• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diabetes Type 2:Poincaré Data Preprocessing for Quantum Machine Learning

    2021-12-16 07:50:18DanielSierraSosaJuanArcilaMorenoBegonyaGarciaZapirainandAdelElmaghraby
    Computers Materials&Continua 2021年5期

    Daniel Sierra-Sosa,Juan D.Arcila-Moreno,Begonya Garcia-Zapirain and Adel Elmaghraby

    1Department of Computer Science and Engineering,University of Louisville,Louisville,KY,USA

    2Apolo Scientific Computing Center,Universidad EAFIT,Medellín,Colombia

    3eVida Research Group,University of Deusto,Bilbao,Spain

    Abstract:Quantum Machine Learning(QML)techniques have been recently attracting massive interest.However reported applications usually employ synthetic or well-known datasets.One of these techniques based on using a hybrid approach combining quantum and classic devices is the Variational Quantum Classifier(VQC),which development seems promising.Albeit being largely studied,VQC implementations for“real-world”datasets are still challenging on Noisy Intermediate Scale Quantum devices(NISQ).In this paper we propose a preprocessing pipeline based on Stokes parameters for data mapping.This pipeline enhances the prediction rates when applying VQC techniques,improving the feasibility of solving classification problems using NISQ devices.By including feature selection techniques and geometrical transformations,enhanced quantum state preparation is achieved.Also,a representation based on the Stokes parameters in the Poincaré Sphere is possible for visualizingthe data.Our results show that by using the proposed techniques we improve the classification score for the incidence of acute comorbid diseases in Type 2 Diabetes Mellitus patients.We used the implemented version of VQC available on IBM’s framework Qiskit,and obtained with two and three qubits an accuracy of 70%and 72%respectively.

    Keywords:Quantum machine learning;data preprocessing;stokes parameters;Poincaré sphere

    1 Introduction

    Several efforts have been made in recent time to advance quantum software capable of exploiting the power of the available Noisy Intermediate Scale Quantum (NISQ) devices.These devices are being developed on a variety of hardware platforms and technologies with a number of qubits ranging from fifty to a few hundred [1].Despite the limitations in the number of qubits and their susceptibility to noise,these devices are leading to the development of more powerful quantum technologies for the future [2].Each successful application is an important step in the development of Quantum Computing.One of these applications lies in the advance of Machine Learning (ML) techniques,a technology that is widely used in a multitude of real-world applications [3]motivated by the advances achieved in different knowledge fields and the derivative commercial applications.

    Quantum Machine Learning (QML) is one of the most encouraging applications,being actively studied by several research groups [4].In general,looking forward to developing new techniques able to exploit Quantum Computing advantages to improve machine learning [5].Supervised learning is a specific QML task recently emerging with massive interest from academy and industry.There are several contributions in this field,including approaches with quantum inspired neural networks and their applications [6-8],hybridized low-depth Variational Quantum Circuits (VQC) [9],optimization algorithms [10]with simple error-mitigation [11],preprocessing techniques like PCA showing exponential improvements [12],and experiments for classification [13,14].Also,multiple implementations of linear regression [15,16]in Quantum Computers have been propose.

    Several approaches to encode classical data into quantum states have been presented.These describe advantages including the experimental overhead reduction in terms of resources and the introduction of non-linearities in the data [14,17],enabling the use of linear classifiers and kernel-based methods [18,19]on near-term quantum processors,with an exponential speed-up when compared to classical algorithms [20].In references [21,22]independent authors described the advantages from the usage of quantum algorithms in machine learning methods,being one example the polynomial reduction from query complexity in nearest-neighbor classification when compared to classical algorithms [23].

    Multiple examples from the usage of quantum computing techniques in machine learning applications for well-known datasets have been presented.Datasets such as MNIST,Wine,Cancer and Iris are of common use to test these approaches [13,18,24,25].Nonetheless,real-world applications are scarce,a handful of applications including a Reactor Coolant Pump (RCP) state classification at a Nuclear Power Plan [26],Wine recognition [8],Dementia prediction [27]and the partial dynamics of a complex 10-spin system [28]have been explored.There is a need for explore real applications using quantum machine learning,that motivate further research in this area,using quantum properties in real-world applications.It should be noted that quantum machine learning algorithms may not yield to an advantage when compared with their classical counterparts,but understanding their scope and limitations is critical in the development of current quantum technologies.

