• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling Liver Cancer and Leukemia Data Using Arcsine-Gaussian Distribution

    2021-12-16 07:51:06FarouqMohammadAlamSharifahAlrajhiMazenNassarandAhmedAfify
    Computers Materials&Continua 2021年5期

    Farouq Mohammad A.Alam,Sharifah Alrajhi,Mazen Nassar,2 and Ahmed Z.Afify

    1Department of Statistics,Faculty of Science,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    2Department of Statistics,Faculty of Commerce,Zagazig University,Zagazig,44511,Egypt

    3Department of Statistics,Mathematics and Insurance,Benha University,Benha,13511,Egypt

    Abstract:The main objective of this paper is to discuss a general family of distributions generated from the symmetrical arcsine distribution.The considered family includes various asymmetrical and symmetrical probability distributions as special cases.A particular case of a symmetrical probability distribution from this family is the Arcsine-Gaussian distribution.Key statistical properties of this distribution including quantile,mean residual life,order statistics and moments are derived.The Arcsine-Gaussian parameters are estimated using two classical estimation methods called moments and maximum likelihood methods.A simulation study which provides asymptotic distribution of all considered point estimators,90% and 95% asymptotic confidence intervals are performed to examine the estimation efficiency of the considered methods numerically.The simulation results show that both biases and variances of the estimators tend to zero as the sample size increases,i.e.,the estimators are asymptotically consistent.Also,when the sample size increases the coverage probabilities of the confidence intervals increase to the nominal levels,while the corresponding length decrease and approach zero.Two real data sets from the medicine filed are used to illustrate the flexibility of the Arcsine-Gaussian distribution as compared with the normal,logistic,and Cauchy models.The proposed distribution is very versatile to fit real applications and can be used as a good alternative to the traditional gaussian distribution.

    Keywords:Liver cancer data;leukemia data;normal distribution;moments estimation;maximum likelihood estimation

    1 Introduction

    In the last two decades,several methods are proposed to generate continuous distributions.Many of these methods are discussed in [1].The methodologies of these methods depend on generating new distributions by adding parameters to an existing distribution or combining existing distributions,see for more details [2,3].The beta distribution is an important model for the analysis of proportions which are common in many fields of science such as toxicology [4].A particular case of the beta distribution is the symmetric arcsine distribution which is a beta distribution with both shape parameters equal to half.In the field of stochastic process,the arcsine distribution is associated with the arcsine laws of random walks and Brownian motion [5].For more comperhansive details about the beta distribution,see [4,6].

    A continuous random variableXis said to follows the standard arcsine distribution if its cumulative density function (CDF) is given by:

    Now,notice that thexterm in the right hand side of (1) is actually the CDF of a standard uniform distribution.Hence,by simply replacing this term with another CDF of any continuous probability distribution;say,G(·),then one can obtain an extended arcsine distribution with the following CDF:

    Clearly,this extension of the arcsine distribution can generate lifetime distributions and elliptically contoured distributions (i.e.,symmetrical distributions in R (by simply replacingG(·)with the corresponding CDF of the considered probability distribution.For more details about different kinds of univariate continuous distributions,see [7].In statistical literature,researchers have proposed generalizations and extensions for many continuous probability distributions.Obviously,when modeling real data,obtaining a generalization or an extension for a model of interest provides a more flexible version of the model which may fit the data more appropriately.For instance,the exponential distribution is extensively considered in reliability data with a constant failure rate.In practice,however,several reliability data may have monotonic failure (hazard)rates.Thus,a well-known generalization for the exponential distribution;namely,the Weibull distribution,is alternatively considered.Although constant and monotonic failure rates might be encountered in reality,many real-life data have non-monotonic failure rates.Consequently,researchers have considered various generalization for the Weibull distribution,see the concise article by [8]in this connection.

    Recently,several generalizations of the normal distribution have been developed.For example,the beta-normal distribution [9],generalized normal distribution [10],skew-normal distribution [11],and truncated normal distribution [12].

    This study considers the extension of the arcsine distribution based on a gaussian kernel which is henceforth called the arcsine-gaussian (AG) distribution.The motivations to propose the AG distribution are:(1) To develop various shapes for the density and hazard rate function of the distribution.(2) To increase the flexibility of the classical gaussian distribution in modelling different real life applications.(3) To increase the flexibility of the traditional gaussian distribution properties like mean,variance,skewness and kurtosis.(4) The analysis of two real data sets proved that the AG distribution provides a better fit than the traditional gaussian distribution and some of its competitive models.Although the idea of this paper is not new since the AG distribution is a special case of the beta-normal distribution [9],the novelty of this study lies in the fact that,to the best of the author’s knowledge,no previous research has been conducted on this probability distribution although the importance and popularity of the gaussian distribution in modeling many real-life applications.The remaining sections of this article are organized as follows.Sections 2 and 3 discuss the distributional and statistical properties of the AG distribution,respectively.In Section 4,estimators are derived for the model parameters and their finite-sample efficiencies are numerically examined using Monte Carlo simulations in Section 5.Two real life data sets are analyzed in Section 5 to illustrate that the AG distribution is a suitable fit for the two data under analysis,comparing with some well-known distributions.Finally,the paper is concluded in Section 7.

