• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Industrial Food Quality Analysis Using New k-Nearest-Neighbour methods

    2021-12-16 07:52:12OmarFetitahIbrahimAlmanjahieMohammedKadiAttouchandSalahKhardani
    Computers Materials&Continua 2021年5期

    Omar Fetitah,Ibrahim M.Almanjahie,Mohammed Kadi Attouch,*and Salah Khardani

    1Laboratory of Statistics and Stochastic Processes,University of Djillali Liabes,Sidi Bel Abbes,22000,Algeria.

    2Department of Mathematics,College of Science,King Khalid University,Abha,62529,Saudi Arabia

    3Statistical Research and Studies Support Unit,King Khalid University,Abha,62529,Saudi Arabia

    4Faculté des sciences de Tunis,Laboratoire des Réseaux Intelligents et Nanotechnologie,Tunis,Tunisia

    Abstract:The problem of predicting continuous scalar outcomes from functional predictors has received high levels of interest in recent years in many fields,especially in the food industry.The k-nearest neighbor(k-NN)method of Near-Infrared Reflectance (NIR) analysis is practical,relatively easy to implement,and becoming one of the most popular methods for conducting food quality based on NIR data.The k-NN is often named k nearest neighbor classifier when it is used for classifying categorical variables,while it is called k-nearest neighbor regression when it is applied for predicting noncategorical variables.The objective of this paper is to use the functional Near-Infrared Reflectance (NIR) spectroscopy approach to predict some chemical components with some modern statistical models based on the kernel and k-Nearest Neighbour procedures.In this paper,three NIR spectroscopy datasets are used as examples,namely Cookie dough,sugar,and tecator data.Specifically,we propose three models for this kind of data which are Functional Nonparametric Regression,Functional Robust Regression,and Functional Relative Error Regression,with both kernel and k-NN approaches to compare between them.The experimental result shows the higher efficiency of k-NN predictor over the kernel predictor.The predictive power of the k-NN method was compared with that of the kernel method,and several real data sets were used to determine the predictive power of both methods.

    Keywords:Functional data analysis;classical regression;robust regression;relative error regression;kernel method;k-NN method;near-infrared spectroscopy

    1 Introduction

    Near-infrared spectroscopy (NIRS) is a technique for measuring and analyzing reflection spectra in a class of wavelengths.Fig.1 illustrates the basic components of the NIR spectroscopy technique;this measurement technique is analytical,fast,and non-destructive is often used to measure some parameters in terms of spectrum absorbance.For example,in the pharmaceutical industry,it is used in the manufacturing process of a drug to control the active ingredient’s exact amount.In the food industry,the spectrum can be used to test the forage quality [1].In medical science,fluorescence spectroscopy can be used for cancer screening.Finally,in the food industry,for example,a method of classifying flour products based on resistance spectra of dough in bakeries.

    Figure 1:Schematic representation of the near-infrared NIR spectroscopy-based setup,the basic

    Although the NIR has given excellent results when used in various other fields such environment and the petrochemical industries,it remains relatively new for its use in virology.This method has also been used with great success for the identification of HIV-1 and the influenza virus.The advantage of using this method is that it does not require reagents or test kits that take a considerable time to perform these tests.For example,we mention the PCR (Polymerase chain reaction) or RT-PCR (reverse transcription-polymerase chain reaction) test that gives results in most cases for more than 2 h.

    Usually,the NIR spectrometry is combined with some multivariate statistical models,such as the principal component regression or the partial least regression.To increase the accuracy of this procedure,we use the recent development in data science.Precisely,we combine the NIR spectrometry technology with big-data techniques modeling.The statistical modeling of big-data is an emerging topic of applied statistics.It has received considerable attention during the last decade.The development of the current technology provides a way to measure different types of instruments and the informatics tools that motivate this subject’s work.Besides,this advancement allows the researchers to recover big data being recorded over time.

    One of the most advantages of this thematic is the fact that the statistical data can be treated as curves.Our main goal in this project is to develop a new software code induced from some recent statistical models adapted for NIR spectrometry data viewed as curves.The proposed models include the functional version of the PCR regression (principal component regression),and the PLS regression (partial least squares regression),etc.It is worth noting that the originality of the nonparametric analysis of functional statistics is that it links the probability structure to the topological structure to explore the most pertinent information about the data.An alternative to the preceding methods,we propose a new smoothing method constructed by the combination of the nonparametric functional regression methods and the kernel nearest-neighbor scheme.This new smoothing method keeps the robustness of the weighting functions.

    Functional data analysis (FDA) arises mainly to resolve problems relating to time-like curves.In chemometric,it is usual to measure specific parameters in terms of a set of spectrometric curves that are observed in a finite set of points (functional data).In the past decades,spectroscopy has steadily gained importance as a rapid and non-destructive analytical technique in the domains of medicine,chemistry and pharmaceutical,environmental,agricultural,and food sciences.

