• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamical Comparison of Several Third-Order Iterative Methods for Nonlinear Equations

    2021-12-16 07:50:30ObadahSaidSolaimanSamsulAriffinAbdulKarimandIshakHashim
    Computers Materials&Continua 2021年5期

    Obadah Said Solaiman,Samsul Ariffin Abdul Karim and Ishak Hashim,*

    1Department of Mathematical Sciences,Faculty of Science&Technology,Universiti Kebangsaan Malaysia,Bangi Selangor,43600,Malaysia

    2Department of Fundamental and Applied Sciences,Center for Smart Grid Energy Research(CSMER),Institute of Autonomous System,Universiti Teknologi PETRONAS,Bandar Seri Iskandar,Seri Iskandar,Perak DR,32610,Malaysia

    Abstract:There are several ways that can be used to classify or compare iterative methods for nonlinear equations,for instance;order of convergence,informationalefficiency,and efficiency index.In this work,we use another way,namely the basins of attraction of the method.The purpose of this study is to compare several iterative schemes for nonlinear equations.All the selected schemes are of the third-order of convergence and most of them have the same efficiency index.The comparison depends on the basins of attraction of the iterative techniques when applied on several polynomials of different degrees.As a comparison,we determine the CPU time (in seconds) needed by each scheme to obtain the basins of attraction,besides,we illustrate the area of convergence of these schemes by finding the number of convergent and divergent points in a selected range for all methods.Comparisons confirm the fact that basins of attraction differ for iterative methods of different orders,furthermore,they vary for iterative methods of the same order even if they have the same efficiency index.Consequently,this leads to the need for a new index that reflects the real efficiency of the iterative scheme instead of the commonly used efficiency index.

    Keywords:Nonlinear equations;iterative methods;basins of attraction;order of convergence

    1 Introduction

    The subject of finding the solutions of nonlinear equations is important;because many nonlinear equations result from applied sciences like physics,chemistry and engineering.This field has been studied widely,see for example [1,2]and the references therein.There are different ways to compare iterative schemes;for instance,the number of iterations required to achieve the convergence criterion,the number of functions to be evaluated at each iteration,CPU time required for the scheme to satisfy the convergence criterion,informational efficiency and efficiency index.

    The well-known Newton’s method and all root-finding methods depend on at least one initial guessx0for the rootαoff(x).To confirm that the iterative scheme converges to the zeroα,it is important that the initial value is close toα.But,how close shall the initial values to the zeroα?What is the better way to select the initial guess? And how can we make a comparison between different schemes for solving nonlinear equations depending on the initial guesses? Shall specific initial guessx0always converge to the same root if we use different iterative schemes?

    The field of basins of attraction firstly considered and attributed by Cayley [3]is a method to show how different starting points affect the behavior of the function.In this way,we can compare different root-finding schemes depending on the convergence area of the basins of attraction.In this sense,the iterative scheme is better if it has a larger area of convergence.Here,we mean by the area of convergent,the number of convergent points to a rootαoff(x)in a selected range.Stewart [4]used the idea of the basins of attraction to compare Newton’s scheme to the schemes proposed by Halley [5],Popovski and Laguerre.For the case of multiple zeros of nonlinear equations with known multiplicity,many researchers compared various schemes of different orders by obtaining their basins of attraction,see for example,Scott et al.[6],Neta et al.[7],Jamaludin et al.[8]and Sarmani et al.[9].Chun et al.[10]presented the basins of attraction for several third-order methods.Moreover,the basins of attraction of several optimal fourth-order methods were shown by Neta et al.[11].Also,Neta et al.[12]presented the basins of attraction of several iterative schemes of different orders.The basins of attractions of Murakami’s fifth-order family of methods were shown by Chun et al.[13].Geum [14]presented the basins of attraction of optimal third-order schemes.Cordero et al.[15]presented the basins of attraction for schemes which is Steffensen-type.Chun et al.[16]compared many eighth-order iterative methods by showing their basins of attraction.Recently,Zotos et al.[17]compared a large collection of iterative schemes of different orders by illustrating their basins of attraction.Very recently,Said Solaiman et al.[18]presented a comparison between several optimal and non-optimal iterative schemes of the order sixteen by showing their basins of attraction,they tested various examples in which optimal iterative schemes may not always the best for nonlinear equations.Many authors proposed schemes for nonlinear equations together with the basins of attraction of the proposed methods,for instance,Behl et al.[19]illustrated the basins of attraction of their proposed sixthorder iterative scheme for nonlinear models.Very recently,Sivakumar et al.[20]proposed an optimal fourth-order iterative technique for nonlinear equations with the basins of attraction of the proposed technique.Also,Said Solaiman et al.[21]constructed an iterative method of order five for solving systems of nonlinear equations with the basins of attraction of the presented method.It is concluded from the previous studies that the basins of attraction vary for iterative schemes of different orders of convergence,furthermore,they vary for schemes of equal order of convergence.