    2 Distributional Properties of the AG Distribution

    In this section,the distributional properties of the AG distribution are discussed.

    2.1 The CDF and the Survival Function

    By replacingG(·)in expression (2) by CDF of the gaussian distribution,denoted by Φ(·),one can say that a random variableXfollows the AG distribution with location parameterμ∈R and a non-negative scale parameterσ >0 (i.e.,X~AG(μ,σ)) if the CDF and the survival function(SF) have the following forms,respectively:

    and

    Clearly,the AG distribution is a location-scale model;i.e.,ifZ~AG(0,1),thenX=μ+σZ~AG(μ,σ).

    2.2 Quantile Function

    It is well-known that the quantile function finds the valueXsuch that

    Pr(X≤x)=u

    for a probability 0

    where Φ?1(·)is the the quantile function of thestandardgaussian distribution.Note that one can verify that the median of the AG distribution is equal toμby settingu=0.5 in expression (5).

    2.3 The Probability Density Function

    By differentiating both part of (3) with respect tox,one can show that the probability density function (PDF) of the AG function with location parameterμand a scale parameterσis given by:

    whereφ(z),Φ(z)and(z)=1?Φ(z)are the PDF,CDF,and SF of the standard gaussian(normal) distribution,respectively.Clearly,the distribution is symmetric and this fact is proven in the following lemma.

    Lemma 1AG(μ,σ) is symmetric about its location parameter μ.

    Proof.A continuous probability distribution is said to be symmetric about its location parameterμif and onlyf(μ?x)=f(μ+x)for allx∈R.Clearly,

    Note that additional statistical proprieties are to be addressed in the following section.Fig.1 shows some possible shapes of the AG density for various values ofμandσ.

    Figure 1:The PDFs of the AG distribution for different values of μ and σ

    2.4 The Hazard Rate Function

    The AG distributional not only is symmetric like the Gaussian distribution,but also inherits the behavior of its hazard function (HF).That is,the HF is increasing,see Fig.2.The HF of the AG function with location parameterμand a scale parameterσis given by:

    A probability distribution with an increasing HF is suitable to model lifetime data observed due to wear-out of lifeless objects or aging of living entities.Mathematically speaking,this can be proven as follows.

    Theorem 1AG(μ,σ) has an increasing hazard rate.

    Proof.Without loss of generality,consider the standard AG distribution.Notice that expression (7) can be rewritten as:

    The termis proven to be increasing by [13],while the third is the cumulative HF of the AG distribution which is increasing be definition.Notice that:As previously mentioned,i s increasing and so does?[Φ(z)]?1since Φ(z)is increasing,is decreasing,and is increasing.Because the second term is increasing for all values ofz,then logh(z)is increasing due to the fact that all of its components are increasing by the definition of increasing functions.

    According to Theorem 1,the HF of the AG model is increasing function in its parameters as displayed graphically in Fig.2,for various values ofμandσ.

    2.5 The Mean Residual Life

    In reliability analysis,the mean residual life (MRL) is an important characteristic of a lifetime model.Letm(t;μ,σ)denotes the MRL of the AG distribution;then:

    Figure 2:The HRFs of the AG distribution for different values of μ and σ

    whereS(·)andf(·)are the SF and the PDF of the probability distribution of interest.Notice that expression (8) can be rewritten in terms of the HF as follows:

    whereh(τ;μ,σ)is the HF of the considered distribution;see [14,15]in this connection.Hence,form expression (9),one can easily infer that the MRL in the case of the AG distribution has an opposite behavior to that of the HF,i.e.,it is decreasing ?x.This observation is asserted in Fig.3.

    Figure 3:The MRL of the AG,normal and Chancy distributions with μ=0 and σ=1

    2.6 Order Statistics

    In this section,the PDF of ther-th order statistics is derived.LetX(1),...,X(1)be the order statistics for a random sampleX1,...,Xnof sizenfrom the AG distribution.It is known that the PDF of ther-th takes the form

    whereF(x)andf (x)are the CDF and PDF of the AG distribution.From (3) and (6),the PDF of ther-th order statistics of the AG distribution is given by

    Particularly,PDF of the first and last order statistics can be derived directly from the last equation as follow

    and

    3 Statistical Properties of the AG Distribution

    This section presents several statistical properties of the AG distribution which are obtained from the following lemma and theorem.

    Lemma 2

    1.The quantile function of the standard normal distribution;namely,Φ?1(u),is increasing for allu∈(0,1).

    2.IfU~Beta(0.5,0.5),then?∞<<∞for allu∈(0,1)andk∈N.

    Proof.

    1.Ifq=Φ?1(u),thenu=Φ(q).Differentiating both sides of the latter equation with respect toqyields:

    Hence,Φ?1(u)is an increasing function for allu∈(0,1).

    2.Recall that Φ?1(u)is increasing and letδ >0;thus,sincek∈N.Hence,the proof is completed by taking the expected value on all sides of the inequality and making use of the properties of the expectation operator (see [16]in this connection),and by taking the limitδ→0.