    Near-infrared spectrometry (NIR) provides benchmark examples coming from chemometrics.It is an analytical chemometric technology quick technique that involves subjecting a sample to infrared radiation to measure certain parameters of interest in terms of the absorbance spectrum;see,among others [2,3].Absorption spectroscopy is used as an analytical chemistry tool to determine the presence of a particular substance in a sample and,in many cases,to quantify the amount of the substance present.The utility of absorption spectroscopy in chemical analysis is because of its specificity and its quantitative nature.In spectroscopy,the measured spectra are typically plotted as a function of the wavelength or wave-number but analyzed with functional data analysis (FDA) techniques.Traditionally,spectral data are analyzed through multivariate statistical methods such as multiple linear regression (MLR),principal components regression(PCR),and partial least squares regression (PLS) [4,5],which consider the spectrum as a set of m different variables (curves).

    There are many applications of the FDA in spectrometry.For example,these NIR spectra have been used in [6]to predict the oil content of the corn samples (multivariate calibration).In [7],the goal is to predict the composition (fat,sugar,and water content) of biscuit dough pieces using predictors of the NIR reflectance spectrum of dough pieces at 256 equally spaced wavelengths.In the food industry,the spectrum can be used to predict the fatness of a piece of meat (see [8]).NIR spectra are also used to study the forage quality assessment (see [9-12]for recent advances).

    More precisely,this paper aims to use the functional Near-Infrared Reflectance spectroscopy approach to predict some chemical components with some modern statistical models based on the kernel and k-NN procedures.In this article,three NIR spectroscopy datasets are used as examples:Cookie dough,sugar,and tecator data.Specifically,we propose three models for this kind of data:Functional Nonparametric Regression,Functional Robust Regression,and Functional Relative Error Regression,with both kernel and k-NN approaches.

    The paper is organized as follows.Section 2 describes the prediction problems and the data used.We discuss our results in Section 3.The conclusion is presented in Section 4.

    2 Materials and Methods

    2.1 Spectroscopic Analysis

    Grid of measurements Near-infrared spectrometry provides benchmark examples coming from chemometrics.This is a non-destructive technology able to measure numerous chemical compounds in a wide variety of products (food industry,petroleum industry,wood industry,etc.);see among others [2,13-16].For instance,let us consider a sample of 72 cookie dough samples.Each sample is illuminated by a light beam at 700 equally spaced wavelengths(ω1,...,ω700)in the near-infrared range 1100?2498 nm.For each wavelengthωand each cookie samplei,the absorptionXi(ω)of radiation is measured.Theith discretized spectrometric curve is given byXi(ω1),...,Xi(ω700),and Fig.2 displays the 72 spectrometric curves.

    Figure 2:Cookie dough 72 samples of near-infrared spectra

    All these curves involve some continuum in their structure,even if they are observed at discrete points.The terminology of functional data refers to this continuous feature.Figs.3 and 4 give a benchmark example of such data for the food industry introduced in [17]:268 samples of sugar were dissolved,and the solution was measured spectrofluorometrically.For every sample,the emission spectra from 275 to 560 nm were measured in 0.5 nm intervals (i.e.,at 571 wavelengthsω1,...,ω571) theith discretized spectrometric curve is given byXi(ω1),...,Xi(ω571).We mention [18],who studied 215 finely chopped pieces of meat (tecator data).For theith piece of meat,one observes a spectrum of absorptionXi(·)sampled at 100 equally spaced wavelengthsω1,...,ω100from 850 to 1050 nm.

    Figure 3:268 spectrometric curves sampled of the sugar data

    Figure 4:The 215 NIR spectroscopy curves of the tecator data

    Throughout these three examples,which will be our connecting thread,one can remark that the grid of measurements (i.e.,wavelengths) for the spectrometric curves is quite dense.

    In chemometrics,there are often function-like absorbance or emission spectra—mainly for food samples—used to determine certain ingredients’content.The use of spectra function is typically much cheaper than alternative chemical analysis.

    2.2 Statistical Analysis

    This paper aims to present various ways of nonlinear modeling relationships in datasets containing functional data and discuss methodological aspects.We focus on the particular case when one regresses a scalar response on an explanatory functional variable.To fix the ideas,let’s present the mathematical formulation of our prediction problem.Indeed,assume that we aim to predict the content of certain ingredients:the sucrose content for the cookie dough,the quality ash in the percentage of the sugar given,and the fat content for the piece of meat.Denoted contents byYi,the spectrometric curves associatedXi.Note thatY’s values for the percentage of the sugar are discrete;Therefore,we will consider thatYis a continuous approximation.We assume that the output variableYand the input variableXare linked by the following regression formula

    wherem(·)is an unknown operator modeling the relationship betweenXandYand the white noiseεrepresents an independent random variable ofXwith a symmetric distribution.The statistical challenge consists of proposing a relevant estimator.Here,we focus our attention on regression models such thatm(X)=E(Y|X)(i.e.,E(ε|X)=0),and propose in the following three models:Functional Nonparametric Classical Regression,Functional Robust Regression,and Functional Relative Error Regression.