    In this paper we present a real case study of Type 2 Diabetes Mellitus (T2DM),this disease is the fourth cause of mortality,with rising prevalence this disease is a major public health problem [29].There are 415 million people with diagnosed diabetes and it is estimated that around 193 million people suffer the disease without diagnosis,in both cases it could lead to micro and macrovascular complications,causing major distress to both patients and caregivers [30].We introduce a preprocessing technique to map the data into quantum states to perform quantum classification.In particular,this technique is based on a data representation using the Stokes parameters,enhancing data encoding techniques proposed by [3],improving on average a 20%the classification score of a Quantum Variational Classifier implemented using IBM’s framework Qiskit [31].We conducted three different experiments using VQC over the same data features and parameters.In the first experiment,we normalized the data with zero standard deviation,in the second we add to this normalization an Ellipsoidal coordinate transform and finally in the third we found the Stokes parameters from data.

    This paper is organized as follows:First,we present the proposed pipeline to pre-process data describing each of the stages developed:Feature Scaling and selection,ellipsoidal coordinate mapping and Stokes parameters data representation,then we describe the employed quantum classifier and the experiments performed to classify acute comorbidities incidence in Type 2 Diabetes Mellitus (T2DM) patients.Finally,we present the obtained results and a discussion about these results and conclusions.

    2 Materials and Methods

    The current limitations of NISQ devices impose restrictions on Quantum Machine Learning techniques [1].Currently,many proposed QML applications rely on using well-known datasets,where the preprocessing techniques are now standard [13,18,24].When using real-world datasets these techniques are not always suitable to adequate the data to be processed by Quantum Classification models.We proposed a data preprocessing pipeline presented in Fig.1,to transform datasets before applying current kernel techniques for VQC algorithms.Each of the components of this pipeline are described.

    Figure 1:Proposed preprocessing pipeline

    2.1 Feature Scaling

    This step ensures same scaling for the numerical inputs in the model,enhancing the accuracy and speed of optimization methods during training.In general,this is a required step in the data preprocessing pipeline for most of the classical Machine Learning techniques [32].For QML implementations,this is a fundamental step due to data constraints when representing it as quantum states.These restrictions result from quantum mechanics properties,in this sense,we standardized the data to zero mean deviation and unit variance.Then,each feature vector was scaled to a range of [?1,+1].

    2.2 Feature Selection

    Feature selection techniques are based on the idea of identifying and removing less relevant or redundant features,providing faster and more cost-effective predictors [33].These techniques are relevant when processing medical datasets where features could induce noise in the models,making the classification process more difficult during training.Algorithms like Principal Component Analysis (PCA) have proven to be proficient to perform data preparation,even in QML applications and processing [12,34].However,using this kind of algorithms make data interpretation unfeasible,therefore,avoiding artificial transformations enables feature interpretation before using them for the model.

    In this sense,we based our methodology in variable ranking,calculating the mean value from the scores obtained using the feature importance of four different classical classification methods.Our main goal was to find a subset of features from our dataset that give us the best performance in classification,using the minimum number of features considering the encoding transformation to define quantum states,and the current quantum devices limitations in terms of quantum volume.Therefore,we selected the top three features of the calculated score,this dimensionality constrained is imposed by the ellipsoidal coordinate mapping.Our chosen classification methods were Gradient Boosting [35],Random forest,K-Best and Extra Trees that minimizes overfitting the data.

    2.3 Ellipsoidal Coordinate Mapping

    The selected features were transformed into a coordinate space where it can be easily represented using the Poincaré sphere.We use an iterative method based on [36]to transform those features from a Cartesian coordinate space(x,y,z)to an ellipsoidal coordinate space(φ,λ,h),following Eqs.(1)-(3).

    whereN(i)is defined as:

    The constantpis:

    andeis based on the semi-major axisa,the semi-minor axisb.

    We executed the method specifying a dispersion error of 10?5for each data point.

