• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Computational Analysis to Burgers Huxley Equation

    2021-12-16 07:50:56MuhammadSaqibMuhammadShoaibArifShahidHasnainandDaoudMashat
    Computers Materials&Continua 2021年5期

    Muhammad Saqib,Muhammad Shoaib Arif,Shahid Hasnain and Daoud S.Mashat

    1Department of Mathematics,Numl University,Islamabad,44000,Pakistan

    2Department of Mathematics,Air University,Islamabad,44000,Pakistan

    3Department of Mathematics,Air University,Multan Campus,Multan,66000,Pakistan

    4Department of Mathematics,King Abdulaziz University,Jeddah,Saudi Arabia

    Abstract:The efficiency of solving computationally partial differential equations can be profoundly highlighted by the creation of precise,higher-order compact numerical scheme that results in truly outstanding accuracy at a given cost.The objective of this article is to develop a highly accurate novel algorithm for two dimensional non-linear Burgers Huxley (BH) equations.The proposed compact numerical scheme is found to be free of superiors approximate oscillations across discontinuities,and in a smooth flow region,it efficiently obtained a high-order accuracy.In particular,two classes of higherorder compact finite difference schemes are taken into account and compared based on their computational economy.The stability and accuracy show that the schemes are unconditionally stable and accurate up to a two-order in time and to six-order in space.Moreover,algorithms and data tables illustrate the scheme efficiency and decisiveness for solving such non-linear coupled system.Efficiency is scaled in terms of L2 and L∞norms,which validate the approximated results with the corresponding analytical solution.The investigation of the stability requirements of the implicit method applied in the algorithm was carried out.Reasonable agreement was constructed under indistinguishable computational conditions.The proposed methods can be implemented for real-world problems,originating in engineering and science.

    Keywords:Burgers Huxley equation;finite difference schemes;HOC schemes;Thomas algorithm;Von-Neumann stability analysis

    1 Introduction

    This paper describes the multiplex schemes solution for two dimensional non-linear Burgers Huxley equation.Such an equation serves as the coupling between theZxx,Zyydiffusive terms andZ(Zx+Zy)the convectional phenomena.This equation is of high importance for showing a prototype model describing the interaction between reaction mechanisms,convection effects and diffusion transports.It is the combination of both Burgers &Huxley phenomena with non-linear term means reactions kind of characteristics behaviour,to capture some features of fluid turbulence which caused by the effects of convection &diffusion [1-3].It is a quantitative paradigm which deals with the flow of electric current through the surface membrane of a giant nerve fibre.Nerve pulse propagation in nerve fibres and wall motion in liquid crystals.Recently research has been measured to investigate two dimensional Burgers Huxley phenomena for understanding the various physical flows in fluid theory [4-6]which leads to implementing a novel methodology for studying new insights [7,8].It is worth mentioning that there is a vast amount of different approaches available in the literature to calculate the solutions of non-linear systems of partial differential equations.Seeking the Burgers Huxley equations numerical solution,wavelet collocation methods for the solution of Burgers Huxley equations [9]have already been studied in combination with variational iteration technique [10,11].Moreover,the propagation of genes (Burger &Fisher) and Reaction-Diffusion (Gray Scott) models [12,13]investigated largely by the technique of computation [14].On the other hand,optimal homotopy asymptotic &homotopy perturbation method was carried out to find the approximate solution of Boussinesq-Burgers equations [15].Finally,some novel techniques also take into account like chaos theory [16],nonlinear optics and fermentation process [17,18].Wazwaz obtained the solitary wave solutions of one dimensional Burgers Huxley equation using tanh-coth method [19].Hashim et al.[20,21]using Adomian Decomposition Method.Molabahrami et al.[22]used the homotopy analysis method to find the solution of one dimensional Burger Huxley equation also Efimova et al.[23]find the travelling wave solution of such equation.Batiha et al.[24]used Hope-Cole transformation with Gao et al.[25]find the exact solution of the generalized Burgers equation.

    This research aims to deal with higher-order compact schemes with the finite difference methodology [8].Our primary focus is to attain a compatible scheme which is highly efficient and easy to implement with better accuracy.Although,Burgers Huxley equation can be in three dimensions still some features kept unexplored in the two-dimensional scenario.Let us explorer some new insights in BH equation which consists of the two-dimensional domain which can be written as:

    whereZ=Z(l,m,t)is the unknown velocity &(l,m,t)∈Λ×(0T].Laplacian can be defined as

    with two dimensional behavior,

    alsoPμ,β=(Zμ?1)(β?Z)is a non-linear reaction term.The coefficientξ,ηare advection and reactions coefficients accordingly with 0<β <1 &μ >0.These parameters describe the interaction between reaction mechanisms,convection effects &diffusion transports [26,27].Let us consider the initial condition,

    which can be seen from the upcoming Eq.(12).The Dirichlet boundary conditions are given by,

    whereΛis a rectangular domain inR2&Z0,p1,p2,q1,q2are given sufficiently smooth functions,andZ(l,m,t)may represent unknown velocity,whereasZ.Zl,Z.Zmrepresents convection terms along with linear diffusionZll,Zmm.Such phenomena perpetuate the ionic mechanisms underlying the initiation and propagation of action potentials in the squid giant axon [28,29].