    Having basins of attraction with smooth convergent pattern or basins of attraction with chaotic pattern does not mean that the iterative scheme with a smooth pattern has a larger area of convergence than the scheme with chaotic basins of attraction,although this leads sometimes the algorithm converges to unwanted zero.Very few researchers have worked on finding number of convergent and divergent points in a selected range for iterative schemes when applied to numerical examples.Some questions arise from this subject are:

    ? Could the basins of attraction of the iterative schemes be affected by the number of steps needed in each scheme?

    ? If the basins of attraction of a specific iterative scheme were better than others in one example,is it necessary to be the best in all test problems?

    ? What are possible factors that affect the basins of attraction of the iterative schemes?

    ? Based on the basins of attraction of different schemes,is the current efficiency index enough to make comparisons between iterative schemes with equal order of convergence and an equal number of functions that need to be evaluated per iteration?

    We shall in this work find answers to the above questions.We will compare some iterative schemes of third-order of convergence by using their basins of attraction.Some of these schemes are second-derivative free.We find out the number of convergent and divergent points on a selected range for all schemes when applied on different polynomials.The work in this paper is divided as follows:Some definitions and preliminaries related to the subject were mentioned in Section 2.In Section 3,the basins of attractions were used to compare eight iterative schemes of order three on some numerical examples.Finally,the conclusion of the paper is given in Section 4.

    2 Preliminaries

    Let’s start by stating some definitions and preliminaries which are related to the subject of basins of attraction.

    Definition 1Let α be the exact zero of f,and en=xn?α be the error in the nth iterative step,and f:R→R be an iteration function with a root α,which defines the iterative scheme xn+1=f(xn).Iffor some p and b,then p is called the order of convergence,and b is the asymptotic error constant.

    Iff(x0)=x0,thenx0is called a fixed point.Forx∈,whereis the Riemann sphere,we define its orbit as orb(x)={x,f(x),f[2](x),...,f[n](x),...},wheref[n]is thenthiterate off.x0is called a periodic point of periodnifnis the smallest number such thatf[n](x0)=x0.Ifx0is periodic of periodnthen it is a fixed point forf[n].A pointx0is said to be attracting ifrepelling ifand neutral ifMoreover,the point is called super-attracting if the derivative is zero.

    The Julia setJ(f)of a nonlinear functionf(x),is the closure of the set of its repelling periodic points.The complement ofJ(f)is called the Fatou setF(f).IfOis an attracting periodic orbit of periodm,we define the basin of attraction to be the open setA∈consisting of all pointsx∈for which the successive iteratesf[m](x),f[2m](x),...converge towards some point ofO.In symbols,we can define the basin of attraction for any rootαoffto beB(α)={x0|limn→∞f[n](x0)=α}.The basin of attraction of a periodic orbit may have infinitely many components.It can be said that basin of attraction of any fixed point tends to an attractor belonging to Fatou set,and the boundaries of these basin of attraction belongs to the Julia set.

    The complex polynomial of ordernwith distinct roots splits the complex plane intonregions(basins).These basins may or may not be equally divided or even connected.In an ideal situation,these basins form a Voronoi diagram displaying all points that are the nearest neighbors to the polynomial’s zero [4].

    3 Numerical Examples

    In this part,we study the area of convergence of eight iterative schemes of third-order of convergence by obtaining the basins of attraction of their zeros,and finding the number of convergent and divergent points in a selected region.All polynomials in the examples are of roots with multiplicity one.Some of the compared schemes were considered before,but without finding out the number of convergent and divergent points in a selected range.See Stewart [4]and Amat et al.[22].The methods we consider are:

    ? The modified Halley method (MH) proposed by Said Solaiman et al.[2]:

    ? The well-known Halley’s method [5],given by:

    ? Potra-Pták (PP) method [23],given by:

    ? Weerakon-Fernando (WF) method [24],given by:

    ? Frontini-Sormani (FS) method [25],given by:

    ? Homeier method (HM) [26],given by:

    ? Kou-Wang (KW) method [27],given by:

    ? Chun method (CM) [28],given by:

    Figure 1:The basins of attraction for the zeros of f1(x)=x3?1.The top row from left to right:MH,Halley,and PP.The middle row from left to right:WF,FS,and HM.The bottom row:KW and CM respectively

    Figure 2:The basins of attraction for the zeros of f2(x)=x3+2x2?3.The top row from left to right:MH,Halley,and PP.The middle row from left to right:WF,FS,and HM.The bottom row:KW and CM,respectively

    The idea of the basins of attraction off(x)starts by selecting a starting point from a specific region that contains all the roots off(x).Then we apply the iterative scheme using the selected starting point with specific tolerance and a specific number of iterations considered as a convergence criterion.The iterative scheme will converge to one of the roots in the selected region if it satisfies the convergence criterion,or diverge if it fails.Finally,we color all points which are converging to a specific root using one color,and we use the black color for all points that are failing in satisfying the convergence criterion.

    For the purpose of comparison,the CPU time (in sec) needed to obtain the basins of attraction has been computed,see Fig.6.Moreover,the number of convergent points (NCP) and divergent points (NDP) for each scheme in a selected range have been counted,see Tab.1.To cover all the zeros of the selected polynomial,4×4 region is centered at the origin.Thus,a 401×401=160801 points in a uniform grid are selected as initial points for the iterative schemes to generate the basins of attraction.Each point in the grid is colored depending on the number of iterations required for convergence and the zero it converges to.The exact roots were assigned as black dots on the graph.If the scheme needs less number of iterations to converge to a specific root,then the region of that roots appears darker.The convergence criterion selected is a tolerance of 10?3with a maximum of 100 iterations.

    All calculations have been performed on Intel Core i3-2330M CPU@2.20 GHz with 4 GB RAM,using Microsoft Windows 10,64 bit based on X64-based processor.Mathematica 9 has been used to produce all graphs and computations.

    Example 1Consider the polynomialf1(x)=x3?1 which has roots 1,?0.5±0.866025i.

    The basins of attraction for the eight iterative schemes have been showed in Fig.1.As it can be clearly seen,Halley’s method attains smooth basins of attraction when compared to the others.But,Tab.1 shows that all iterative schemes except WF and FS have the same area of convergence.From Fig.6 it is clear that the CPU time needed to attain the basins of attraction is less for MH,Halley,and HM from the remaining schemes.The black areas that appeared in the basins of attraction of WF and FS represent points of divergence.

    Figure 3:The basins of attraction for the zeros of f3(x)=x4?1.The top row from left to right:MH,Halley,and PP.The middle row from left to right:WF,FS,and HM.The bottom row:KW and CM,respectively

    Example 2Now,consider the polynomialf2(x)=x3+2x2?3 which has three simple real rootsx=1,?1.5±0.866025i.Looking at Fig.2 and Tab.1,one can conclude that WF and FS show a lot of divergent points.The rest of the schemes have better basins of attraction with close CPU time needed to view the graphs as it’s clear from Fig.6.

    Example 3The four roots of unity polynomialf3(x)=x4?1 has the rootsx=±1,±i.Even it seems from Fig.3 that Halley’s method has almost ideal basins of attraction,but we found that it has 112 points of divergent,see Tab.1.Almost all these 112 points exist on the two main diagonals of the graph.Besides,one can conclude from Tab.1 that CM is the best for this example as it has the minimum number of points of divergent,even though its basins of attraction has some complexity.So,for this example,we can consider CM as the best regarding the area of the convergence,although it needs little bit more CPU time as it appears from Fig.6,Halley,MH and HM have also a good area of convergence.The other schemes attain a lot of divergent points.

    Example 4Next considerwhich has the rootsx=±1.5,±i.See Fig.4 for the basins of attraction of all iterative schemes.In this example all schemes have the same number of convergent points in the selected range,except WF and FS,see Tab.1.The CPU time needed to display the basins of attraction is less for Halley,MH,and HM from the other schemes,see Fig.6.

    Example 5Finally,considerf5(x)=x5?1 which has the rootsx=1,?0.809017 ±0.587785i,0.309017±0.951057i.From Fig.5,PP,WF,FS,and KW show clear areas of divergence.These areas resulted from the huge number of divergent points,see Tab.1.The best scheme in this test problem is MH,HM followed by Halley based on their convergent points in the selected range as it’s clear in Tab.1.Regarding the required CPU time,Halley is the best followed by HM and MH.See Fig.6.