    2.2.1 Functional Classical Regression

    The nonparametric estimation of the functional regression was initially studied by [19,20],who used the Nadaraya Watson method to estimate this statistical model.Precisely,the functionm(.)is explicitly expressed using the least square error criterion by

    It follows that

    m(x)=E[Y|X=x].

    So,for all fixed curvesxwe predict the responseywith respect to the criterion in Eq.(2) by(x)(the classical kernel estimator ofm(x)) defined by

    withKis a kernel function andhnis a non-negative real sequence.

    2.2.2 Functional Robust Regression

    This regression model is obtained by resolving the following optimization problem

    ρis a real-valued Borel function chosen by the user according to the studied data.The model in Eq.(4) has been introduced in functional statistics by [21,22].The robustness is the main advantage of this model.It permits the analysis of the data even in the presence of the outliers.Its functional estimation is expressed by

    2.2.3 Functional Relative Error Regression

    This last regression is an alternative nonparametric regression to the least square regression model.It is recently considered in functional statistics by [23].It is defined by the following rule

    The expression of this regression is explicitly given by

    and its estimator is defined by

    3 Results and Discussions

    The performance of all the models mentioned above is closely linked with the use of different parameters involved in the estimation.We opted for the asymmetric quadratic kernel defined asThus,the smoothness of curvesXi(t)and the smoothing parameterhnare the most influencing parameters in this prediction issue.Concerning the norm ‖.‖,the distances between the smoothed curves are computed by

    For basic materials on the latter notion,we refer the readers to [19].On the other hand,the bandwidth parameter,h,selection is a more important procedure for conducting the estimation.Our main goal is to compare two methods (kernel CV method and the k-Nearest Neighbors k-NN method) for our three estimators,and.In the following,we describe the use of these methods for our proposed estimators.

    Using the kernel CV method,we obtain

    and

    wherehoptis the data-driven bandwidth obtained by a cross-validation procedure:

    Using the method of k-Nearest Neighbors k-NN procedure,we obtain

    and

    wherehkoptis the bandwidth corresponding to the optimal number of neighbors obtained by a cross-validation procedure:

    with

    wherenTestis the length of the testing sample andindicate the prediction values of the estimatorscalculate atXi.The obtained prediction results are shown in Figs.5-7.

    Figs.5-7 give an idea of the accuracy of the predictions corresponding to one run.They present the last 15th,16th and 20th of each data’s predictions,respectively:The observed values(black curve),the predicted values (dashed red for the kernel regression,and green for the k-NN one) are drawn.It is depicted in Figs.5-7 that there is a significant gain among the k-NN models compared to the kernel CV ones.The k-NN models for the classical,robust,and relative regression give better results than the kernel CV for the classical,robust,and relative regression.To further explore the performances of the six methods,we carry outM=100 independent replications,which allow us to compute 100 values for MSE and display their distribution through a bean plot.Figs.8-10 show the bean-plots of the MSE of the prediction values.Moreover,Tab.1 shows that the models in Eqs.(11)-(13) give small MSE followed by those in Eqs.(8)-(10).The same fact is confirmed by Tab.2,where we present the RMSE.

    Figure 5:Prediction of the last 15 testing cookie dough samples

    Figure 6:Prediction of the last 16 testing sugar samples

    The values of RMSE are relatively stable and smaller for the three k-NN functional models,namelyas compared to the kernel CV models,namelyand.Although the performance of the studied models is varied,the variability of the MSE and RMSE are relatively stable for the three proposed models k-NN for the classical,robust,and relative regression as compared to that of the kernel CV for the classical,robust and relative regression models.