    2.4 Stokes Parameters:Poincaré Sphere Representation

    A convenient geometrical representation of the Quantum States is obtained when using the Bloch Sphere,also known as Poincaré Sphere,it has been used to describe polarization states by using the Stokes parameters.By defining the data in terms of ellipsoids,these definitions are mathematically analogous to Stokes parameters to describe polarization,however,they have no physical relation with them.The ellipses parameters are represented by:

    whereφis the azimuth angle between the semi-major axis of the ellipse and the x-axis,andψis the elliptic angle,defined by the inverse tangent of the relation between the length of the semi-axes of the ellipse (Fig.2a).A simple geometric representation of these parameters is obtained when defining a spherical surface of unit radius:

    Figure 2:In (a) semi-axes of the ellipse,in (b) Stokes parameters represented over Poincaré sphere

    Fig.2b depicts these coordinates representation in the Poincaré sphere.In this,the variablesS′1,S′2andS′3can be considered as the Cartesian coordinates of the pointSon the surface of the unitary radius sphere,being 2ψand 2φthe angular coordinates of this point.

    2.5 Variational Quantum Classifier

    The Variational Quantum Classifier (VQC) is a quantum method for supervised learning that allows performing classification problems in current NISQ devices.Based on a method proposed by Havlíek et al.[3]this algorithm allows to obtain experimental results in NISQ devices without the need to perform additional error-correction techniques.The calculation of the cost function based on the iterative measurements from the device serve as error mitigation,by including noisy measurements into optimization calculations.Also,it has been showed that mapping features to quantum states using amplitude encoding,is a suitable option to preprocess data when using VQC,provided that data is low dimensional or its structure allows for efficient approximate preparation [14,18,37].This method is a hybrid approach where the parameters are optimized and updated in a classical computer,making the optimization process without increasing the coherence times needed [3,28].

    One of the key components from this method is the feature map definition,which maps data into a potentially vastly higher-dimensional Hilbert space of a quantum system [14]allowing to perform efficient computations over non-linear basic functions on a possibly intractably large space,the feature space.A similar implementation known as kernel-trick has been explored using classical machine learning [38].Nonetheless,using classical devices to perform these operations could take exponential resources,therefore quantum computing allows for creating more complex models that could predict with higher precision [28].

    Figure 3:Schematic view of VQC algorithm [27]

    3 Case Study:Incidence of Acute Diseases in Diabetic Patient

    Diabetes Type 2 is a rising public health problem [29].The patients with Diabetes Type 2 represent over 90% of the total of patients with any type of diabetes and is the seventh cause of death worldwide [29,39].This disease leads to a number of micro and macrovascular events [40],which represent short and long-term complications such as cardiovascular disease,nephropathy,retinopathy,peripheral neural disease,limb amputation,erectile dysfunction,depression,among others.Given its close relation with lifestyle and obesity,the numbers of people suffering from this condition and its complications keep increasing [30].The steady increment in the number of people suffering from Type 2 Diabetes Mellitus results in a huge burden on the health-care system increasing the healthcare costs [30,41,42].Provided the wide range of complications and disabilities that come along,this disease has a major impact on the patients’life and on healthcare system supporting them.

    Several T2DM related complications have been studied through different classical Machine learning,Deep Learning and Data Mining techniques [43,44].The risk factor identification associated with these complications is of great value to the clinical management of individuals with diabetes.Due to the high level of disability and incremental costs of the disease,it is necessary to investigate the causes involved in the genesis of complications.In order to address them in the future and apply the medical knowledge not only from a healing perspective but also on a preventive one,saving suffering to the patient and money to the health care system.

    A dataset containing clinical information from patients diagnosed with Type 2 Diabetes Mellitus has been used.For each subject a successive 12-month time period was defined,during this period,a patient is considered diagnosed with T2DM if the disease onset date was prior to the established cut-off point.By following these criteria,the total study population was 149,015 filtered from a larger database containing Electronic Health Records (EHR) from Osakidetza(Basque Health Service) in Bilbao,Spain.This dataset includes clinical variables such as LDLCholesterol,Body Mass Index and glycated hemoglobin (A1C).Also,demographic variables including age,gender and socioeconomic status position were considered.

    The study protocol was approved by the Clinical Research Ethics Committee of Euskadi(PI2014074),Spain.Informed consent was not obtained because patient health records were made anonymous and de-identified prior to analysis.

    4 Results

    In particular,our concern is the prediction acute conditions,we studied the incidence of acute myocardial infarction,major amputation or avoidable hospitalizations.Following the methodology discussed in Section 2.2 for feature selection we used gender,cholesterol LDL and Johns Hopkins’ Aggregated Diagnosis Groups (ADG).These features were contained in the higher scores when gradient boosting,random forest,k-best and tree-based techniques were applied as feature selectors.