    Theorem 2If Z~AG(0,1),then the kth moment exists for k=1,2...and it is given by:

    such that

    Proof.For any value ofk,it is clear that:

    Hence,E(Xk)is finite according to Lemma 2.However,ifkis a positive odd integer (i.e.,k=1,3,...),then the term

    is clearly an odd function since the AG distribution is symmetric according to Lemma 1.Hence,E(Zk)=0 fork=1,3,....

    By making use of Theorem 2 and the the fact that the AG distribution is a location-scale and a symmetric family of distributions,its properties are straightforwardly obtained as follows.

    Corollary 1If X~AG(μ,σ),then the measures of center tendency;namely,the mean,median,and the mode are equal to μ.

    Corollary 2If X~AG(μ,σ),then the second,third,and forth moments of X are given by:

    E(X2)=μ2+ξ2σ2,E(X3)=μ3+3ξ2μσ2andE(X4)=σ4(ξ4?ξ22)+4ξ2μ2σ2,

    respectively.

    Corollary 3If X~AG(μ,σ),then the variance is given by:

    Corollary 4Let γ1(γ2) denote the coefficient of skewness (kurtosis),if X~AG(μ,σ),then γ1=0,while γ2=2.86158.

    It is to be noted that the above corollaries agree with the result of [9].

    4 Model Parameters Estimation

    In this section,two methods are considered to estimate the parameters of the AG distribution;namely,the method of moments and the maximum likelihood method.

    4.1 Moments Estimators

    Suppose thatX1,X2,...,Xnrepresent a random sample from the AG distribution with location parameterμand a scale parameterσ.By employing the method of moments,the corresponding moments estimator (ME) forμ;say,,is the sample meanwhile the ME forσ;say,,is given by:

    Notice that one can obtain a Monte Carlo moments estimator (MCME) forσbased on expression (11) using Monte Carlo integration (MCI).To improve the approximation,the variance is reduced using antithetic variates.For more information about the latter method and MCI,see [17].The MCME estimator ofσ;say,?,is calculated by approximating the termξ2in (11)as follows:

    1.Generate a random sampleU1,...,UMfrom Beta(0.5,0.5).

    Theorem 3then the asymptotic joint sampling distributionis a bivariate normal(BN)distribution with mean vector θ=[μσ]T and variance-covariance matrix,i.e.,1The superscript T denotes the matrix transpose operator.

    such that 0 is the zero vector and

    Proof.Recall thatX1,...,Xnrepresent a random sample (i.e.,independent and identically distributed random variables) from theAG(μ,σ).Suppose that:

    By the strong law of large numbers,M1 andM2 converge almost surely toE(X)andE(X2),respectively.Furthermore,by the central limit theorem,bothM1andM2are asymptotically normally distributed.Also,any linear combination ofM1andM2;say,c1M1+c2M2,is asymptotically normally distributed for allc1andc2.Accordingly,

    where

    such that

    and

    by making use of the corollaries in the previous section.Now,the aim is to find the asymptotic joint sampling distribution of

    such thatψ1(u,v)=uandψ2(u,v)=

    Notice that:

    Hence,by making use of Taylor series expansion,one can easily verify that

    where

    4.2 Maximum Likelihood Estimators

    Recall the PDF of the AG distribution which was given by expression (6).Also,suppose that x=[x1:n···xn:n]Tare the observed order statistics.The likelihood function based on x is then

    such thatzi:n?σ?1(xi:n?μ).Accordingly,the log-likelihood function is as follows:

    wheren!=n×(n?1)×···×1.From (13),the likelihood (normal) equations forμandσare,respectively:

    and

    such thatandφ(z)=φ(z)/Φ(z)are the HF and the reversed HF of the standard gaussian distribution,respectivly.The latter function is decreasing for all real numbers and this can be proven using a methodology simiar to that of [13].

    Clearly,the values of the maximum likelihood estimators (MLEs) need to determined numerically.Nevertheless,by following a similar approach as in [13],one can derive the following approximated MLEs for bothμandσbased on the observed order statisticsx1:n,...,xn:n:

    such that

    while

    where

    and

    Unfortunately,it is not easy to derive the exact distributions for both the MLEs and their approximated counterparts.However,one may can derive asymptotic confidence intervals for the model parameters under some regularity condition.For more information about the asymptotic properties of the MLEs,see [16].Now,according to the latter reference,asn→∞,then:

    and

    5 Simulation Outcomes

    To compare the estimation methods in terms of efficiency,extensive MC simulations are carried out.The outcomes of an MC simulation study are reported in this section.Without loss of any generality,the standard AG distribution is considered,while the sample sizes of interest aren=10(10)100.The numerical results of this study were determined from 10,000 MC simulation runs.This number of simulations gives the accuracy in the order ±(10,000)?0.5=±0.01 see,[18];thus,all numerical outcomes for this study are reported up to three decimal digits.