    Figure 7:Prediction of the last 20 testing tecator samples

    Figure 8:The bean-plots of the MSE of the prediction values by the six methods for the cookie dough data

    The principal NIR data parameters were evaluated using a sample of 72,268,and 215 observations for the cookie dough,sugar,and tecator data,respectively.The results are summarized in Figs.5-10.The analyzed parameters are the sucrose content for the cookie dough,the quality ash in the percentage of the sugar given,and the fat content for the tecator,which are ranged between 9.95%?23.19% for the sucrose content,8%-33% for the ash and 0.9%-49.1% for the tecator fat,respectively.Such a data analysis was operated using six functional models:Functional Nonparametric Classical Regression,Robust Functional Regression,and Functional Relative Error Regression for both Kernel CV andk-NN procedures (i.e.,and

    Figure 9:The bean-plots of the MSE of the prediction values by the six methods for the sugar data

    Figure 10:The bean-plots of the MSE of the prediction values by the six methods for the tecator data

    The comparison of both prediction plots in Figs.5-7 indicates that thek?NN method (green dashed curve) gives better prediction results than the kernel CV approach (red dashed curve).Figs.8-10 display various bean-plot which summarize the distribution of MSE computed over 100 experiments based onfrom left to right,respectively.That confirms the previous results,as we can see the distribution of MSE for the k-NN approach is small and very tight compared to the kernel CV method,as can be clearly seen in Figs.8-10.Based on the results in Tabs.1 and 2,it is clear that the best models (having a small MSE and RMSE) are

    Table 1:MSEs by the six methods for each data

    Table 2:Relative mean squared error RMSE by the six methods for each data

    4 Conclusion

    A review of the FDA methodologies,most used in chemometrics,has been presented in this work next to different applications,most of which are in spectroscopy where the absorbance spectrum is a functional variable whose observations are functions of wavelength.The work has been divided into two main parts that can be read independently.The first part (Section 2)presents a set of chemometrics applications in most of which the aim is to either predict a variable of interest from the NIR spectrum.The second part (Section 3) summarizes our functional models’results based on the proposed methods defined in Eqs.8-13.

    In this work,an alternative approach to deal with spectrometric data has been suggested.This approach considers a spectrum as a function of the wavelength or wave-number rather than as a set of separate points.We combine the recent development in Chemistry and modern Statistics.Specifically,we use the NIR spectroscopy technology from Chemistry,which is an inexpensive,rapid,and accurate method.Moreover,it reduces the need for conventional wet Chemistry procedures.On the other hand,from modern statistics,we use some functional models that allow exploring all the information of the spectroscopy analysis where spectral data are viewed as curves.Specifically,we propose three models for this kind of data:Functional Nonparametric Regression,Functional Robust Regression,and Functional Relative Error Regression,with both kernel and k-NN approach to compare between them.On the real examples studied (Cookie dough,Sugar,and tecator data),we show that our method using the k-NN procedure is more efficient (gives better results in the sense of MSE) than those with Cross-validation.To conclude,models of intermediate dimensionality in the high-dimensional setting is undoubtedly a highway for deriving new useful statistical methods for the food industry.