    Figure 4:Poincaré geometrical data representation

    Table 1:VQC results for acute disease prediction in Diabetes patients

    Furthermore,the included features are relevant for the diabetes patients care,there is a strong correlation between diabetes and cholesterol [45],ADG has been used in the past to assess diabetic patients’mortality [46],and we included gender as one of the selected features because it provides a differential characteristic,meaning that could enhance separability due to non-direct correlation with the output.This could be explained by the difference in hormones,fatty tissue distribution or simply differences in the lifestyles.

    Then we randomly selected a balanced set of 250 samples for the data.These were split into two subsets,200 for train and 50 for testing.After preprocessing the data,it is possible to represent the data points using the Poincare Sphere as depicted in Fig.4,where the red dots represent patients with acute conditions and blue dots without.Albeit this step is not needed to process the information,it provides a good visual representation of the data distribution.

    Figure 5:T2DM acute disease classification metrics for the conducted experiments

    Data classification was performed by using the implemented version of VQC in IBM’s framework Qiskit version 0.11.1 and executed in the provided simulator Aer version 0.2.3 [31].Every combination of the experiments was executed with 1024 shots,using the implemented version of the COBYLA optimizer [47]through the same framework.We conducted tests with two and three qubits,in each case we compared the accuracy,precision,recall and F1-Score when applying data normalization between?1 and 1 with zero standard deviation,adding to this normalization the ellipsoidal coordinate transform,and finally adding the Stokes parameter representation,the results from these experiments are summarized in Tab.1.

    To show the advantage of using the proposed pipeline and its elements we performed three experiments using VQC over the T2DM dataset.In the first experiment we normalized the data using zero standard deviation before passing to the model.In addition to the normalization,in the second experiment we also transformed the data to Ellipsoidal coordinates.Finally,in the third experiment we calculated the Stokes parameters additional to all the previous steps,giving the possibility to visualize the data points using a Poincaré sphere.By including all the data preprocessing elements,we obtained a pipeline that enhance data preparation for VQC application.The results of these experiments are presented in Fig.5,using accuracy,precision,recall and F1-score as metrics to evaluate the model’s performance.In these figures it can be seen that using the proposed pipeline to transform data,induce significant improvements in the classification performance in particular in the 2 qubits case.Moreover,by using the proposed technique,the model results when employing 2 qubits resemble those obtained when 3 qubits were used,enhancing the classification results even if fewer resources are available.

    5 Conclusions

    Research on Quantum Machine Learning applications is advancing the uses of current state quantum computers,given the wide range of applications and the industry interest in machine learning techniques to solve practical problems.We consider that this work contributes in the usage of new techniques for the exploitation of NISQ devices in “real-world” applications of QML.

    A milestone to pursue is to achieve quantum advantages for commercial applications.Machine learning is an area of computer science where statistics,data processing and analytics converge,given the relevance of data across the different fields and the breadth of applications.In particular,Quantum Machine Learning is being actively investigated by several research groups,as the exploit of quantum computing advantages could improve and expand the range of real-world machine learning applications.

    In this paper we propose a pipeline to transform and preprocess data,making it feasible to be classified using Quantum Machine Learning techniques.By using this pipeline,we enhanced the quantum state preparation for VQC algorithm.Our results showed that by using the proposed techniques we obtained similar results when classifying the incidence of acute diseases in diabetes patients using a Variational Quantum Classifier with two and three qubits,with 70% and 72%accuracy respectively.We are currently studying and developing unsupervised and supervised machine learning techniques suitable for NISQ devices,given the current limitations on coherence times and qubits available on current devices.In particular,conducting further research on the application of the proposed pre-processing pipeline to improve the data suitability for different QML techniques such as Quantum Support Vector Machine.We are also evaluating the execution advantages of applying the proposed technique in different environments.

    Acknowledgement:This work was supported by Osakidetza that provided the database.The study protocol was approved by the Clinical Research Ethics Committee of Euskadi (PI2014074),Spain.Informed consent was not obtained because patient health records were made anonymous and de-identified prior to analysis.