    Tab.1 presents the outcomes associated with the estimators ofμ;namely,the ME (),the AMLE (?),and the MLE().On the other hand,Tab.2 summarizes the simulation results of the estimators ofσ;namely,the MCME (),the ME (),the AMLE (),and the MLE().By making use of the asymptotic distribution of all considered point estimators,90% and 95% asymptotic confidence interval are obtained and are evaluated according to their observed coverage probabilities and lengths.Interestingly,all estimators had similar performance indicators.Furthermore,the simulated variance of the estimators and their counterparts which were calculated based on the variance-covariance matrix (VCM) of the asymptotic sampling joint distributions were quite close.

    Table 1:Bias and variance for the estimators of μ alongside the observed coverage probability(CPr) and length (L) of 90% and 95% confidence intervals (CIs)

    Table 2:Bias and variance for the estimators of σ alongside the observed coverage probability(CPr) and length (L) of 90% and 95% confidence intervals (CIs)

    In terms of estimation efficiency,asn→∞,both the biases and variances of the estimators tend to zero,i.e.,the estimators are asymptotically consistent.Moreover,as the sample size increases,the coverage probabilities of the confidence intervals increase to the nominal levels,while the corresponding length decrease and approach zero.

    6 Data Analysis

    In this section,two real data sets from medicine field were analyzed to illustrate the application of the AG distribution in practice.The first data under consideration represent life times(in days) of 39 patients suffering from liver cancer,and the data were reported by Elminia cancer center Ministry of Health,Egypt in (1999) [19].The data are:10,14,14,14,14,14,15,17,18,20,20,20,20,20,23,23,24,26,30,30,31,40,49,51,52,60,61,67,71,74,75,87,96,105,107,107,107,116,150.

    The second data under consideration are the life times of 20 leukemia patients who were treated by a certain drug ([20,21]).The data are:1.013,1.034,1.109,1.169,1.226,1.509,1.533,1.563,1.716,1.929,1.965,2.061,2.344,2.546,2.626,2.778,2.951,3.413,4.118,5.136.

    Practically,the logarithmic counterparts of these models are the normal distribution and the logistic distribution,respectively.Hence,the logarithms of the data are analyzed using the latter distributions alongside the Cauchy distribution and the AG distribution.

    To determine which model appropriately fit the log-data,the minus observed log-likelihood(??),the Akaike information criterion (AIC=2k?2?) [22]and the Bayesian information criterion (BIC=klog(n)?2?) [23]are calculated for each model as shown in Tabs.3 and 4.The AG distribution has provided very close results to all data sets than the normal,logistic,and Cauchy distributions.We conclude that the AG and normal distributions have outperformed the remaining ones.

    Table 3:Estimators of the location μ and scale σ2 parameters with associated SEs and the corresponding information criteria for liver cancer data

    Table 4:Estimators of the location μ and scale σ2 parameters with associated SEs and the corresponding information criteria for leukemia data

    Furthermore,the empirical survival function (ESF) and the theoretical survival functions(TSF) of the AG,normal,logistic,and Cauchy distributions were compared graphically,for the two real data sets,in Fig.4.The fitted functions of the AG model for the two real data sets including the PDF,CDF,SF and PP plots were displayed in Fig.5.

    Figure 4:ESF vs. TSF of the compared distributions for liver cancer data (left) and leukemia data (right)

    Figure 5:The fitted functions of the AG distribution for liver cancer data (left) and leukemia data (right)

    7 Conclusions

    In this paper,the AG distribution is considered.The relation between this distribution and the beta-normal distribution is the same as the relation between the arcsine distribution and the beta distribution.Both distribution and statistical properties of the AG distribution are intuitive and easy to verify.Point estimators for the corresponding model parameters have been obtained using the method of moments and maximum likelihood method and their asymptotic sampling distributions were discussed as well.In terms of performance,a simulation study have been conducted and its outcomes indicated that both point and interval estimators are quite similar in terms of efficiency and are asymptotically consistent as the sample size increases.In terms of data analysis,the AG distribution provided better fit to the considered data sets.