    Figure 5:The basins of attraction for the zeros of f5(x)=x5?1.The top row from left to right:MH,Halley,and PP.The middle row from left to right:WF,FS,and HM.The bottom row:KW and CM respectively

    Figure 6:CPU time in seconds

    Table 1:Number of convergent (NCP) and divergent points (NDP) for f1(x)?f5(x)

    The last set in Fig.6 shows the average CPU time needed for each scheme when applied to the five test problems.Overall,Halley,MH,and HM need less time to display the basins of attraction of their zeros,followed by CM,PP,KW,FS and WF.

    4 Conclusion

    We have compared several iterative schemes for nonlinear equations by visualizing their basins of attraction and finding out the number of convergent and divergent points for the iterative schemes in a selected region.Although all iterative schemes in this work have been selected of equal order of convergence and most of them have an equal number of function evaluations at each iteration,but clear differences have been noted in their behaviors.One can easily note that being an iterative scheme with smooth basins of attraction does not mean that the scheme has a larger area of convergence.In addition,we can conclude that it’s not necessary that a onestep iterative scheme is better than a two-step iterative scheme of the same order.Hence,it is not easy to determine if a specific iterative scheme is better than the other.Finally,even though all the iterative schemes used in this work have the same efficiency index,however,the results show that there are sometimes big differences in their basins of attraction and hence their area of convergence.These results force the need of proposing another index that reflects the real accuracy and efficiency of the iterative schemes.