    More generally,it is a challenging task for determining and preservation of physical properties like accuracy,stability,convergence criteria and design efficiency for the given two-dimensional problem.This equation can be an effective procedure for the solution of various deterministic problems in physics,biology and chemical reactions.Also,deals in the investigation of the growth of colonies of bacteria consider population densities or sizes,which are non-negative variables.Most non-linear models of real-life problems are still very challenging to solve either numerically or theoretically.There has recently been much attention devoted to the search for better and more efficient solution methods for determining a solution,analytical or numerical,to non-linear models [30,31].In [31-34]authors present a method used to solve partial equations with the use of artificial neural networks and an adaptive strategy to collocate them.To get the approximate solution of the partial differential equations Deep Neural Networks (DNNs) has been used,which shows impressive results in areas such as visual recognition [35].Recently in [36],authors develop a numerical method with third-order temporal accuracy to solve time-dependent parabolic and first-order hyperbolic partial differential equations.We focused on elaborating further by comparing analytical and numerical techniques.

    2 Tanh-Coth Method

    The dynamical balance between the non-linear reaction term and diffusive effects which constitute stable waveform after colliding with each other.In (1) the negative coefficients ofZll,ZmmandZ3follow the physical behaviour of two dimensional BH Eq.(1).Such an equation can be converted into the non-linear ordinary differential equation which is as follows:

    Letσ=x?et,the wave variable which balances the non-linear reaction term (Pμ,λ(Z))whereμ,λare index values and diffusion transport (the highest derivative involved),we haveM+2=3,MM=1.This enables us to set:PutM=1 in (6) we get

    LetY=tanh(γ σ),andσ=((x+y)?et)

    Substitutes aforementioned in Eq.(6),we have the following solution to (7)

    Arranging the coefficients ofYi,i≥0,and equating these coefficients to zero,the system of algebraic equations ina0,a1,b1,γandeare obtained.By solving the following set of the algebraic system of equations,we have the following form:

    In Eq.(10),the solution is of the form:

    Case 1:We found thatb1=0,

    Case 2:We found thata1=0,

    From Cases 1 and 2,the kink solution is of the form:

    Now by solving (1) using the tanh-coth method,the analytical solution (kink solution ) is in a compact form in both cases is as follows:

    with initial condition:

    whereZis the unknown velocity,andγ&σare wavenumbers which are developed during the solution of BH equation.

    3 Description of Compact Schemes

    Let us discretize the spatial domain which consists ofNandMpositive integers,such thathlandhmpresent step sizes along withlandmdirections,respectively [37].The spatial nodes can be denoted byli,mj,namely,li=ihl,i=0,1,...,N?1,N&mj=jhm,j=0,1,...,M?1,M.For the temporal domain,let us takedtas time-step discretization,τ=T/dt,withtn=Nτ.AlsowithN=0,1,2,...,dt?1 [37-39].Whereτis the temporal step size.SetZZτ={w|w=(w0,w1,w2,...,wdt)T,for anyw∈ZZτ,with some more notations:

    for n=0,1,2,...,dt?1.

    Implementation Procedure:

    Let us we divide (1) into two parts such as:

    Now considering one-dimensional steady convection-diffusion equation in the following form:

    whereα1,α11are the constants whileβ1,β11are the convective velocities.is the smooth functions oflandmmay represent the reaction,vorticity.Now the three-point scheme is as follows:

    Now applying the Taylor series expansion to Eq.(14) we have the following results:

    where 0≤n≤dt?1 and the truncation error is

    By adding Eqs.(17) and (18) we have the following form (1) which yields:

    Apply Crank-Nicholson time discretization,which leads to:

    whereT1,T11,T2,T22,ff1,...,are all constants coefficients ofandwhich includesα1,α11,β1,β11,hl,hm,τand constant values.LetZj=[Z1,jZ2,j…ZM?1,j]transposewhere 0≤j≤M.The matrix form of the compact scheme is as follows

    By calculating and simplifying the terms,we have the following tridiagonal matrix if of the form:

    whereD11matrix is the same as the matrixD33.The Eq.(23) is a tridiagonal block matrix.

    The matrix we have generated is diagonally dominant and can solve through Thomas algorithm.Which authenticate the consistency &accuracy of the solution of the formO(h4l+h2m+τ2).

    4 Description of Six order Compact Finite Difference Scheme

    For complex systems the results will be dependent on the formation of the mesh,We apply higher-order compact scheme at the system in Eq.(1) with a uniform mesh atΔl=Δm=hl=hm.Scheme description is as follows:

    Interior Boundary Points:

    The compact schemes at interior boundary points are as follows:

    Above schemes in Eq.(25) constituteλofamily of tridiagonal structure with parametric valuesForλo=0,we get fourth-order accurate scheme while usingλo=2/11,the scheme becomes sixth-order accurate which leads to[36-39].Also,near boundary points,we have to construct a sixth-order compact scheme to sustain accuracy throughout the two-dimensional domain [36-39].