    Availability of Data and Materials:The data sets used in this paper are provided within the main body of the manuscript.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    下体分泌物呈黄色| 捣出白浆h1v1| 亚洲专区国产一区二区| 黄片播放在线免费| 汤姆久久久久久久影院中文字幕| 久久中文看片网| av有码第一页| 欧美+亚洲+日韩+国产| 国产精品1区2区在线观看. | 日韩成人在线观看一区二区三区| 欧美国产精品va在线观看不卡| 国产精品欧美亚洲77777| 黄片大片在线免费观看| 19禁男女啪啪无遮挡网站| 亚洲av成人不卡在线观看播放网| 日韩免费高清中文字幕av| 午夜成年电影在线免费观看| 男人操女人黄网站| 99国产精品免费福利视频| 国产无遮挡羞羞视频在线观看| 9191精品国产免费久久| av又黄又爽大尺度在线免费看| 国产精品久久久久久人妻精品电影 | 法律面前人人平等表现在哪些方面| 汤姆久久久久久久影院中文字幕| kizo精华| 悠悠久久av| 757午夜福利合集在线观看| 搡老乐熟女国产| 女人精品久久久久毛片| 久久久久久久精品吃奶| 国产一区二区三区综合在线观看| 在线观看免费视频网站a站| 国产精品亚洲一级av第二区| 日日摸夜夜添夜夜添小说| 夜夜夜夜夜久久久久| 久久久久久久久久久久大奶| 19禁男女啪啪无遮挡网站| av在线播放免费不卡| 丝瓜视频免费看黄片| 国产在视频线精品| 久久久精品94久久精品| 亚洲人成伊人成综合网2020| 最新的欧美精品一区二区| 亚洲精品粉嫩美女一区| avwww免费| 国产精品久久久久久精品古装| 亚洲午夜理论影院| 国产日韩一区二区三区精品不卡| 亚洲人成伊人成综合网2020| 十八禁人妻一区二区| 欧美激情高清一区二区三区| 亚洲,欧美精品.| 欧美成人午夜精品| 伦理电影免费视频| 一个人免费在线观看的高清视频| 午夜福利乱码中文字幕| 日韩免费av在线播放| 国产精品免费视频内射| 无限看片的www在线观看| 日本av手机在线免费观看| 国产单亲对白刺激| 操出白浆在线播放| 色精品久久人妻99蜜桃| 亚洲欧美一区二区三区黑人| 99在线人妻在线中文字幕 | videos熟女内射| 亚洲精品中文字幕在线视频| 超碰成人久久| 成人精品一区二区免费| 91九色精品人成在线观看| 久久影院123| 桃花免费在线播放| 如日韩欧美国产精品一区二区三区| 久久精品国产亚洲av高清一级| 91精品三级在线观看| av欧美777| 国产精品麻豆人妻色哟哟久久| 18禁观看日本| 建设人人有责人人尽责人人享有的| 午夜91福利影院| 精品第一国产精品| 中文字幕色久视频| 欧美日韩一级在线毛片| 如日韩欧美国产精品一区二区三区| 国产亚洲精品久久久久5区| 亚洲第一青青草原| 嫩草影视91久久| 久热爱精品视频在线9| 日韩免费高清中文字幕av| 欧美久久黑人一区二区| 精品人妻熟女毛片av久久网站| 免费看a级黄色片| 国产精品久久久久久精品古装| 亚洲自偷自拍图片 自拍| 久久人妻av系列| 国产人伦9x9x在线观看| 岛国在线观看网站| 侵犯人妻中文字幕一二三四区| 久久国产精品影院| 超碰97精品在线观看| 精品一区二区三区视频在线观看免费 | 亚洲欧美日韩另类电影网站| 精品少妇一区二区三区视频日本电影| 国产精品国产高清国产av | 免费日韩欧美在线观看| 超碰成人久久| 亚洲色图av天堂| 欧美人与性动交α欧美软件| 一区二区三区乱码不卡18| 午夜福利视频精品| 精品国内亚洲2022精品成人 | 日本撒尿小便嘘嘘汇集6| 国产成人免费观看mmmm| 可以免费在线观看a视频的电影网站| 国产区一区二久久| 日本撒尿小便嘘嘘汇集6| 国产国语露脸激情在线看| 亚洲天堂av无毛| 欧美日韩福利视频一区二区| 国产单亲对白刺激| 成人18禁在线播放| 久久久精品94久久精品| av网站在线播放免费| 国产男女内射视频| 色综合欧美亚洲国产小说| 两人在一起打扑克的视频| 一区二区av电影网| 波多野结衣一区麻豆| 如日韩欧美国产精品一区二区三区| 久9热在线精品视频| 大香蕉久久成人网| 一级,二级,三级黄色视频| 亚洲欧美一区二区三区黑人| 成人免费观看视频高清| 国产有黄有色有爽视频| 成人免费观看视频高清| 露出奶头的视频| 国产精品一区二区在线观看99| av有码第一页| 国产男女超爽视频在线观看| 亚洲人成77777在线视频| 