    Funding Statement:The authors thank and extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Research Groups Program under Grant Number R.G.P.1/189/41.I.M.A.and M.K.A.received the grant.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲乱码一区二区免费版| 99久久精品一区二区三区| 最后的刺客免费高清国语| 久久这里只有精品中国| 中文亚洲av片在线观看爽| 精品久久久久久久久久久久久| 亚洲最大成人av| 亚洲精品在线观看二区| 内射极品少妇av片p| 99久久成人亚洲精品观看| 午夜老司机福利剧场| 深夜精品福利| 久久久久久九九精品二区国产| 成人美女网站在线观看视频| 午夜福利在线观看吧| 村上凉子中文字幕在线| 成人国产综合亚洲| 国产探花在线观看一区二区| 成年免费大片在线观看| 亚洲精华国产精华精| 一a级毛片在线观看| 国产极品精品免费视频能看的| 在线国产一区二区在线| 中出人妻视频一区二区| 日韩av在线大香蕉| 色吧在线观看| 嫩草影视91久久| 国产乱人伦免费视频| 久久精品国产鲁丝片午夜精品 | 99国产精品一区二区蜜桃av| 99久久中文字幕三级久久日本| 黄色日韩在线| 亚洲欧美激情综合另类| 少妇被粗大猛烈的视频| 国国产精品蜜臀av免费| 男插女下体视频免费在线播放| 成年人黄色毛片网站| 少妇熟女aⅴ在线视频| 国产成年人精品一区二区| 精品久久久久久成人av| 国产真实伦视频高清在线观看 | 美女 人体艺术 gogo| 国产一级毛片七仙女欲春2| 欧美zozozo另类| 日韩大尺度精品在线看网址| 俺也久久电影网| 日本免费一区二区三区高清不卡| 中文在线观看免费www的网站| 色综合站精品国产| 中文亚洲av片在线观看爽| 亚洲四区av| 男女做爰动态图高潮gif福利片| 赤兔流量卡办理| av女优亚洲男人天堂| 天堂动漫精品| 亚洲专区中文字幕在线| 婷婷六月久久综合丁香| 国产色爽女视频免费观看| 最近最新免费中文字幕在线| 免费av毛片视频| 日日摸夜夜添夜夜添小说| 成年女人永久免费观看视频| 99久久九九国产精品国产免费| 一本久久中文字幕| 日韩中文字幕欧美一区二区| 成人特级av手机在线观看| 欧美潮喷喷水| 有码 亚洲区| 成人欧美大片| 超碰av人人做人人爽久久| 91狼人影院| 精品久久久久久久久av| 日本一本二区三区精品| 一进一出好大好爽视频| 蜜桃久久精品国产亚洲av| 天堂动漫精品| 日韩欧美在线乱码| 我的女老师完整版在线观看| 国产精品女同一区二区软件 | 又爽又黄a免费视频| 国产私拍福利视频在线观看| 成人欧美大片| 乱人视频在线观看| 国内精品美女久久久久久| 欧美一区二区精品小视频在线| 久久99热这里只有精品18| 男女啪啪激烈高潮av片| 国产精品久久久久久精品电影| 亚洲成人免费电影在线观看| 国产精品一区二区性色av| 日本与韩国留学比较| 日韩欧美一区二区三区在线观看| 免费大片18禁| av视频在线观看入口| 给我免费播放毛片高清在线观看| 亚洲国产精品久久男人天堂| 国产色爽女视频免费观看| 波多野结衣巨乳人妻| av天堂中文字幕网| 国产 一区精品| 久久久久久久久久黄片| 欧美在线一区亚洲| 亚洲成a人片在线一区二区| 小蜜桃在线观看免费完整版高清| 免费看a级黄色片| 成人特级av手机在线观看| 国产精品美女特级片免费视频播放器| 看黄色毛片网站| 国内精品美女久久久久久| 亚洲av成人av| 在线免费观看不下载黄p国产 | 亚洲国产欧美人成| 国产单亲对白刺激| 看十八女毛片水多多多| 色吧在线观看| 人妻少妇偷人精品九色| 国产 一区 欧美 日韩| av在线亚洲专区| 日本-黄色视频高清免费观看| 无遮挡黄片免费观看| 久久久久久久久久黄片| 国模一区二区三区四区视频| 精品日产1卡2卡| 啦啦啦观看免费观看视频高清| 老师上课跳d突然被开到最大视频| 日韩欧美精品免费久久| 亚洲av电影不卡..