    Funding Statement:We are grateful for the financial support from UKM’s research Grant GUP-2019-033.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    久久精品亚洲精品国产色婷小说| 免费在线观看日本一区| 亚洲色图av天堂| 色哟哟哟哟哟哟| 亚洲美女黄片视频| 长腿黑丝高跟| 老鸭窝网址在线观看| 午夜精品久久久久久毛片777| 亚洲第一欧美日韩一区二区三区| 韩国av一区二区三区四区| 一区二区三区激情视频| 美女大奶头视频| x7x7x7水蜜桃| 中文字幕av电影在线播放| 亚洲熟女毛片儿| 一区二区日韩欧美中文字幕| 免费搜索国产男女视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲 欧美一区二区三区| 久久国产精品影院| 国产蜜桃级精品一区二区三区| 久久人妻福利社区极品人妻图片| 国产亚洲欧美98| 国产激情欧美一区二区| 精品国产亚洲在线| 精品国产美女av久久久久小说| 久久人妻熟女aⅴ| 久久性视频一级片| 午夜成年电影在线免费观看| 国产精品一区二区精品视频观看| 国产高清激情床上av| 精品国产乱码久久久久久男人| 欧美色视频一区免费| 国产高清videossex| 欧美国产精品va在线观看不卡| 久久久久亚洲av毛片大全| 欧美黑人欧美精品刺激| 免费看十八禁软件| 久久午夜综合久久蜜桃| 亚洲精品成人av观看孕妇| 美女大奶头视频| 国产精品爽爽va在线观看网站 | av视频免费观看在线观看| 极品教师在线免费播放| 亚洲免费av在线视频| 亚洲精品久久午夜乱码| 老司机靠b影院| 国产一卡二卡三卡精品| a在线观看视频网站| 高清av免费在线| 午夜福利影视在线免费观看| 久久久国产欧美日韩av| 国产一区二区三区在线臀色熟女 | 日韩成人在线观看一区二区三区| 亚洲九九香蕉| av片东京热男人的天堂| 一本大道久久a久久精品| www.自偷自拍.com| 大陆偷拍与自拍| 一进一出抽搐动态| 国产亚洲精品综合一区在线观看 | 久久久国产成人免费| 久久影院123| 777久久人妻少妇嫩草av网站| 搡老岳熟女国产| 黄色视频,在线免费观看| 精品一区二区三区四区五区乱码| av电影中文网址| 91字幕亚洲| 欧美日本中文国产一区发布| 精品无人区乱码1区二区| 美女福利国产在线| av天堂在线播放| 亚洲狠狠婷婷综合久久图片| 很黄的视频免费| 可以在线观看毛片的网站| 不卡一级毛片| 国产亚洲欧美在线一区二区| 三级毛片av免费| 中文字幕高清在线视频| 久久国产乱子伦精品免费另类| 免费高清在线观看日韩| 久久精品国产99精品国产亚洲性色 | 大型av网站在线播放| 国产精品亚洲av一区麻豆| 无限看片的www在线观看| 亚洲少妇的诱惑av| 天堂动漫精品| 久久久国产成人免费| 亚洲 欧美一区二区三区| 午夜视频精品福利| 亚洲精品国产精品久久久不卡| 欧美日韩视频精品一区| 在线国产一区二区在线| 久久国产乱子伦精品免费另类| 久久精品国产亚洲av高清一级| 久久草成人影院| 欧美乱色亚洲激情| 欧美在线黄色| 精品福利永久在线观看| 黄色a级毛片大全视频| 亚洲 欧美 日韩 在线 免费| 99久久人妻综合| 男人舔女人的私密视频| 激情视频va一区二区三区| 啪啪无遮挡十八禁网站| 日韩有码中文字幕| 我的亚洲天堂| 欧美精品亚洲一区二区| 大型黄色视频在线免费观看| 亚洲av美国av| 99riav亚洲国产免费| 中文字幕色久视频| 免费av中文字幕在线| 精品卡一卡二卡四卡免费| 欧美成人午夜精品| 精品一区二区三卡| 亚洲av第一区精品v没综合| 日本撒尿小便嘘嘘汇集6| 久久久久久久久中文| 老熟妇仑乱视频hdxx| 老汉色av国产亚洲站长工具| 中亚洲国语对白在线视频| 视频区图区小说| 久久影院123| 久久国产精品影院| 巨乳人妻的诱惑在线观看| 国产精品日韩av在线免费观看 | 99热只有精品国产| 一级片免费观看大全| www国产在线视频色| 怎么达到女性高潮| 香蕉久久夜色| 国产欧美日韩一区二区三区在线| 88av欧美| 一边摸一边抽搐一进一小说| 老司机福利观看| 成人精品一区二区免费| 久久精品91蜜桃| 国产免费av片在线观看野外av| 一二三四社区在线视频社区8| 欧美日韩乱码在线| 免费在线观看黄色视频的| 亚洲avbb在线观看| 欧美日韩国产mv在线观看视频| 