    Funding Statement:This project was partially funded by eVIDA Research group IT-905-16 from Basque Government.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产精品免费一区二区三区在线 | 大型av网站在线播放| 国产精品综合久久久久久久免费 | 夜夜躁狠狠躁天天躁| 精品少妇久久久久久888优播| 中文字幕人妻丝袜制服| 女同久久另类99精品国产91| 成人国语在线视频| 国产精华一区二区三区| 国产欧美亚洲国产| 水蜜桃什么品种好| 中文字幕精品免费在线观看视频| 99精品在免费线老司机午夜| 国产亚洲精品久久久久5区| 午夜福利免费观看在线| 超碰97精品在线观看| 亚洲综合色网址| 99热国产这里只有精品6| 国产免费现黄频在线看| 国产精品免费一区二区三区在线 | 婷婷成人精品国产| 9热在线视频观看99| www.精华液| 欧美日韩成人在线一区二区| 亚洲国产精品一区二区三区在线| 免费观看人在逋| 久久精品人人爽人人爽视色| 国产精品久久久人人做人人爽| 99久久人妻综合| 看免费av毛片| 在线国产一区二区在线| 男人操女人黄网站| 99香蕉大伊视频| 国产精品免费一区二区三区在线 | 亚洲一区二区三区不卡视频| 免费女性裸体啪啪无遮挡网站| 亚洲中文av在线| 日韩欧美国产一区二区入口| 69精品国产乱码久久久| 成人免费观看视频高清| 国产一区二区激情短视频| 亚洲午夜精品一区,二区,三区| 成人影院久久| 大陆偷拍与自拍| 悠悠久久av| 国产精品久久久久成人av| 极品人妻少妇av视频| 大型av网站在线播放| 午夜精品国产一区二区电影| 淫妇啪啪啪对白视频| 亚洲欧洲精品一区二区精品久久久| 俄罗斯特黄特色一大片| 搡老岳熟女国产| 欧美日韩国产mv在线观看视频| 久久人妻av系列| 在线观看免费午夜福利视频| 丝袜人妻中文字幕| 国产一区在线观看成人免费| xxxhd国产人妻xxx| 麻豆国产av国片精品| 人妻 亚洲 视频| 动漫黄色视频在线观看| 日日摸夜夜添夜夜添小说| 性色av乱码一区二区三区2| 亚洲国产精品合色在线| 激情在线观看视频在线高清 | 午夜激情av网站| 又黄又粗又硬又大视频| 99久久精品国产亚洲精品| 伦理电影免费视频| 99riav亚洲国产免费| a在线观看视频网站| 一区二区三区精品91| 69精品国产乱码久久久| 香蕉丝袜av| 女人高潮潮喷娇喘18禁视频| 精品卡一卡二卡四卡免费| 精品无人区乱码1区二区| 欧美亚洲 丝袜 人妻 在线| 精品国产美女av久久久久小说| 水蜜桃什么品种好| 国产激情久久老熟女| 香蕉丝袜av| 超碰97精品在线观看| 老熟妇乱子伦视频在线观看| 国产免费男女视频| 极品教师在线免费播放| 99国产精品一区二区蜜桃av | 久久中文字幕人妻熟女| 免费人成视频x8x8入口观看| 国产免费现黄频在线看| 日韩大码丰满熟妇| 99久久精品国产亚洲精品| 国产单亲对白刺激| 99久久精品国产亚洲精品| 久久久久久亚洲精品国产蜜桃av| 激情视频va一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 亚洲午夜理论影院| 成人18禁在线播放| 欧美中文综合在线视频| 国产精品一区二区免费欧美| 91九色精品人成在线观看| 欧美不卡视频在线免费观看 | 18禁国产床啪视频网站| 成人免费观看视频高清| 亚洲色图 男人天堂 中文字幕| 18禁美女被吸乳视频| 日本a在线网址| 久久久久久亚洲精品国产蜜桃av| 成人影院久久| 成年女人毛片免费观看观看9 | 亚洲国产欧美日韩在线播放| 精品一区二区三卡| 亚洲av日韩在线播放| 熟女少妇亚洲综合色aaa.