    First Boundary Point 1:

    At the first boundary point,the six order compact scheme is of the following form.

    Above system in Eq.(26),the coefficients can be found by matching Taylor’s series expansion comparing with various orders up to orderO7,as a result,construction of the linear system is obtained.By constructing the linear system values ofd′s,which can be solved in the usual way to get the following alongldirection,[36,37].Others ones can found in the same way.

    2nd Boundary Point 2:

    Above system in Eq.(27),by constructing the linear system values ofd′s,which can be solved in the usual way to get the following alongldirection,[36-39].Others ones can found in the same way.

    Nth Boundary Point:

    At Nth boundary point of six order compact scheme is of the following way:

    Above system in Eq.(28),by constructing the linear system values ofd′s,which can be solved in the usual way as done in boundary point 1 and 2.

    Implementation Algorithm:

    By arranging Eqs.(26)-(28) in the following algorithm:

    wherePare mentioned in Eq.(1),also matricesAandBareNm×Nmsparse with triangular nature alongCandDareNl×Nlsparse with triangular in shape.

    Theorem:

    The truncation error in the compact six order finite difference scheme for equations in the system (1) is,

    4.1 Error Analysis

    The convergence benchmark,efficiency and accuracy of the proposed scheme in terms of norms can be defined as:

    wheredenoted as an analytical solution whilerepresents the numerical solution by mesh points (lo,mq,tn).In this experimentwhereλλis an eigenvalue ofrespectively.

    4.2 Stability Analysis

    The stability is concerned with the growth or decay of the error produced in the finitedifference solution.For the representation of theoretical analysis,we setP=0 in Eq.(1).Assuming the boundary conditions are accurately propagating,we can apply the Fourier analysis method to our proposed equation.

    Definition:For a time-dependent PDE,the corresponding difference scheme is stable in the norm ‖.‖ if there exists a constant M such that

    ‖en‖≤M‖e0‖,for all n?t≤tF

    where M is independent of ?t,?xand initial conditione0.

    Following the Von Neumann stability analysis criteria,fix the non-linear terms so that for linear stability,the numerical solution can be displayed in the following way:

    whereΓis the amplitude at time leveln,is called the imaginary unit.Φl,Φmleads to wave number inl,andmdirections withΦlhl,Φmhmare phase angles.The amplification factor is defined by

    By using Eqs.(30) and (35) and dividing by r.h.s of Eq.(35) and simplifying,we have the following form:

    whereR&Sare the compact forms of Eq.(37).For stability,it has to satisfy the following condition:

    After simplification to an aforementioned condition which holds true.Therefore,|E|≤1[38-41].Hence the scheme is unconditionally stable.

    5 Experimental Results

    The novel numerical scheme is compared with the analytical results of Eq.(1) by using tanhcoth method.For this objective,we consider the same parameterα=μ=η=1,and varyingβ.Numerical and analytic solutions are compared and justified in term of error norms to magnify the importance of higher accuracy.

    Furthermore,to avoid turbulence,by varyingβvalues in the Tab.1 with grid size(15×15),dt=0.001 and grid space=0.3125 with respect totime=1 is observed.Improvement in accuracy is noted by varying the values ofβparameter.Also,the BH equation produced the best results by using six order compact finite difference scheme.At differentβvalues,Tab.2 indicates error which increased at a very low rate by changing the values ofβfrom high to low which make the comparison to previous work give authentication for accuracy [34].The truncation error is calculated in Tab.3,usingL2,RelativeerrorandL∞with fixed grid size(31×31).By changing time stepsdt=0.001 with the same grid size showed results in the Tab.4.The approximate results using six order compact scheme correspond to error norm are shown in the Tab.6.In this,table the comparison of fourth-order and six order are analyzed by refining the temporal space,which shows this scheme is better than the corresponding fourth-order.In the Tab.7 six order and fourth-order compact finite difference scheme comparison is carried out which measured in term ofL∞norm.Different parameters are also observed under the same scheme.In the Tab.8 scheme efficiency encountered usingL∞,L2&Relativeerrornorms.Graphical representation of numerical schemes on BH equation is observed.Comparison of analytical and numerical results by using fourth and sixth-order compact finite difference scheme has been analyzed.Att=2,β=0.1,dt=0.0001,grid=(21×21)can be seen from the Fig.1.While six order scheme atβ=0.1 with time-spacedt=0.0001 and grid space(21×21)is seen from the Fig.2 which shows more accurate and refine results as compared with Fig.1 using the same parameter.In Figs.3 and 4,analysis shows that the error norm using fourth-order scheme atβ=0.001.While in Fig.5,we chooseβ=0.0001 using a higher-order scheme to analyze error profile at grid size(51×51).In summary,it is aspirant from the figures and tables;the analytical and numerical solutions are best fitted with generation encrypting.In the end,the novel six order compact scheme is the best agreement with the analytical solution.