韩国精品一区二区三区| www.999成人在线观看| 一级片免费观看大全| 免费在线观看黄色视频的| 91大片在线观看| 国产精品久久久久成人av| 老司机靠b影院| 一级a爱片免费观看的视频| 天堂动漫精品| 嫩草影院精品99| 免费人成视频x8x8入口观看| 少妇的丰满在线观看| 国产成人av激情在线播放| 一边摸一边抽搐一进一出视频| 91成人精品电影| 嫩草影院精品99| 欧美成狂野欧美在线观看| 亚洲男人的天堂狠狠| 国产成人免费无遮挡视频| 国产熟女xx| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜福利一区二区在线看| 国产成人精品无人区| 国产成人一区二区三区免费视频网站| 高潮久久久久久久久久久不卡| a级毛片黄视频| 免费在线观看影片大全网站| 国产精品免费一区二区三区在线| 这个男人来自地球电影免费观看| 欧美日韩亚洲国产一区二区在线观看| 法律面前人人平等表现在哪些方面| 精品第一国产精品| 91精品国产国语对白视频| 好看av亚洲va欧美ⅴa在| 女人被躁到高潮嗷嗷叫费观| 国产免费av片在线观看野外av| av视频免费观看在线观看| www.999成人在线观看| 黄色视频不卡| 免费女性裸体啪啪无遮挡网站| 久久久久国内视频| 99久久国产精品久久久| 性欧美人与动物交配| 搡老乐熟女国产| 看片在线看免费视频| 国产精品国产高清国产av| 亚洲全国av大片| 99re在线观看精品视频| 90打野战视频偷拍视频| 啪啪无遮挡十八禁网站| 美女扒开内裤让男人捅视频| 成人永久免费在线观看视频| av天堂在线播放| 成在线人永久免费视频| 亚洲人成伊人成综合网2020| 啦啦啦在线免费观看视频4| 动漫黄色视频在线观看| 国产一区二区三区综合在线观看| 久久精品91无色码中文字幕| 婷婷丁香在线五月| 久久精品亚洲熟妇少妇任你| 久久国产乱子伦精品免费另类| 成人亚洲精品一区在线观看| 最近最新免费中文字幕在线| 久99久视频精品免费| 女人被狂操c到高潮| 欧美大码av| 国产精品国产高清国产av| 美女大奶头视频| 一二三四社区在线视频社区8| 18禁黄网站禁片午夜丰满| 99久久99久久久精品蜜桃| 嫩草影视91久久| 久久精品国产清高在天天线| 免费观看人在逋| 成人手机av| 成人三级做爰电影| 成人精品一区二区免费| 午夜两性在线视频| 日本欧美视频一区| 国内毛片毛片毛片毛片毛片| 大香蕉久久成人网| 国产高清videossex| 咕卡用的链子| 精品国产超薄肉色丝袜足j| 天天影视国产精品| 99热只有精品国产| 亚洲精品中文字幕一二三四区| 午夜精品在线福利| 国产日韩一区二区三区精品不卡| 欧美不卡视频在线免费观看 | 脱女人内裤的视频| 成人永久免费在线观看视频| 少妇粗大呻吟视频| 国产成人系列免费观看| 男女床上黄色一级片免费看| 久久亚洲真实| 欧美丝袜亚洲另类 | 国产成人精品久久二区二区免费| 亚洲午夜精品一区,二区,三区| ponron亚洲| 国产一区二区三区综合在线观看| 两性夫妻黄色片| 黄色怎么调成土黄色| 亚洲欧美日韩另类电影网站| avwww免费| 成年人免费黄色播放视频| 亚洲精华国产精华精| 亚洲国产精品一区二区三区在线| 久久精品亚洲av国产电影网| 久久久国产成人免费| 久久中文看片网| 中文字幕另类日韩欧美亚洲嫩草| 香蕉国产在线看| 99在线视频只有这里精品首页| 久99久视频精品免费| 最近最新中文字幕大全电影3 | 露出奶头的视频| 99精国产麻豆久久婷婷| 欧美色视频一区免费| 精品国产一区二区久久| 国产单亲对白刺激| 日日爽夜夜爽网站| 国产成人免费无遮挡视频| 欧美人与性动交α欧美软件| 国产乱人伦免费视频| 国产精品98久久久久久宅男小说| 日日夜夜操网爽| 国产精品久久久久成人av| 午夜激情av网站| 老汉色∧v一级毛片| 日韩免费av在线播放| 99热只有精品国产| 久久精品国产清高在天天线| 久久中文看片网| 男女之事视频高清在线观看| 亚洲aⅴ乱码一区二区在线播放 | 中文字幕人妻丝袜制服| 18美女黄网站色大片免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区三区激情视频| 亚洲欧美日韩无卡精品| 美女高潮到喷水免费观看| 精品久久久久久电影网| 日日爽夜夜爽网站| 欧美日韩精品网址| 亚洲精品一区av在线观看| 亚洲熟妇熟女久久| 亚洲五月婷婷丁香| 正在播放国产对白刺激| 一二三四在线观看免费中文在| 亚洲熟妇熟女久久| 