| 国产亚洲av高清不卡| 久久久国产欧美日韩av| 久久精品人人爽人人爽视色| 在线天堂中文资源库| 久久精品人人爽人人爽视色| 欧美亚洲 丝袜 人妻 在线| 欧美最黄视频在线播放免费 | videosex国产| 99香蕉大伊视频| 两个人看的免费小视频| 国产精品 欧美亚洲| 成人av一区二区三区在线看| 老司机亚洲免费影院| 美女午夜性视频免费| 交换朋友夫妻互换小说| 欧美色视频一区免费| 成人18禁高潮啪啪吃奶动态图| 丰满的人妻完整版| 在线观看免费午夜福利视频| 久久国产亚洲av麻豆专区| 啦啦啦在线免费观看视频4| 国产精品综合久久久久久久免费 | av不卡在线播放| 麻豆成人av在线观看| 一进一出好大好爽视频| 日韩有码中文字幕| 一级片'在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 母亲3免费完整高清在线观看| 可以免费在线观看a视频的电影网站| 搡老熟女国产l中国老女人| 水蜜桃什么品种好| 一二三四社区在线视频社区8| 一级片'在线观看视频| 精品一区二区三区视频在线观看免费 | 老司机福利观看| 欧洲精品卡2卡3卡4卡5卡区| 婷婷成人精品国产| 久久亚洲真实| 中文字幕精品免费在线观看视频| 国产精品免费视频内射| 欧美黄色片欧美黄色片| 波多野结衣一区麻豆| 男男h啪啪无遮挡| 亚洲五月色婷婷综合| 黄色女人牲交| av在线播放免费不卡| 亚洲一区二区三区欧美精品| 欧美久久黑人一区二区| 老汉色∧v一级毛片| 久久久久久久午夜电影 | 黄片大片在线免费观看| 日日摸夜夜添夜夜添小说| 91麻豆精品激情在线观看国产 | 少妇的丰满在线观看| 亚洲色图av天堂| 精品视频人人做人人爽| 在线观看免费午夜福利视频| 精品久久蜜臀av无| 咕卡用的链子| 亚洲成av片中文字幕在线观看| tocl精华| 下体分泌物呈黄色| 亚洲av美国av| 久久人妻熟女aⅴ| 国产日韩一区二区三区精品不卡| 成人特级黄色片久久久久久久| 日韩 欧美 亚洲 中文字幕| 视频区图区小说| 日韩免费高清中文字幕av| 天天躁狠狠躁夜夜躁狠狠躁| 满18在线观看网站| 精品无人区乱码1区二区| 精品少妇一区二区三区视频日本电影| 国产精品1区2区在线观看. | 一区二区三区国产精品乱码| 成年动漫av网址| 国产欧美日韩综合在线一区二区| 少妇猛男粗大的猛烈进出视频| 黑人巨大精品欧美一区二区mp4| 国产一区二区三区综合在线观看| 午夜福利欧美成人| 一二三四社区在线视频社区8| 欧美黄色淫秽网站| 国产99白浆流出| 亚洲av日韩精品久久久久久密| www.精华液| 好看av亚洲va欧美ⅴa在| 亚洲精品一二三| 国产亚洲欧美98| 中文字幕精品免费在线观看视频| 欧美日韩黄片免| 露出奶头的视频| 欧美另类亚洲清纯唯美| 免费在线观看视频国产中文字幕亚洲| 国产精品.久久久| 一级毛片精品| 精品电影一区二区在线| 一区二区三区精品91| 久久久久视频综合| 人人妻,人人澡人人爽秒播| 久久精品国产清高在天天线| 午夜福利在线观看吧| 在线十欧美十亚洲十日本专区| 国产在线一区二区三区精| 日本一区二区免费在线视频| 久久精品亚洲精品国产色婷小说| 亚洲,欧美精品.| 欧洲精品卡2卡3卡4卡5卡区| 香蕉久久夜色| 18禁观看日本| 久久午夜亚洲精品久久| 精品少妇一区二区三区视频日本电影| 麻豆乱淫一区二区| 国产av精品麻豆| 熟女少妇亚洲综合色aaa.