    Comparison between approximation and analytical solutions is made at the final time of computationtime=2sat the critical point(1,1)using fourth-order compact scheme at grid size(15×15).

    Table 1:Fourth-order compact scheme

    Comparison between approximation and analytical solutions is made at the final time of computationtime=1 at the critical point(1,1)using fourth-order compact scheme at grid size(31×31).

    Table 2:Six order compact scheme

    Table 3:O(dt2+h4l +h4m)

    Table 4:O(dt2+h6l +h6m)

    Tab.3 shows error profile data by using fourth-order compact scheme atgridsize=(31×31)for unknown valueZ(l,m,t).Selftime:is the time spent in a function excluding the time spent in its child functions whileTotaltimeis the time to execute the algorithm.

    Tab.4 shows error profile data by using Six order compact scheme atgridsize=(31×31)for unknown valueZ(l,m,t).

    Tab.5 shows a comparison of two schemes atgridsize=(51×51)andβ=0.001 for unknownsZ(l,m,t).

    Tab.6 shows a comparison of two schemes atgridsize=(41×41)for unknownsZ(l,m,t).

    Table 5:Error comparison

    Table 6:Error comparison

    Figure 1:Results obtained by using 4th order scheme at dt=0.00011 &β=0.1 at time=5

    Figure 2:Results which obtained by using 6th order scheme at dt=0.0001,&β=0.1 at a time level 2

    Figure 3:Results for error estimation by using 4th order scheme at dt=0.001 &β=0.001 at time 1

    Figure 4:Results for error estimation by using 6th order scheme at dt=0.001 &β=0.001 at time 1

    Figure 5:Results obtained by using 6th order scheme at β=0.0001 at time level 0.5

    6 Central Processing Unit Performance

    A combinatorial logic circuit executes the mathematical operation for each function in the algorithm within the central processing unit.To establish the platform of CPU performance along physical memory transmission capacity is observed when the higher-order compact scheme is developed by using MATLAB software [35,39,42,43].By increasing the grid size,the number of calculations is increased,and it is difficult to overcome such issue which can take a longer time to execute.Because of numerical schemes efficiency,the computational experiment is done on two different computer machines like Lenovo 6th generation having 2.4 GHz 8 cores and 16 GB memory along 5th generation Dell machine having 4 physical cores and 16 logical cores.Different feathers involved in two computational experiments can be analyzed from the following data tables.

    Tab.7 shows results for the different grid using 6th order compact scheme on Lenovo CPU oriented computational machine (MATLAB software).

    Tab.8 shows results for the different grid using 6th order compact scheme on DELL CPU oriented computational machine (MATLAB software).

    Table 7:Central processing unit performance

    Table 8:Central Processing Unit Performance

    To check the relative performance and execution time,here in this algorithm which used two machines,Dell and Lenovo,as follows:

    where,

    The execution time of the Lenovo machine at(17×17)grid size is 170.579s,and Dell machine execution time at the same grid size is 165.123s.To calculate the relative performance we have

    Results conclude that Dell machine is 1.033 faster than the Lenovo machine.

    Clock cyclecan be defined as:

    whereclock cycletime=For CPU time,theclockrate=2GHz,of Lenovo machines and clock rate,is 10s,by increasing theclockratemeans increaseclockcycle.Theclockrateof Lenovo machine=To calculate theclockratewe haveclockcycle=1.2.So

    Clock rate performance of Dell machine is,CRDell=

    Comparison is performed to analyze Dell with Lenovo machines with both clock rate performance and relative performance.Thus MATLAB handles problems with care,and we can analyze results at each point of the loop and any iteration during computations.

    7 Conclusion

    Higher-order schemes for determining the two dimensional Burgers Huxley equation was developed in this paper.As it was not studied before by using such schemes of diffusive dissipation of errors.We came to know that the BH equation in two dimensional which is studied to find efficiency,accuracy and stability and by comparing with analytical and numerical approaches in terms ofL2,L∞&relative errors.It is evident from the fact that computed numerical experiments of two dimensional Burgers Huxley equation,solutions obtained by fourth and six order schemes are in good agreement with the analytical solutions.Figures and tables clearly show the tendency of fast and monotonic convergence of the results toward the analytical solution.Also,the computational discretization of the proposed model results in a sparse tridiagonal structure of the matrix,which can be overcome by the Thomas algorithm.Results lead to a remarkable improvement in accuracy,efficiency and computer performance which can be seen from data tables.