国产精品美女特级片免费视频播放器 | 亚洲午夜理论影院| 久久精品亚洲精品国产色婷小说| 亚洲欧美激情在线| 欧美亚洲日本最大视频资源| 日本精品一区二区三区蜜桃| 亚洲性夜色夜夜综合| 日韩人妻精品一区2区三区| av福利片在线| 在线观看免费午夜福利视频| aaaaa片日本免费| av国产精品久久久久影院| 精品久久久精品久久久| 日韩中文字幕欧美一区二区| 亚洲成人国产一区在线观看| 88av欧美| 午夜福利一区二区在线看| 久久精品影院6| 少妇裸体淫交视频免费看高清 | 国产成人一区二区三区免费视频网站| 久久这里只有精品19| 久久久国产一区二区| 色播在线永久视频| 亚洲少妇的诱惑av| 国产又色又爽无遮挡免费看| 夜夜看夜夜爽夜夜摸 | 在线国产一区二区在线| 不卡av一区二区三区| 老司机靠b影院| 亚洲片人在线观看| 欧美日韩亚洲高清精品| 老司机靠b影院| 麻豆成人av在线观看| 国产精品二区激情视频| 午夜精品久久久久久毛片777| 久久午夜综合久久蜜桃| 在线观看66精品国产| 久久精品人人爽人人爽视色| 一级,二级,三级黄色视频| 欧美中文综合在线视频| 夜夜看夜夜爽夜夜摸 | 亚洲精品一二三| 视频区欧美日本亚洲| 天堂中文最新版在线下载| 这个男人来自地球电影免费观看| 国产亚洲欧美98| 国产aⅴ精品一区二区三区波| 国产精品野战在线观看 | 嫩草影视91久久| 婷婷六月久久综合丁香| 午夜免费观看网址| 大陆偷拍与自拍| 黄色视频不卡| 天天添夜夜摸| 一区在线观看完整版| 亚洲avbb在线观看| 在线国产一区二区在线| 一二三四在线观看免费中文在| 每晚都被弄得嗷嗷叫到高潮| 999精品在线视频| 亚洲少妇的诱惑av| 91精品三级在线观看| 久久人妻福利社区极品人妻图片| 最近最新免费中文字幕在线| www国产在线视频色| 天堂影院成人在线观看| 在线十欧美十亚洲十日本专区| 97人妻天天添夜夜摸| 午夜影院日韩av| 高清黄色对白视频在线免费看| 国产精华一区二区三区| 搡老乐熟女国产| 亚洲一区二区三区不卡视频| 国产高清视频在线播放一区| 久久久久久久午夜电影 | 国产精品免费一区二区三区在线| 一个人观看的视频www高清免费观看 | 人妻丰满熟妇av一区二区三区| 脱女人内裤的视频| 亚洲专区字幕在线| 亚洲精品在线美女| 婷婷精品国产亚洲av在线| 视频区欧美日本亚洲| av福利片在线| 久久伊人香网站| 国产伦一二天堂av在线观看| 99久久久亚洲精品蜜臀av| 男女床上黄色一级片免费看| 一级片免费观看大全| 精品久久久久久电影网| av国产精品久久久久影院| 国产精品亚洲一级av第二区| 亚洲片人在线观看| 青草久久国产| 国产精品 欧美亚洲| 国产成人啪精品午夜网站| 欧美人与性动交α欧美软件| 日韩免费av在线播放| 视频区欧美日本亚洲| 日韩欧美在线二视频| www日本在线高清视频| 色在线成人网| 一夜夜www| 亚洲欧美精品综合久久99| 亚洲熟女毛片儿| 80岁老熟妇乱子伦牲交| 青草久久国产| 午夜成年电影在线免费观看| 丝袜在线中文字幕| 久久精品国产亚洲av香蕉五月| 男女之事视频高清在线观看| 久久午夜亚洲精品久久| 国产精品乱码一区二三区的特点 | 国产欧美日韩一区二区三| 亚洲av成人av| 18禁美女被吸乳视频| 大香蕉久久成人网| 欧美中文日本在线观看视频| 黑人猛操日本美女一级片| 热99国产精品久久久久久7| 激情视频va一区二区三区| 一a级毛片在线观看| 国产三级黄色录像| 99riav亚洲国产免费| e午夜精品久久久久久久| 国产精品电影一区二区三区| 国产精品1区2区在线观看.| 欧美激情久久久久久爽电影 | 午夜精品在线福利| 夫妻午夜视频| 免费在线观看视频国产中文字幕亚洲| 999久久久国产精品视频| av欧美777| 国产精品自产拍在线观看55亚洲| 校园春色视频在线观看| 亚洲精品av麻豆狂野| 妹子高潮喷水视频| 免费在线观看完整版高清| 麻豆国产av国片精品| 一级毛片女人18水好多| 一级a爱视频在线免费观看| 国产成人系列免费观看| 久久精品影院6| 久久九九热精品免费| 亚洲国产中文字幕在线视频| 超碰成人久久| 国产又爽黄色视频| 国产亚洲精品综合一区在线观看 | 日韩欧美一区二区三区在线观看| 国产午夜精品久久久久久| 99riav亚洲国产免费| 国产亚洲欧美98| 免费一级毛片在线播放高清视频 | 国产一区二区三区综合在线观看| 免费人成视频x8x8入口观看| www.