欧美日本中文国产一区发布| 久久久久精品人妻al黑| 免费观看av网站的网址| 亚洲av日韩在线播放| 一边摸一边抽搐一进一小说 | tocl精华| e午夜精品久久久久久久| 午夜激情久久久久久久| 国产精品免费大片| 一级毛片电影观看| 午夜免费鲁丝| 久久青草综合色| 国产日韩一区二区三区精品不卡| 久久ye,这里只有精品| 高清在线国产一区| 多毛熟女@视频| 国产亚洲午夜精品一区二区久久| 正在播放国产对白刺激| 免费一级毛片在线播放高清视频 | 色视频在线一区二区三区| 99热网站在线观看| 一边摸一边抽搐一进一小说 | 日韩成人在线观看一区二区三区| 中文字幕制服av| 不卡一级毛片| 国产无遮挡羞羞视频在线观看| 另类亚洲欧美激情| 久久狼人影院| 久久国产精品男人的天堂亚洲| 亚洲国产毛片av蜜桃av| 国产三级黄色录像| 国产福利在线免费观看视频| 中文字幕人妻熟女乱码| 两个人看的免费小视频| 国产精品99久久99久久久不卡| 巨乳人妻的诱惑在线观看| 人成视频在线观看免费观看| 少妇的丰满在线观看| 欧美人与性动交α欧美软件| 久久精品国产a三级三级三级| av视频免费观看在线观看| 99精品欧美一区二区三区四区| 成人免费观看视频高清| 国产成人av激情在线播放| 国产精品一区二区在线不卡| 国产99久久九九免费精品| 亚洲精品中文字幕在线视频| 久久国产精品男人的天堂亚洲| 国产在线视频一区二区| 大香蕉久久网| 国产欧美日韩精品亚洲av| 欧美激情 高清一区二区三区| 国产午夜精品久久久久久| 婷婷成人精品国产| 成年版毛片免费区| av免费在线观看网站| 老汉色∧v一级毛片| 丝袜在线中文字幕| 好男人电影高清在线观看| 免费看a级黄色片| 欧美精品高潮呻吟av久久| 啦啦啦免费观看视频1| 久久毛片免费看一区二区三区| 国产精品二区激情视频| 母亲3免费完整高清在线观看| 精品午夜福利视频在线观看一区 | 少妇粗大呻吟视频| 人人妻人人爽人人添夜夜欢视频| 欧美日韩亚洲综合一区二区三区_| 黄色片一级片一级黄色片| 在线播放国产精品三级| 曰老女人黄片| 精品国产亚洲在线| 久久国产精品男人的天堂亚洲| 中文字幕人妻丝袜一区二区| 在线看a的网站| 黄色片一级片一级黄色片| 久久影院123| 少妇 在线观看| 午夜福利一区二区在线看| 欧美日韩中文字幕国产精品一区二区三区 | 不卡一级毛片| 亚洲少妇的诱惑av| 亚洲男人天堂网一区| 成在线人永久免费视频| 亚洲av日韩在线播放| 亚洲人成电影免费在线| 国产精品欧美亚洲77777| 亚洲va日本ⅴa欧美va伊人久久| 99久久人妻综合| 亚洲av美国av| 国产有黄有色有爽视频| 国产精品成人在线| 夜夜夜夜夜久久久久| 黄色a级毛片大全视频| 五月天丁香电影| 韩国精品一区二区三区| 他把我摸到了高潮在线观看 | 国产在线精品亚洲第一网站| 国产精品熟女久久久久浪| 男人舔女人的私密视频| 久久亚洲精品不卡| 亚洲精品中文字幕一二三四区 | 久久青草综合色| 超碰成人久久| 免费在线观看视频国产中文字幕亚洲| 国产精品国产高清国产av | netflix在线观看网站| 精品一区二区三区视频在线观看免费 | 欧美激情久久久久久爽电影 | 人人妻,人人澡人人爽秒播| 欧美老熟妇乱子伦牲交| 欧美精品一区二区大全| 十分钟在线观看高清视频www| 丁香六月欧美| 亚洲精品在线美女| 亚洲国产毛片av蜜桃av| 90打野战视频偷拍视频| 久久精品亚洲av国产电影网| 精品欧美一区二区三区在线| 免费在线观看日本一区| 国产精品98久久久久久宅男小说| 午夜福利一区二区在线看| 久久精品亚洲av国产电影网| 亚洲国产欧美在线一区| a级毛片黄视频| 97在线人人人人妻| 亚洲av电影在线进入| 女人精品久久久久毛片| 我要看黄色一级片免费的| 日韩视频在线欧美| 一级,二级,三级黄色视频| av天堂久久9| 一级黄色大片毛片| 国产一区有黄有色的免费视频| 男女边摸边吃奶| 黄片播放在线免费| 欧美亚洲日本最大视频资源| 99国产精品免费福利视频| 国产极品粉嫩免费观看在线| 欧美久久黑人一区二区| 在线十欧美十亚洲十日本专区| 狠狠精品人妻久久久久久综合| 精品人妻在线不人妻| 成在线人永久免费视频| 欧美乱妇无乱码| 91麻豆av在线| 午夜日韩欧美国产| 不卡一级毛片| 80岁老熟妇乱子伦牲交| 国产成人欧美| 超碰97精品在线观看| 在线观看免费视频网站a站| 一夜夜www| 两人在一起打扑克的视频| 国产成人免费无遮挡视频| 亚洲欧美色中文字幕在线| 亚洲一码二码三码区别大吗| 色综合欧美亚洲国产小说| 黑人操中国人逼视频| 