    Acknowledgement:The authors are thankful to the anonymous referee for their suggestions and helpful comments that improved this article.We are also grateful to Vice-Chancellor,Air University,Islamabad,for providing an excellent research environment and facilities.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产精品一区二区在线不卡| 99热6这里只有精品| 黄色 视频免费看| 国产亚洲av片在线观看秒播厂| 韩国av在线不卡| 五月伊人婷婷丁香| 女人久久www免费人成看片| 久久久久久久久久成人| 亚洲中文av在线| 精品酒店卫生间| 久久久国产精品麻豆| 捣出白浆h1v1| 伦理电影大哥的女人| 波野结衣二区三区在线| 久久国产精品大桥未久av| 在线天堂最新版资源| 国产免费一级a男人的天堂| av免费观看日本| 日韩av免费高清视频| 精品卡一卡二卡四卡免费| 狂野欧美激情性bbbbbb| 国产精品人妻久久久久久| 欧美精品一区二区大全| 久久久国产一区二区| 免费日韩欧美在线观看| 夜夜爽夜夜爽视频| 国产女主播在线喷水免费视频网站| 亚洲色图 男人天堂 中文字幕 | 久久精品熟女亚洲av麻豆精品| 99热这里只有是精品在线观看| 97人妻天天添夜夜摸| 97人妻天天添夜夜摸| 久久99热6这里只有精品| 热99国产精品久久久久久7| 宅男免费午夜| 国产精品不卡视频一区二区| 极品少妇高潮喷水抽搐| 天天影视国产精品| 精品人妻在线不人妻| 亚洲av电影在线进入| av.在线天堂| 国产精品国产三级专区第一集| 多毛熟女@视频| 欧美xxxx性猛交bbbb| 午夜免费观看性视频| 亚洲精品aⅴ在线观看| 国产男人的电影天堂91| 亚洲精品日本国产第一区| 国产精品麻豆人妻色哟哟久久| 国产熟女欧美一区二区| 久久人人爽人人爽人人片va| 亚洲欧美日韩另类电影网站| 亚洲,欧美精品.| 国产极品天堂在线| 美女xxoo啪啪120秒动态图| 国产乱来视频区| 国产不卡av网站在线观看| 久久99一区二区三区| 亚洲国产欧美在线一区| 少妇人妻精品综合一区二区| 久久精品国产亚洲av涩爱| 国产精品无大码| 午夜免费鲁丝| 99久久人妻综合| 国产精品国产av在线观看| 久久久久久久久久成人| 日韩视频在线欧美| 亚洲精品久久成人aⅴ小说| 赤兔流量卡办理| 日本黄色日本黄色录像| 免费观看av网站的网址| 亚洲精品乱码久久久久久按摩| 中文欧美无线码| 黑人猛操日本美女一级片| 秋霞在线观看毛片| 熟女av电影| 国产黄频视频在线观看| 男男h啪啪无遮挡| 亚洲av在线观看美女高潮| 国产精品一区二区在线观看99| 菩萨蛮人人尽说江南好唐韦庄| 日韩欧美精品免费久久| 久久婷婷青草| 午夜av观看不卡| 啦啦啦中文免费视频观看日本| 如何舔出高潮| 亚洲欧美一区二区三区黑人 | 亚洲国产精品一区三区| 久久久久久久大尺度免费视频| 看免费成人av毛片| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美清纯卡通| 精品人妻在线不人妻| 蜜臀久久99精品久久宅男| 亚洲欧洲精品一区二区精品久久久 | 欧美亚洲 丝袜 人妻 在线| 亚洲精品,欧美精品| 五月玫瑰六月丁香| 精品第一国产精品| 久久午夜福利片| 国产精品久久久久久精品古装| 亚洲国产毛片av蜜桃av| 男女边摸边吃奶| 97在线视频观看| 精品少妇内射三级| 亚洲国产精品国产精品| 日本-黄色视频高清免费观看| 777米奇影视久久| 五月天丁香电影| 午夜免费观看性视频| av在线观看视频网站免费| av在线播放精品| 精品亚洲乱码少妇综合久久| 1024视频免费在线观看| 在线观看国产h片| 婷婷色av中文字幕| 国产av精品麻豆| 久久久国产一区二区| 韩国av在线不卡| 亚洲国产日韩一区二区| 国产欧美另类精品又又久久亚洲欧美| 啦啦啦啦在线视频资源| 色94色欧美一区二区| 中国三级夫妇交换| 久久久久网色| 亚洲在久久综合| 日韩制服骚丝袜av| 国产精品一区www在线观看| 国产又色又爽无遮挡免| 日韩精品有码人妻一区| 欧美日韩av久久| 亚洲欧美成人精品一区二区| 日韩不卡一区二区三区视频在线| 欧美日韩av久久| 亚洲,欧美精品.