精华液| 法律面前人人平等表现在哪些方面| 热re99久久国产66热| 午夜免费成人在线视频| 国产一区二区在线av高清观看| 欧美日韩视频精品一区| 搡老乐熟女国产| 欧美精品啪啪一区二区三区| 午夜视频精品福利| 亚洲伊人色综图| 国产三级黄色录像| 两性夫妻黄色片| 免费在线观看日本一区| 亚洲一区二区三区不卡视频| av天堂在线播放| 国产亚洲欧美在线一区二区| 亚洲一区二区三区欧美精品| 午夜久久久在线观看| www日本在线高清视频| 新久久久久国产一级毛片| 久久久久久大精品| 别揉我奶头~嗯~啊~动态视频| 美女扒开内裤让男人捅视频| 在线观看舔阴道视频| 99热只有精品国产| 交换朋友夫妻互换小说| 精品日产1卡2卡| 搡老熟女国产l中国老女人| 亚洲精品国产区一区二| 大型黄色视频在线免费观看| 国产三级黄色录像| 成年女人毛片免费观看观看9| 咕卡用的链子| 一a级毛片在线观看| 亚洲熟妇熟女久久| 男人的好看免费观看在线视频 | 欧美精品啪啪一区二区三区| 老司机靠b影院| av网站免费在线观看视频| 国产aⅴ精品一区二区三区波| 色在线成人网| 满18在线观看网站| 多毛熟女@视频| 女同久久另类99精品国产91| 久久99一区二区三区| 级片在线观看| 亚洲熟女毛片儿| 欧美在线黄色| 麻豆国产av国片精品| 丁香六月欧美| 日韩精品青青久久久久久| 99国产综合亚洲精品| tocl精华| 真人做人爱边吃奶动态| 国产99白浆流出| 久久人妻福利社区极品人妻图片| 久久久久久亚洲精品国产蜜桃av| 久久精品亚洲熟妇少妇任你| 男女做爰动态图高潮gif福利片 | 少妇的丰满在线观看| 岛国在线观看网站| av视频免费观看在线观看| av福利片在线| 9191精品国产免费久久| 国产精品综合久久久久久久免费 | 国产极品粉嫩免费观看在线| 窝窝影院91人妻| 成人三级黄色视频| 亚洲一区二区三区欧美精品| 好看av亚洲va欧美ⅴa在| 长腿黑丝高跟| 久久久精品国产亚洲av高清涩受| 侵犯人妻中文字幕一二三四区| 在线观看午夜福利视频| 性少妇av在线| 精品国产亚洲在线| 黄频高清免费视频| 91老司机精品| 国产三级在线视频| 久久精品成人免费网站| 一级毛片高清免费大全| 久热这里只有精品99| 18美女黄网站色大片免费观看| 国产精品98久久久久久宅男小说| 欧美日韩中文字幕国产精品一区二区三区 | 黑人巨大精品欧美一区二区蜜桃| 在线看a的网站| 高潮久久久久久久久久久不卡| 国产又爽黄色视频| 午夜精品在线福利| 99久久久亚洲精品蜜臀av| 老鸭窝网址在线观看| 亚洲专区国产一区二区| 中文字幕另类日韩欧美亚洲嫩草| 黑人欧美特级aaaaaa片| 精品久久久久久久毛片微露脸| 在线观看舔阴道视频| 超色免费av| 久久久久久免费高清国产稀缺| 少妇的丰满在线观看| 黄网站色视频无遮挡免费观看| 中文字幕人妻丝袜制服| 亚洲自偷自拍图片 自拍| 91av网站免费观看| 国产成人欧美| 中文字幕人妻熟女乱码| 日韩欧美国产一区二区入口| 国产人伦9x9x在线观看| 99精品欧美一区二区三区四区| 美女扒开内裤让男人捅视频| 十八禁网站免费在线| 日日摸夜夜添夜夜添小说| 国产欧美日韩精品亚洲av| 不卡av一区二区三区| 亚洲黑人精品在线| 老司机在亚洲福利影院| 日本一区二区免费在线视频| 99国产极品粉嫩在线观看| 精品久久久久久电影网| 免费在线观看完整版高清| 搡老乐熟女国产| 另类亚洲欧美激情| 国产伦一二天堂av在线观看| 99国产综合亚洲精品| 久久热在线av| 成人亚洲精品一区在线观看| 精品国产国语对白av| 美女高潮到喷水免费观看| 又紧又爽又黄一区二区| 99riav亚洲国产免费| 热99国产精品久久久久久7| 国产欧美日韩一区二区精品| ponron亚洲| 欧美中文综合在线视频| 免费av毛片视频| 国产高清videossex| 亚洲国产精品sss在线观看 | 久99久视频精品免费| 欧美精品亚洲一区二区| 国产精品二区激情视频| 午夜福利免费观看在线| 国产欧美日韩精品亚洲av| svipshipincom国产片| 国产亚洲精品第一综合不卡| 制服诱惑二区| 窝窝影院91人妻| 亚洲男人天堂网一区| av国产精品久久久久影院| 亚洲成人国产一区在线观看| 波多野结衣一区麻豆| 国产亚洲av高清不卡| 国产成人精品无人区| 亚洲午夜理论影院| videosex国产| 免费在线观看亚洲国产| 成年版毛片免费区| 国产一区二区激情短视频| √禁漫天堂资源中文www| 搡老岳熟女国产| 黄色片一级片一级黄色片| 成人特级黄色片久久久久久久| 欧美激情高清一区二区三区| 亚洲色图综合在线观看|