超碰97精品在线观看| 欧美av亚洲av综合av国产av| 高清视频免费观看一区二区| 69av精品久久久久久 | 女人爽到高潮嗷嗷叫在线视频| 久久久精品区二区三区| 一区福利在线观看| 久久中文字幕一级| 亚洲人成电影免费在线| 国产高清国产精品国产三级| 高清欧美精品videossex| 99国产极品粉嫩在线观看| 人人妻人人爽人人添夜夜欢视频| 欧美精品一区二区大全| 日韩大片免费观看网站| 黄色毛片三级朝国网站| 另类精品久久| 少妇被粗大的猛进出69影院| 精品福利永久在线观看| 国产精品一区二区在线不卡| 午夜视频精品福利| 欧美日韩中文字幕国产精品一区二区三区 | 国产欧美日韩一区二区三区在线| 一个人免费在线观看的高清视频| √禁漫天堂资源中文www| 777久久人妻少妇嫩草av网站| 午夜福利欧美成人| 欧美在线一区亚洲| 亚洲情色 制服丝袜| 亚洲伊人色综图| 国产av精品麻豆| 国产区一区二久久| 国产精品免费视频内射| 欧美黑人欧美精品刺激| 无人区码免费观看不卡 | 国产精品九九99| 99热网站在线观看| 一边摸一边抽搐一进一出视频| 天堂动漫精品| 国产97色在线日韩免费| 曰老女人黄片| 欧美黑人精品巨大| 又大又爽又粗| 久久 成人 亚洲| 成人国产一区最新在线观看| 亚洲九九香蕉| 亚洲第一欧美日韩一区二区三区 | 嫩草影视91久久| 黄色视频不卡| 99香蕉大伊视频| 精品国内亚洲2022精品成人 | 国产高清videossex| 成年人午夜在线观看视频| 欧美精品高潮呻吟av久久| 满18在线观看网站| 欧美另类亚洲清纯唯美| 免费在线观看视频国产中文字幕亚洲| 午夜福利视频在线观看免费| 黄片小视频在线播放| 午夜福利免费观看在线| 欧美日韩视频精品一区| 午夜老司机福利片| 国产免费视频播放在线视频| 纯流量卡能插随身wifi吗| 十八禁网站免费在线| tocl精华| 啦啦啦中文免费视频观看日本| 美女视频免费永久观看网站| 精品人妻熟女毛片av久久网站| 国产欧美日韩一区二区精品| 精品国产乱子伦一区二区三区| 激情视频va一区二区三区| 国产在线视频一区二区| 首页视频小说图片口味搜索| 国产亚洲av高清不卡| 女人久久www免费人成看片| 久久久精品国产亚洲av高清涩受| 欧美人与性动交α欧美软件| 久久精品熟女亚洲av麻豆精品| 国产黄色免费在线视频| 久久久久久久久免费视频了| 成人av一区二区三区在线看| 亚洲性夜色夜夜综合| 婷婷丁香在线五月| 亚洲精品中文字幕在线视频| 亚洲精品粉嫩美女一区| 欧美黄色淫秽网站| 欧美av亚洲av综合av国产av| av在线播放免费不卡| 久久久久久人人人人人| 制服人妻中文乱码| 人人妻人人添人人爽欧美一区卜| 中文字幕精品免费在线观看视频| 美国免费a级毛片| 国产亚洲精品第一综合不卡| av超薄肉色丝袜交足视频| 啦啦啦视频在线资源免费观看| 涩涩av久久男人的天堂| 亚洲人成伊人成综合网2020| 人人妻人人添人人爽欧美一区卜| 深夜精品福利| 国产淫语在线视频| 欧美成人免费av一区二区三区 | 一二三四在线观看免费中文在| 国产在线视频一区二区| 看免费av毛片| 国产欧美日韩一区二区三| 法律面前人人平等表现在哪些方面| 午夜激情av网站| 久久天躁狠狠躁夜夜2o2o| 美女国产高潮福利片在线看| 视频区欧美日本亚洲| 成人精品一区二区免费| av视频免费观看在线观看| 免费久久久久久久精品成人欧美视频| 多毛熟女@视频| √禁漫天堂资源中文www| 久久久水蜜桃国产精品网| 香蕉丝袜av| 99riav亚洲国产免费| 国产一区二区在线观看av| 免费人妻精品一区二区三区视频| 亚洲精品粉嫩美女一区| 久久国产精品大桥未久av| 国产欧美日韩综合在线一区二区| 亚洲欧洲精品一区二区精品久久久| 欧美人与性动交α欧美软件| 亚洲专区字幕在线| 亚洲精品一卡2卡三卡4卡5卡| 每晚都被弄得嗷嗷叫到高潮| 欧美久久黑人一区二区| 丰满迷人的少妇在线观看| 黑人猛操日本美女一级片| 一本色道久久久久久精品综合| 国产极品粉嫩免费观看在线| 91麻豆av在线| 久久久久久久久免费视频了| 热re99久久国产66热| 国产无遮挡羞羞视频在线观看| 女人被躁到高潮嗷嗷叫费观| 啦啦啦在线免费观看视频4| 9191精品国产免费久久| 新久久久久国产一级毛片| 精品乱码久久久久久99久播| 亚洲中文av在线| av网站在线播放免费| 啦啦啦在线免费观看视频4| 人人澡人人妻人| 午夜激情av网站| 老司机影院毛片| 香蕉久久夜色| 久久狼人影院| 国产高清videossex| 久久中文看片网| 午夜激情久久久久久久| 三上悠亚av全集在线观看| 