中文字幕免费在线视频6| 一本色道久久久久久精品综合| 99久久精品一区二区三区| 视频中文字幕在线观看| 欧美最新免费一区二区三区| 国产老妇伦熟女老妇高清| av在线观看视频网站免费| 久久久久久久国产电影| 爱豆传媒免费全集在线观看| 熟女av电影| 午夜福利视频精品| 亚洲电影在线观看av| 97精品久久久久久久久久精品| av免费观看日本| 丁香六月天网| 一级毛片电影观看| 欧美日本中文国产一区发布| 大香蕉97超碰在线| 国产黄色免费在线视频| 久久久久久久国产电影| 大片电影免费在线观看免费| 午夜福利,免费看| 一区二区三区免费毛片| 中文天堂在线官网| 亚洲av不卡在线观看| 黑人高潮一二区| 少妇的逼水好多| 日本爱情动作片www.在线观看| 熟女电影av网| 青春草国产在线视频| 九九久久精品国产亚洲av麻豆| 久久婷婷青草| 久久6这里有精品| 大话2 男鬼变身卡| 男人狂女人下面高潮的视频| 丰满人妻一区二区三区视频av| 国产伦精品一区二区三区四那| 最近中文字幕高清免费大全6| 中文字幕人妻丝袜制服| 天堂俺去俺来也www色官网| 精品久久久久久电影网| 秋霞伦理黄片| 国产免费视频播放在线视频| 中文天堂在线官网| 中文字幕免费在线视频6| 国产成人精品婷婷| 久久鲁丝午夜福利片| 欧美 亚洲 国产 日韩一| 日本与韩国留学比较| 国产成人午夜福利电影在线观看| av国产精品久久久久影院| 亚洲第一区二区三区不卡| 韩国高清视频一区二区三区| 极品人妻少妇av视频| 亚洲人成网站在线观看播放| 精品少妇内射三级| 亚洲激情五月婷婷啪啪| 自线自在国产av| 亚洲欧洲日产国产| 九草在线视频观看| 人妻少妇偷人精品九色| 日韩不卡一区二区三区视频在线| 人妻 亚洲 视频| av在线播放精品| 国产免费一级a男人的天堂| 丝袜在线中文字幕| 久久久国产一区二区| 久久鲁丝午夜福利片| 成年人午夜在线观看视频| 日本午夜av视频| 大又大粗又爽又黄少妇毛片口| 久久99热这里只频精品6学生| 寂寞人妻少妇视频99o| 国产亚洲一区二区精品| 女人精品久久久久毛片| 国产伦在线观看视频一区| 一区二区三区乱码不卡18| 婷婷色麻豆天堂久久| 国产无遮挡羞羞视频在线观看| 3wmmmm亚洲av在线观看| 在线观看www视频免费| 久久久久久久大尺度免费视频| 亚洲精品自拍成人| 欧美xxxx性猛交bbbb| 国产免费福利视频在线观看| 国产精品一区www在线观看| 天堂中文最新版在线下载| 亚洲精品国产av成人精品| 国产成人精品久久久久久| 韩国av在线不卡| 汤姆久久久久久久影院中文字幕| 国产精品99久久99久久久不卡 | 人妻系列 视频| 亚洲熟女精品中文字幕| 国产欧美日韩一区二区三区在线 | 亚州av有码| 久久这里有精品视频免费| 我要看日韩黄色一级片| 国产探花极品一区二区| 啦啦啦视频在线资源免费观看| 人妻制服诱惑在线中文字幕| 午夜福利视频精品| 夜夜看夜夜爽夜夜摸| 最近手机中文字幕大全| 寂寞人妻少妇视频99o| 亚洲精品成人av观看孕妇| 亚洲精品,欧美精品| av黄色大香蕉| 视频中文字幕在线观看| 日韩欧美 国产精品| 国产91av在线免费观看| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久久电影| 妹子高潮喷水视频| 国产男女内射视频| av天堂中文字幕网| 啦啦啦啦在线视频资源| 久久久国产一区二区| 亚洲成色77777| 天堂俺去俺来也www色官网| 大码成人一级视频| 成人免费观看视频高清| 日韩一区二区三区影片| 亚洲国产欧美在线一区| 国产白丝娇喘喷水9色精品| 三级国产精品片| 国产男人的电影天堂91| 黄色一级大片看看| 免费在线观看成人毛片| 亚洲国产欧美在线一区| 亚洲av二区三区四区| 99热全是精品| 国产男人的电影天堂91| 亚洲成色77777| 欧美3d第一页| 国产精品三级大全| 人体艺术视频欧美日本| 婷婷色av中文字幕| 欧美国产精品一级二级三级 | 亚洲人与动物交配视频| 日韩大片免费观看网站| 欧美激情极品国产一区二区三区 | 亚洲国产色片| 色婷婷av一区二区三区视频| 不卡视频在线观看欧美| 国产 精品1| 国产精品国产三级国产av玫瑰| 国产在线免费精品| 亚洲精品第二区|