| 国产国语露脸激情在线看| 国产免费一区二区三区四区乱码| 两个人免费观看高清视频| 亚洲av中文av极速乱| 观看美女的网站| 亚洲美女搞黄在线观看| 久久人妻熟女aⅴ| 十分钟在线观看高清视频www| 大香蕉97超碰在线| 国产一区二区三区综合在线观看 | 新久久久久国产一级毛片| 日本黄大片高清| 搡老乐熟女国产| 亚洲国产成人一精品久久久| 午夜福利网站1000一区二区三区| 91在线精品国自产拍蜜月| 丁香六月天网| 国产精品一国产av| 免费日韩欧美在线观看| 国产成人精品福利久久| 色哟哟·www| 妹子高潮喷水视频| 欧美xxⅹ黑人| 日本av手机在线免费观看| 乱码一卡2卡4卡精品| 精品福利永久在线观看| 国产片内射在线| 在线观看免费高清a一片| 亚洲国产最新在线播放| 一区二区三区乱码不卡18| 建设人人有责人人尽责人人享有的| 蜜桃国产av成人99| 欧美成人午夜精品| 一个人免费看片子| 免费大片黄手机在线观看| 亚洲经典国产精华液单| av福利片在线| 午夜福利影视在线免费观看| 在线亚洲精品国产二区图片欧美| 一级毛片黄色毛片免费观看视频| 天美传媒精品一区二区| 国产色婷婷99| 国产极品粉嫩免费观看在线| 色婷婷久久久亚洲欧美| 伦理电影大哥的女人| 又粗又硬又长又爽又黄的视频| 天堂俺去俺来也www色官网| 久久久国产精品麻豆| 在线观看三级黄色| 欧美 日韩 精品 国产| 国产成人精品久久久久久| 国产高清国产精品国产三级| 免费黄网站久久成人精品| 久久人妻熟女aⅴ| 黑人欧美特级aaaaaa片| 国产成人精品一,二区| 蜜臀久久99精品久久宅男| 美女内射精品一级片tv| 人妻一区二区av| www.色视频.com| 午夜激情av网站| 日韩,欧美,国产一区二区三区| 各种免费的搞黄视频| 亚洲精品第二区| 久久久国产精品麻豆| 精品久久国产蜜桃| 三上悠亚av全集在线观看| 天天操日日干夜夜撸| 日韩成人av中文字幕在线观看| 国产亚洲精品第一综合不卡 | 国产精品久久久久久久久免| 天天躁夜夜躁狠狠久久av| 高清不卡的av网站| 男人添女人高潮全过程视频| 久久久久精品久久久久真实原创| 亚洲人与动物交配视频| 免费观看在线日韩| 99久久综合免费| 午夜视频国产福利| 国产精品国产三级国产av玫瑰| 韩国av在线不卡| 色网站视频免费| 中国国产av一级| 在线观看人妻少妇| 99香蕉大伊视频| 9热在线视频观看99| 国产在线视频一区二区| 精品一区在线观看国产| 亚洲美女搞黄在线观看| 国产一区二区三区av在线| 国产亚洲精品久久久com| 十八禁网站网址无遮挡| 丰满乱子伦码专区| 久久精品国产a三级三级三级| 国产永久视频网站| 美女福利国产在线| 久久久久久久久久成人| 亚洲欧洲精品一区二区精品久久久 | 欧美精品国产亚洲| 99久久人妻综合| 欧美亚洲 丝袜 人妻 在线| 春色校园在线视频观看| 久久女婷五月综合色啪小说| 精品少妇久久久久久888优播| 国产成人精品一,二区| 五月伊人婷婷丁香| 亚洲五月色婷婷综合| 黑丝袜美女国产一区| 国产精品女同一区二区软件| 国产午夜精品一二区理论片| 高清av免费在线| 久久久久久人人人人人| 2022亚洲国产成人精品| 亚洲国产精品成人久久小说| 九九在线视频观看精品| 嫩草影院入口| 九草在线视频观看| 亚洲精品日韩在线中文字幕| a级毛片黄视频| av有码第一页| 日本爱情动作片www.在线观看| 精品一品国产午夜福利视频| 一区二区av电影网| 丝袜在线中文字幕| 亚洲美女黄色视频免费看| 老司机影院成人| av有码第一页| 精品第一国产精品| 精品一品国产午夜福利视频| 在线观看三级黄色| 丝袜喷水一区| 菩萨蛮人人尽说江南好唐韦庄| 热re99久久精品国产66热6| 寂寞人妻少妇视频99o| 美女福利国产在线| 伦精品一区二区三区| 久久人人爽人人爽人人片va| 免费黄频网站在线观看国产| 亚洲av男天堂| 久久精品国产鲁丝片午夜精品| 两性夫妻黄色片 | 国产av精品麻豆| 精品少妇久久久久久888优播| 考比视频在线观看| 色哟哟·www| 精品亚洲成国产av| 亚洲国产av新网站| 精品99又大又爽又粗少妇毛片| 蜜臀久久99精品久久宅男| 久久久久网色| 最近最新中文字幕大全免费视频 | 伊人亚洲综合成人网| 99九九在线精品视频| 亚洲国产精品999| 大片电影免费在线观看免费| 