在线观看| 日韩国内少妇激情av| 我的老师免费观看完整版| 国内揄拍国产精品人妻在线| 91狼人影院| 久久精品国产亚洲网站| 人妻丰满熟妇av一区二区三区| 日韩,欧美,国产一区二区三区 | 永久网站在线| 日本精品一区二区三区蜜桃| 欧美xxxx黑人xx丫x性爽| 欧美色欧美亚洲另类二区| 给我免费播放毛片高清在线观看| 成年免费大片在线观看| 国产在线男女| 久久精品人妻少妇| 久久久久久国产a免费观看| 精品久久久久久久末码| 校园春色视频在线观看| 黄色配什么色好看| 五月伊人婷婷丁香| av在线天堂中文字幕| 毛片女人毛片| 亚洲av成人精品一区久久| 白带黄色成豆腐渣| 亚洲 国产 在线| 一进一出好大好爽视频| 欧美xxxx黑人xx丫x性爽| 国产精品伦人一区二区| 亚洲成av人片在线播放无| 免费观看在线日韩| 国产精品国产三级国产av玫瑰| 亚洲av第一区精品v没综合| 可以在线观看的亚洲视频| 国产人妻一区二区三区在| 99久久无色码亚洲精品果冻| 国产69精品久久久久777片| 18禁黄网站禁片午夜丰满| АⅤ资源中文在线天堂| 91在线观看av| 免费看a级黄色片| a在线观看视频网站| 动漫黄色视频在线观看| 亚洲成人久久爱视频| 久久精品国产清高在天天线| 黄色日韩在线| 又爽又黄无遮挡网站| 超碰av人人做人人爽久久| 久久午夜亚洲精品久久| 啦啦啦观看免费观看视频高清| 亚洲电影在线观看av| 成人国产一区最新在线观看| 亚洲成人免费电影在线观看| 国语自产精品视频在线第100页| 日韩一区二区视频免费看| 真人做人爱边吃奶动态| 国产久久久一区二区三区| 亚洲精品456在线播放app | 亚洲三级黄色毛片| 九色国产91popny在线| 亚洲av成人精品一区久久| 日本成人三级电影网站| 精品一区二区免费观看| 99精品久久久久人妻精品| 中文字幕免费在线视频6| 真人做人爱边吃奶动态| 欧美最新免费一区二区三区| 精品久久久久久久久av| 搞女人的毛片| 欧美日韩瑟瑟在线播放| 伊人久久精品亚洲午夜| 亚洲中文字幕日韩| 国产精品一区二区性色av| 成人国产麻豆网| 丰满的人妻完整版| 国产免费av片在线观看野外av| 欧美黑人欧美精品刺激| 我的女老师完整版在线观看| 男女下面进入的视频免费午夜| 国产精品国产三级国产av玫瑰| 乱人视频在线观看| 免费搜索国产男女视频| 午夜爱爱视频在线播放| xxxwww97欧美| 久久精品国产亚洲av天美| 老司机福利观看| 精品久久久久久成人av| 亚洲在线自拍视频| 国产探花在线观看一区二区| 成人一区二区视频在线观看| 免费av观看视频| 日日摸夜夜添夜夜添小说| 麻豆一二三区av精品| 亚洲国产日韩欧美精品在线观看| 亚洲精华国产精华液的使用体验 | 国产高清视频在线播放一区| 成人特级av手机在线观看| 51国产日韩欧美| 如何舔出高潮| 欧美最新免费一区二区三区| 91麻豆精品激情在线观看国产| 嫁个100分男人电影在线观看| 午夜久久久久精精品| 国产老妇女一区| 99热只有精品国产| 能在线免费观看的黄片| 国产精品电影一区二区三区| 亚洲专区中文字幕在线| or卡值多少钱| 女的被弄到高潮叫床怎么办 | 此物有八面人人有两片| 一级毛片久久久久久久久女| 国产久久久一区二区三区| 国产精品亚洲一级av第二区| 国国产精品蜜臀av免费| 精品免费久久久久久久清纯| 国内精品宾馆在线| 男女那种视频在线观看| 久久精品国产亚洲av香蕉五月| 国产黄色小视频在线观看| 国产视频一区二区在线看| 中文字幕人妻熟人妻熟丝袜美| 深爱激情五月婷婷| 热99在线观看视频| 91久久精品电影网| 亚洲无线观看免费| 国产伦一二天堂av在线观看| 亚洲无线观看免费| 在线天堂最新版资源| 久久精品91蜜桃| 国产探花在线观看一区二区| 久久久国产成人免费| 精品久久久久久久末码| 观看美女的网站| 最近中文字幕高清免费大全6 | 人妻丰满熟妇av一区二区三区| 黄色丝袜av网址大全| 欧美高清性xxxxhd video| 桃色一区二区三区在线观看| 成人av在线播放网站| 中国美女看黄片| 亚洲欧美日韩卡通动漫| 精品久久国产蜜桃| 午夜福利在线观看免费完整高清在 | 免费观看人在逋| 久久久久久久久久黄片| 婷婷六月久久综合丁香| 色在线成人网| 一级a爱片免费观看的视频| 国产三级在线视频| 亚洲成人久久性| 久久久久久九九精品二区国产| 在线观看免费视频日本深夜| 国产视频一区二区在线看| 伦精品一区二区三区| 精品久久久噜噜| 国产色婷婷99| 欧美最黄视频在线播放免费| 九九爱精品视频在线观看| 老司机午夜福利在线观看视频| 国产色爽女视频免费观看| 黄色一级大片看看| 亚洲精品日韩av片在线观看| 丰满乱子伦码专区| 亚洲最大成人手机在线| 色尼玛亚洲综合影院| 久久久久免费精品人妻一区二区| 成人毛片a级毛片在线播放| 五月玫瑰六月丁香| 国产亚洲av嫩草精品影院| 国产av一区在线观看免费| 国产精品人妻久久久久久| 亚洲电影在线观看av| 97超视频在线观看视频| 在线观看午夜福利视频| 