欧美亚洲 丝袜 人妻 在线| 妹子高潮喷水视频| 亚洲五月婷婷丁香| 12—13女人毛片做爰片一| 操出白浆在线播放| 老司机靠b影院| 国产成人av教育| 国产精品免费视频内射| 久久久久国内视频| 夜夜骑夜夜射夜夜干| 亚洲一码二码三码区别大吗| 中文亚洲av片在线观看爽 | 久久天堂一区二区三区四区| 久久国产精品人妻蜜桃| 久久狼人影院| 50天的宝宝边吃奶边哭怎么回事| 视频区欧美日本亚洲| 国产一区二区 视频在线| 捣出白浆h1v1| 一本色道久久久久久精品综合| 亚洲av成人不卡在线观看播放网| 亚洲精品乱久久久久久| 精品人妻1区二区| 一级片'在线观看视频| 久久久欧美国产精品| 成年女人毛片免费观看观看9 | 少妇粗大呻吟视频| 欧美精品人与动牲交sv欧美| 欧美精品亚洲一区二区| 后天国语完整版免费观看| 欧美精品亚洲一区二区| 99精品久久久久人妻精品| 亚洲少妇的诱惑av| 免费不卡黄色视频| 久久精品aⅴ一区二区三区四区| 亚洲成a人片在线一区二区| av在线播放免费不卡| 黄片播放在线免费| 国产精品久久久人人做人人爽| 91老司机精品| 巨乳人妻的诱惑在线观看| 国产高清videossex| 91精品三级在线观看| 欧美久久黑人一区二区| 黑丝袜美女国产一区| av国产精品久久久久影院| 肉色欧美久久久久久久蜜桃| 侵犯人妻中文字幕一二三四区| 99国产精品一区二区蜜桃av | 亚洲欧美日韩另类电影网站| 高清毛片免费观看视频网站 | 久久久久国内视频| 女人被躁到高潮嗷嗷叫费观| 91国产中文字幕| 乱人伦中国视频| 国产精品久久电影中文字幕 | 日韩视频在线欧美| 日韩中文字幕视频在线看片| 中文字幕人妻丝袜一区二区| 夜夜骑夜夜射夜夜干| 国产亚洲精品久久久久5区| 建设人人有责人人尽责人人享有的| 精品国产一区二区久久| 国产深夜福利视频在线观看| √禁漫天堂资源中文www| 十八禁网站网址无遮挡| 脱女人内裤的视频| 男女下面插进去视频免费观看| 咕卡用的链子| 亚洲九九香蕉| 国产视频一区二区在线看| 51午夜福利影视在线观看| av不卡在线播放| 黄片大片在线免费观看| 免费看a级黄色片| 亚洲成a人片在线一区二区| 老司机靠b影院| 性色av乱码一区二区三区2| 法律面前人人平等表现在哪些方面| 一级片'在线观看视频| 国产精品亚洲一级av第二区| 欧美激情 高清一区二区三区| 国产黄色免费在线视频| 99国产精品99久久久久| 日韩制服丝袜自拍偷拍| 一边摸一边抽搐一进一小说 | videos熟女内射| 女性生殖器流出的白浆| 国产精品 欧美亚洲| 无限看片的www在线观看| 久久久精品免费免费高清| 国产色视频综合| 中文字幕最新亚洲高清| 美女午夜性视频免费| 亚洲五月婷婷丁香| 久热爱精品视频在线9| 亚洲成人国产一区在线观看| 国产成人啪精品午夜网站| 国产高清视频在线播放一区| 别揉我奶头~嗯~啊~动态视频| 精品一区二区三区视频在线观看免费 | 久久亚洲真实| 亚洲精品国产色婷婷电影| 波多野结衣av一区二区av| 水蜜桃什么品种好| 99国产精品免费福利视频| 国产成人免费观看mmmm| 亚洲精品中文字幕在线视频| 少妇裸体淫交视频免费看高清 | 99在线人妻在线中文字幕 | videos熟女内射| 亚洲av电影在线进入| 精品福利永久在线观看| 热99re8久久精品国产| 久久精品91无色码中文字幕| 午夜久久久在线观看| 亚洲 国产 在线| 久久人妻福利社区极品人妻图片| 亚洲免费av在线视频| 欧美日韩国产mv在线观看视频| av视频免费观看在线观看| 国产色视频综合| av天堂久久9| 欧美在线黄色| av网站免费在线观看视频| 怎么达到女性高潮| 韩国精品一区二区三区| 久久精品人人爽人人爽视色| 美女扒开内裤让男人捅视频| 999精品在线视频| 1024香蕉在线观看| 成人国语在线视频| 日韩中文字幕欧美一区二区| 精品人妻熟女毛片av久久网站| 法律面前人人平等表现在哪些方面| 在线观看www视频免费| 18禁美女被吸乳视频| 在线播放国产精品三级| 侵犯人妻中文字幕一二三四区| 国内毛片毛片毛片毛片毛片| av一本久久久久| 午夜视频精品福利| av超薄肉色丝袜交足视频| 无限看片的www在线观看| 亚洲av美国av| 亚洲国产中文字幕在线视频| 国产精品久久久久久精品古装| 久久精品国产亚洲av高清一级| 91精品国产国语对白视频| 午夜福利欧美成人| 无人区码免费观看不卡 | 免费少妇av软件| 麻豆av在线久日| 亚洲自偷自拍图片 自拍| 国产一区二区三区综合在线观看| 成人国产av品久久久| 久久久久久免费高清国产稀缺|