| 啦啦啦视频在线资源免费观看| 999精品在线视频| 一级a爱片免费观看的视频| 国产欧美日韩一区二区精品| 亚洲成人免费电影在线观看| 波多野结衣av一区二区av| 午夜老司机福利片| 欧美久久黑人一区二区| 亚洲自偷自拍图片 自拍| 亚洲欧美激情在线| 国产亚洲欧美在线一区二区| 中文字幕最新亚洲高清| 激情在线观看视频在线高清 | 女人被狂操c到高潮| 日韩免费av在线播放| 亚洲精品美女久久av网站| 久久国产亚洲av麻豆专区| 啦啦啦 在线观看视频| 一边摸一边抽搐一进一小说 | 中文字幕人妻丝袜制服| 极品人妻少妇av视频| 一进一出抽搐gif免费好疼 | 午夜精品久久久久久毛片777| 老熟妇仑乱视频hdxx| 中文字幕人妻熟女乱码| 9191精品国产免费久久| 丝袜美腿诱惑在线| 亚洲成a人片在线一区二区| av视频免费观看在线观看| 久久人妻熟女aⅴ| 99国产精品一区二区三区| 最新的欧美精品一区二区| 色播在线永久视频| 亚洲欧美日韩另类电影网站| 欧美黄色片欧美黄色片| 免费观看精品视频网站| 午夜影院日韩av| 久久久久国产一级毛片高清牌| 国产真人三级小视频在线观看| 久久久久国内视频| 纯流量卡能插随身wifi吗| 黑人巨大精品欧美一区二区mp4| 天堂动漫精品| 一区二区三区国产精品乱码| 老汉色∧v一级毛片| 一二三四社区在线视频社区8| 精品国产乱子伦一区二区三区| 亚洲欧美精品综合一区二区三区| 一二三四社区在线视频社区8| 国产亚洲欧美98| 12—13女人毛片做爰片一| 国产野战对白在线观看| 91字幕亚洲| 叶爱在线成人免费视频播放| 一级,二级,三级黄色视频| 日韩欧美在线二视频 | av视频免费观看在线观看| 午夜老司机福利片| 在线观看免费视频日本深夜| 性色av乱码一区二区三区2| 777米奇影视久久| 国产淫语在线视频| 国产欧美日韩综合在线一区二区| 美女国产高潮福利片在线看| 亚洲全国av大片| 色精品久久人妻99蜜桃| 色播在线永久视频| 亚洲专区中文字幕在线| 在线观看日韩欧美| 无限看片的www在线观看| 亚洲欧美一区二区三区黑人| 伦理电影免费视频| 99riav亚洲国产免费| 免费久久久久久久精品成人欧美视频| 在线观看66精品国产| 一级,二级,三级黄色视频| 国产日韩一区二区三区精品不卡| 日韩欧美一区视频在线观看| 成人免费观看视频高清| 国产在线精品亚洲第一网站| 欧美日本中文国产一区发布| 黄色片一级片一级黄色片| 亚洲少妇的诱惑av| 色婷婷av一区二区三区视频| 亚洲成人手机| 天天影视国产精品| 亚洲精品久久成人aⅴ小说| 久久精品人人爽人人爽视色| 日韩有码中文字幕| 成人亚洲精品一区在线观看| 成年女人毛片免费观看观看9 | 91字幕亚洲| 如日韩欧美国产精品一区二区三区| 精品人妻熟女毛片av久久网站| 香蕉丝袜av| 欧美最黄视频在线播放免费 | 午夜91福利影院| 亚洲久久久国产精品| 两个人看的免费小视频| 欧美 日韩 精品 国产| 午夜福利在线观看吧| 午夜免费鲁丝| 在线永久观看黄色视频| 亚洲第一欧美日韩一区二区三区| 欧美激情久久久久久爽电影 | 热99久久久久精品小说推荐| 视频在线观看一区二区三区| 丁香六月欧美| 国产又色又爽无遮挡免费看| 亚洲熟妇中文字幕五十中出 | 首页视频小说图片口味搜索| 亚洲国产精品合色在线| 女人高潮潮喷娇喘18禁视频| 精品久久久久久久久久免费视频 | 欧美午夜高清在线| 高清黄色对白视频在线免费看| 国产aⅴ精品一区二区三区波| 欧美日韩中文字幕国产精品一区二区三区 | 美女 人体艺术 gogo| 国产在视频线精品| 美女午夜性视频免费| 香蕉国产在线看| 欧美日韩亚洲高清精品| 日本欧美视频一区| 男女下面插进去视频免费观看| 高潮久久久久久久久久久不卡| 