亚洲图色成人| 少妇高潮的动态图| 国产主播在线观看一区二区| 亚洲av第一区精品v没综合| 亚洲人成伊人成综合网2020| 成人综合一区亚洲| 亚洲中文字幕日韩| 久久精品久久久久久噜噜老黄 | 欧美性猛交╳xxx乱大交人| 精品欧美国产一区二区三| 乱码一卡2卡4卡精品| 欧美最新免费一区二区三区| 最新中文字幕久久久久| 天美传媒精品一区二区| 亚洲精品456在线播放app | 国产蜜桃级精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 91精品国产九色| 日韩国内少妇激情av| 国产av在哪里看| 最近视频中文字幕2019在线8| 亚洲人与动物交配视频| 小蜜桃在线观看免费完整版高清| 精品不卡国产一区二区三区| 日本 av在线| 夜夜爽天天搞| 精品久久久久久成人av| 国内精品一区二区在线观看| 国产精品福利在线免费观看| 国产精品三级大全| 国产日本99.免费观看| 中文字幕高清在线视频| 久久热精品热| 美女高潮喷水抽搐中文字幕| 在现免费观看毛片| 午夜精品一区二区三区免费看| 1000部很黄的大片| 亚洲av成人av| 国产真实乱freesex| 99热精品在线国产| 99久久久亚洲精品蜜臀av| 麻豆国产97在线/欧美| 久久99热6这里只有精品| 国产精品亚洲美女久久久| 亚洲精品成人久久久久久| а√天堂www在线а√下载| 精品日产1卡2卡| 国产毛片a区久久久久| 国产不卡一卡二| 欧美成人a在线观看| 国产av一区在线观看免费| 成人特级黄色片久久久久久久| 深夜精品福利| 能在线免费观看的黄片| 欧美日本视频| 亚洲国产精品sss在线观看| 欧美成人a在线观看| 男女那种视频在线观看| 99久久久亚洲精品蜜臀av| 亚洲精品国产成人久久av| 成年免费大片在线观看| 久久久久久久久久成人| 搡女人真爽免费视频火全软件 | 少妇被粗大猛烈的视频| 一区二区三区免费毛片| 又黄又爽又刺激的免费视频.| 夜夜看夜夜爽夜夜摸| 五月玫瑰六月丁香| 国产成人av教育| 老司机深夜福利视频在线观看| 久久精品国产清高在天天线| 乱系列少妇在线播放| 亚洲精华国产精华液的使用体验 | 亚洲一区高清亚洲精品| 人妻制服诱惑在线中文字幕| 国产免费av片在线观看野外av| 午夜免费激情av| 看片在线看免费视频| 日日啪夜夜撸| 69人妻影院| 在线播放国产精品三级| 色哟哟哟哟哟哟| 成人特级av手机在线观看| 成年女人毛片免费观看观看9| 亚洲av一区综合| 中出人妻视频一区二区| 变态另类成人亚洲欧美熟女| 97超视频在线观看视频| 亚洲欧美激情综合另类| 人妻制服诱惑在线中文字幕| 99热只有精品国产| 国产成人av教育| 看十八女毛片水多多多| 色综合亚洲欧美另类图片| 久久午夜亚洲精品久久| 日韩一区二区视频免费看| 18禁黄网站禁片免费观看直播| 日韩欧美精品免费久久| 99久久精品一区二区三区| 精华霜和精华液先用哪个| 午夜福利在线观看吧| 欧美潮喷喷水| 欧美+亚洲+日韩+国产| 国产高清有码在线观看视频| 国产aⅴ精品一区二区三区波| 亚洲中文字幕一区二区三区有码在线看| 综合色av麻豆| 午夜福利成人在线免费观看| 一个人看的www免费观看视频| 国产成年人精品一区二区| 国产淫片久久久久久久久| 欧美精品啪啪一区二区三区| 少妇被粗大猛烈的视频| 亚洲最大成人手机在线| 中文资源天堂在线| 婷婷六月久久综合丁香| 精品欧美国产一区二区三| 老司机深夜福利视频在线观看| 搡女人真爽免费视频火全软件 | 一a级毛片在线观看| 国产人妻一区二区三区在| 九九在线视频观看精品| 久久久精品欧美日韩精品| 国产 一区 欧美 日韩| 亚洲专区国产一区二区| 精品久久国产蜜桃| 欧美xxxx性猛交bbbb| 日本熟妇午夜| 日日撸夜夜添| 美女高潮的动态| 永久网站在线| 搡老妇女老女人老熟妇| 国产 一区 欧美 日韩| 人人妻人人澡欧美一区二区| 99久久精品国产国产毛片| 啦啦啦韩国在线观看视频| 久久精品国产自在天天线| 午夜精品久久久久久毛片777| 国产白丝娇喘喷水9色精品| 欧美黑人欧美精品刺激| 亚洲一区高清亚洲精品| 亚洲经典国产精华液单| 美女xxoo啪啪120秒动态图| 99热这里只有是精品50| 中文亚洲av片在线观看爽| 男人舔女人下体高潮全视频| 简卡轻食公司| 内射极品少妇av片p| 亚洲熟妇中文字幕五十中出| 亚洲人成网站在线播| ponron亚洲| 午夜福利在线观看吧| 欧美激情国产日韩精品一区| 少妇的逼好多水| 精品久久久久久成人av| 亚洲真实伦在线观看| 亚洲欧美清纯卡通| 欧美日韩瑟瑟在线播放| 日韩强制内射视频| 国产色爽女视频免费观看| 欧美日韩精品成人综合77777| 午夜爱爱视频在线播放| 国产精品1区2区在线观看.