亚洲国产毛片av蜜桃av| 一本—道久久a久久精品蜜桃钙片| 午夜精品国产一区二区电影| 成人黄色视频免费在线看| 亚洲欧美一区二区三区国产| 午夜福利网站1000一区二区三区| 老司机亚洲免费影院| 大陆偷拍与自拍| 亚洲 欧美一区二区三区| 午夜免费观看性视频| 爱豆传媒免费全集在线观看| av黄色大香蕉| 亚洲av男天堂| 国产日韩欧美亚洲二区| 99热网站在线观看| 久久精品国产a三级三级三级| 一区在线观看完整版| 久久久久国产精品人妻一区二区| 日韩一本色道免费dvd| 色婷婷久久久亚洲欧美| 在线看a的网站| 午夜91福利影院| 国产在线视频一区二区| av国产精品久久久久影院| 久久久欧美国产精品| 久久久国产一区二区| tube8黄色片| 国产一区二区在线观看日韩| 亚洲国产欧美日韩在线播放| av免费观看日本| 在线观看www视频免费| 日韩一本色道免费dvd| 午夜91福利影院| 精品亚洲成国产av| 少妇人妻精品综合一区二区| 欧美激情 高清一区二区三区| 99香蕉大伊视频| 丝袜美足系列| 一个人免费看片子| 国产极品天堂在线| 亚洲成人手机| 久久狼人影院| 午夜av观看不卡| 大香蕉97超碰在线| 色5月婷婷丁香| 街头女战士在线观看网站| 亚洲综合精品二区| 国产精品久久久av美女十八| 交换朋友夫妻互换小说| 久久人人爽人人爽人人片va| 少妇人妻久久综合中文| 少妇熟女欧美另类| 亚洲av日韩在线播放| 狂野欧美激情性xxxx在线观看| a级毛片黄视频| 亚洲中文av在线| 啦啦啦在线观看免费高清www| 午夜精品国产一区二区电影| 国产免费一级a男人的天堂| 国产综合精华液| 亚洲精品久久成人aⅴ小说| 亚洲综合色惰| 18禁动态无遮挡网站| 男女啪啪激烈高潮av片| 丝袜美足系列| 国产又色又爽无遮挡免| av片东京热男人的天堂| 久久精品夜色国产| 捣出白浆h1v1| 又粗又硬又长又爽又黄的视频| 如何舔出高潮| 亚洲一码二码三码区别大吗| 亚洲色图综合在线观看| 国产日韩欧美在线精品| 91国产中文字幕| 又黄又粗又硬又大视频| 伦精品一区二区三区| 国产一区亚洲一区在线观看| 三级国产精品片| 中文字幕另类日韩欧美亚洲嫩草| 美女xxoo啪啪120秒动态图| 丝袜喷水一区| 成人黄色视频免费在线看| 中文乱码字字幕精品一区二区三区| 免费大片黄手机在线观看| 国产激情久久老熟女| 亚洲第一av免费看| 亚洲国产欧美在线一区| 久久久精品免费免费高清| 一级毛片电影观看| 高清视频免费观看一区二区| 日日爽夜夜爽网站| 99精国产麻豆久久婷婷| 亚洲四区av| 国产福利在线免费观看视频| 久久久久国产精品人妻一区二区| 日本与韩国留学比较| 国产亚洲一区二区精品| 少妇被粗大猛烈的视频| 精品人妻一区二区三区麻豆| 777米奇影视久久| 日韩电影二区| 精品久久国产蜜桃| 免费在线观看完整版高清| 人人妻人人添人人爽欧美一区卜| 成年人免费黄色播放视频| 在线观看免费高清a一片| 波野结衣二区三区在线| 亚洲四区av| 边亲边吃奶的免费视频| 亚洲精品第二区| 久久99蜜桃精品久久| 婷婷色av中文字幕| 久久这里只有精品19| 乱码一卡2卡4卡精品| 国产精品国产三级国产av玫瑰| 老女人水多毛片| 国产精品国产三级国产av玫瑰| 日本欧美视频一区| 国产高清国产精品国产三级| 欧美日本中文国产一区发布| 咕卡用的链子| 99视频精品全部免费 在线| 午夜福利影视在线免费观看| av.在线天堂| 亚洲欧美清纯卡通| 久久久久久久久久久免费av| 国产国拍精品亚洲av在线观看| 男女边吃奶边做爰视频| 国产爽快片一区二区三区| 亚洲成色77777| 在线观看国产h片| 青春草视频在线免费观看| 国产永久视频网站| 国产日韩欧美在线精品| 亚洲在久久综合| 女人精品久久久久毛片| 中文字幕免费在线视频6| 超色免费av| 久久精品夜色国产| 一级毛片黄色毛片免费观看视频| 精品少妇内射三级| 人妻一区二区av| 在线观看国产h片| 国产精品国产av在线观看| 午夜久久久在线观看| 男人舔女人的私密视频| 欧美精品一区二区大全| 91精品伊人久久大香线蕉| 五月开心婷婷网| 久久 成人 亚洲| 国产在线视频一区二区| 久久久久久久精品精品| 在线天堂中文资源库| 一区二区三区四区激情视频| 国产伦理片在线播放av一区| 国产国拍精品亚洲av在线观看| 免费少妇av软件| 久久久久久伊人网av| 飞空精品影院首页| 亚洲精品日韩在线中文字幕| 国产成人aa在线观看| 欧美精品人与动牲交sv欧美| 国内精品宾馆在线| 国产成人精品在线电影| 中国国产av一级| 亚洲国产看品久久| 日韩不卡一区二区三区视频在线| 日韩一区二区三区影片| 亚洲国产精品一区二区三区在线| 久久精品国产综合久久久 | 亚洲欧洲国产日韩| 国产精品久久久久久久久免| 一区二区三区精品91| av女优亚洲男人天堂| 永久网站在线| 亚洲欧美清纯卡通| 亚洲人成77777在线视频| 日日摸夜夜添夜夜爱| 免费看光身美女| 国产精品女同一区二区软件| 蜜桃在线观看..