| av在线天堂中文字幕| 欧美潮喷喷水| 亚洲av美国av| 午夜福利成人在线免费观看| 又粗又爽又猛毛片免费看| 国产精华一区二区三区| 久久久久久久久久成人| 成年女人永久免费观看视频| 久久久久精品国产欧美久久久| 国产 一区精品| 亚洲人成伊人成综合网2020| 免费观看在线日韩| 啪啪无遮挡十八禁网站| 国产午夜精品论理片| 有码 亚洲区| 午夜久久久久精精品| 日韩中字成人| 最新在线观看一区二区三区| 亚洲中文字幕日韩| 亚洲国产精品成人综合色| 国产成人一区二区在线| 麻豆国产97在线/欧美| 国产成人a区在线观看| 久久精品国产自在天天线| 成年女人毛片免费观看观看9| 男人舔奶头视频| 国产精品嫩草影院av在线观看 | 美女大奶头视频| 很黄的视频免费| 我的老师免费观看完整版| 免费观看的影片在线观看| 欧美不卡视频在线免费观看| 制服丝袜大香蕉在线| av在线亚洲专区| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美国产在线观看| 国内揄拍国产精品人妻在线| 啦啦啦啦在线视频资源| 国产三级中文精品| 三级毛片av免费| 22中文网久久字幕| 最近在线观看免费完整版| 在线a可以看的网站| 亚洲五月天丁香| 成人国产综合亚洲| 男女之事视频高清在线观看| 亚洲午夜理论影院| 黄色视频,在线免费观看| 小蜜桃在线观看免费完整版高清| 亚洲精品粉嫩美女一区| 天堂网av新在线| 88av欧美| 精品久久久久久久久久久久久| eeuss影院久久| 国产精品伦人一区二区| 色在线成人网| 久久99热6这里只有精品| 2021天堂中文幕一二区在线观| 非洲黑人性xxxx精品又粗又长| av在线蜜桃| 一本一本综合久久| 国内精品美女久久久久久| 国产亚洲精品久久久com| 三级男女做爰猛烈吃奶摸视频| 色噜噜av男人的天堂激情| 女人被狂操c到高潮| 熟女电影av网| 一个人观看的视频www高清免费观看| 亚洲最大成人中文| 91久久精品国产一区二区成人| 国内精品一区二区在线观看| 免费观看人在逋| 熟妇人妻久久中文字幕3abv| 欧美一区二区亚洲| 内射极品少妇av片p| 69人妻影院| 国内精品一区二区在线观看| 少妇裸体淫交视频免费看高清| 国产精品亚洲美女久久久| 偷拍熟女少妇极品色| 国产成人一区二区在线| 欧美日韩乱码在线| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久精品吃奶| 老熟妇乱子伦视频在线观看| 亚洲精品影视一区二区三区av| 日韩精品中文字幕看吧| 一个人观看的视频www高清免费观看| 网址你懂的国产日韩在线| 性插视频无遮挡在线免费观看| 欧美不卡视频在线免费观看| 精品久久久久久久末码| 在线a可以看的网站| 中国美女看黄片| 久久精品91蜜桃| 久久久国产成人免费| 91久久精品电影网| 99热6这里只有精品| 欧美日本亚洲视频在线播放| 国产单亲对白刺激| 少妇人妻一区二区三区视频| 老司机福利观看| 久久亚洲精品不卡| 高清在线国产一区| 亚洲av.av天堂| 国产色爽女视频免费观看| 丰满人妻一区二区三区视频av| 国产色爽女视频免费观看| 国产亚洲91精品色在线| a级一级毛片免费在线观看| 国产精品自产拍在线观看55亚洲| 搡老熟女国产l中国老女人| 国产精品精品国产色婷婷| 一个人看视频在线观看www免费| 午夜亚洲福利在线播放| 婷婷亚洲欧美| 国产精品久久久久久av不卡| 国产亚洲精品久久久久久毛片| 男人和女人高潮做爰伦理| 日韩人妻高清精品专区| 三级毛片av免费| 亚洲自拍偷在线| 老司机福利观看| 丰满的人妻完整版| 欧美一级a爱片免费观看看| 国产国拍精品亚洲av在线观看| 精品久久久久久久人妻蜜臀av| 噜噜噜噜噜久久久久久91| 亚洲午夜理论影院| 超碰av人人做人人爽久久| 亚洲最大成人中文| 一区二区三区免费毛片| 色哟哟哟哟哟哟| 美女 人体艺术 gogo| 欧美日本亚洲视频在线播放| 欧美中文日本在线观看视频| eeuss影院久久| 国产大屁股一区二区在线视频| 少妇的逼好多水| 韩国av一区二区三区四区| 搡老妇女老女人老熟妇| 欧美最新免费一区二区三区| 男人的好看免费观看在线视频| 日本-黄色视频高清免费观看| 熟女人妻精品中文字幕| av天堂在线播放| 亚洲精品456在线播放app | bbb黄色大片| 国产精品无大码| 九九爱精品视频在线观看| 美女高潮喷水抽搐中文字幕|