| 午夜久久久在线观看| 成人综合一区亚洲| 自拍欧美九色日韩亚洲蝌蚪91| 精品人妻一区二区三区麻豆| 亚洲国产av新网站| 亚洲美女搞黄在线观看| 日韩伦理黄色片| 999精品在线视频| 精品国产一区二区三区久久久樱花| 你懂的网址亚洲精品在线观看| 色吧在线观看| 国产日韩一区二区三区精品不卡| 夜夜爽夜夜爽视频| 桃花免费在线播放| 久热久热在线精品观看| 大香蕉久久成人网| 久久精品夜色国产| 成人毛片a级毛片在线播放| 夜夜骑夜夜射夜夜干| 少妇高潮的动态图| 色视频在线一区二区三区| 少妇的逼水好多| 久久久国产一区二区| 午夜影院在线不卡| 一本—道久久a久久精品蜜桃钙片| 熟妇人妻不卡中文字幕| 免费观看a级毛片全部| 三级国产精品片| 久久久久久久久久久久大奶| 麻豆精品久久久久久蜜桃| 亚洲精品日韩在线中文字幕| 51国产日韩欧美| 久久久久久久久久久久大奶| 一二三四在线观看免费中文在 | 国产日韩一区二区三区精品不卡| www.av在线官网国产| 国产免费视频播放在线视频| 亚洲中文av在线| 亚洲欧美日韩卡通动漫| 永久网站在线| 建设人人有责人人尽责人人享有的| 午夜日本视频在线| 午夜激情av网站| 91国产中文字幕| 亚洲av在线观看美女高潮| 国产激情久久老熟女| 亚洲精品美女久久久久99蜜臀 | 亚洲av电影在线进入| 性色avwww在线观看| 亚洲av欧美aⅴ国产| 999精品在线视频| 最近最新中文字幕免费大全7| 亚洲人成网站在线观看播放| 日日爽夜夜爽网站| 国产福利在线免费观看视频| 晚上一个人看的免费电影| 少妇的丰满在线观看| 赤兔流量卡办理| 99久久综合免费| 日韩av在线免费看完整版不卡| 中文字幕亚洲精品专区| 久久久国产一区二区| 在线天堂中文资源库| 亚洲精品日本国产第一区| 日本午夜av视频| 在线观看一区二区三区激情| 丰满迷人的少妇在线观看| 插逼视频在线观看| 日韩一区二区三区影片| 99久久中文字幕三级久久日本| 久久精品aⅴ一区二区三区四区 | 性色avwww在线观看| 亚洲精品视频女| 亚洲美女搞黄在线观看| 高清av免费在线| 尾随美女入室| 一本久久精品| 在线观看免费日韩欧美大片| 丁香六月天网| 久久久久人妻精品一区果冻| 大陆偷拍与自拍| 韩国av在线不卡| 国产成人91sexporn| 久久久欧美国产精品| 咕卡用的链子| av在线观看视频网站免费| 十八禁高潮呻吟视频| 欧美另类一区| av有码第一页| 水蜜桃什么品种好| 久久精品久久久久久噜噜老黄| 日本欧美视频一区| av国产精品久久久久影院| 在线看a的网站| 欧美 日韩 精品 国产| 国产精品人妻久久久影院| 高清视频免费观看一区二区| 国产精品久久久久成人av| 香蕉国产在线看| 免费少妇av软件| 久久精品久久精品一区二区三区| 久久99一区二区三区| 18禁动态无遮挡网站| 国产男女内射视频| 国产成人精品福利久久| 国产成人aa在线观看| 搡女人真爽免费视频火全软件| 日韩欧美一区视频在线观看| 久久韩国三级中文字幕| 亚洲激情五月婷婷啪啪| 丝瓜视频免费看黄片| 有码 亚洲区| 色94色欧美一区二区| 99热6这里只有精品| 国产一区二区在线观看av| 午夜福利,免费看| av不卡在线播放| 中文字幕人妻熟女乱码| 午夜免费观看性视频| 91精品伊人久久大香线蕉| 22中文网久久字幕| 国产欧美日韩一区二区三区在线| 日本猛色少妇xxxxx猛交久久| 久久久国产精品麻豆| 久久人人爽人人片av| av免费在线看不卡| 久久av网站| 五月天丁香电影| 国产国语露脸激情在线看| 国产又色又爽无遮挡免| 亚洲综合精品二区| 亚洲熟女精品中文字幕| 精品一品国产午夜福利视频| 久久国产亚洲av麻豆专区| 日产精品乱码卡一卡2卡三| 日本欧美视频一区| 国产成人免费无遮挡视频| 欧美亚洲 丝袜 人妻 在线| 男人添女人高潮全过程视频| 国产成人a∨麻豆精品| 中文欧美无线码| 熟女av电影| 曰老女人黄片|