欧美午夜高清在线| 欧美色视频一区免费| 色老头精品视频在线观看| 免费少妇av软件| 日韩三级视频一区二区三区| 欧美成人免费av一区二区三区 | 91麻豆精品激情在线观看国产 | 9热在线视频观看99| 国产深夜福利视频在线观看| 超色免费av| 12—13女人毛片做爰片一| 久久狼人影院| 欧美精品一区二区免费开放| 丝袜美足系列| 丰满饥渴人妻一区二区三| 一区在线观看完整版| 不卡一级毛片| 亚洲av美国av| 一级毛片高清免费大全| 成年动漫av网址| 日本撒尿小便嘘嘘汇集6| 日本精品一区二区三区蜜桃| 久9热在线精品视频| 久久久久久人人人人人| 五月开心婷婷网| 精品第一国产精品| 韩国精品一区二区三区| 免费女性裸体啪啪无遮挡网站| 国产乱人伦免费视频| 欧美+亚洲+日韩+国产| 自拍欧美九色日韩亚洲蝌蚪91| 一级a爱视频在线免费观看| 久久性视频一级片| 黄色毛片三级朝国网站| 国产欧美日韩一区二区三| 国产亚洲精品一区二区www | 亚洲成a人片在线一区二区| 一级毛片高清免费大全| 精品乱码久久久久久99久播| 久久天躁狠狠躁夜夜2o2o| 久久久久国产精品人妻aⅴ院 | 亚洲va日本ⅴa欧美va伊人久久| 中文字幕制服av| 成人三级做爰电影| 波多野结衣av一区二区av| 国产极品粉嫩免费观看在线| 一区二区三区激情视频| 亚洲精品国产色婷婷电影| 久久草成人影院| 在线观看66精品国产| 人成视频在线观看免费观看| 欧美国产精品一级二级三级| 一区福利在线观看| 99久久99久久久精品蜜桃| 国产真人三级小视频在线观看| 精品一区二区三区四区五区乱码| 老熟女久久久| 露出奶头的视频| 十分钟在线观看高清视频www| 午夜影院日韩av| 国产色视频综合| 99国产精品免费福利视频| 亚洲一区二区三区欧美精品| 久久久久久免费高清国产稀缺| 国产av精品麻豆| 久久久久久久久免费视频了| 18禁国产床啪视频网站| 可以免费在线观看a视频的电影网站| 9热在线视频观看99| 午夜精品在线福利| 国产精品98久久久久久宅男小说| 最新的欧美精品一区二区| 一边摸一边抽搐一进一出视频| 国产亚洲精品第一综合不卡| 自拍欧美九色日韩亚洲蝌蚪91| 黑人操中国人逼视频| 免费女性裸体啪啪无遮挡网站| 精品国产超薄肉色丝袜足j| 久9热在线精品视频| 老司机福利观看| 精品一区二区三区视频在线观看免费 | 啦啦啦在线免费观看视频4| 搡老岳熟女国产| 日韩一卡2卡3卡4卡2021年| 亚洲精品国产区一区二| 一区二区三区精品91| 又紧又爽又黄一区二区| 一级片免费观看大全| 757午夜福利合集在线观看| 日韩视频一区二区在线观看| 怎么达到女性高潮| 国产av一区二区精品久久| 极品人妻少妇av视频| 男人舔女人的私密视频| 黄色片一级片一级黄色片| 欧美日韩亚洲高清精品| 一区在线观看完整版| 亚洲精品国产区一区二| 成人黄色视频免费在线看| 精品一区二区三区视频在线观看免费 | 国产99白浆流出| 亚洲aⅴ乱码一区二区在线播放 | 99re6热这里在线精品视频| 久久影院123| 亚洲精品一二三| 久久ye,这里只有精品| 欧美老熟妇乱子伦牲交| 黄片播放在线免费| 亚洲精品国产精品久久久不卡| 免费观看a级毛片全部| 免费在线观看日本一区| 欧美日韩精品网址| 搡老岳熟女国产| 国产不卡一卡二| 国产欧美日韩一区二区三| 午夜日韩欧美国产| 天天影视国产精品| 日本黄色日本黄色录像| 亚洲精品久久成人aⅴ小说| 巨乳人妻的诱惑在线观看| 精品亚洲成a人片在线观看| 极品少妇高潮喷水抽搐| 极品少妇高潮喷水抽搐| 久久人妻av系列| 国精品久久久久久国模美| 欧美乱色亚洲激情| www日本在线高清视频| 亚洲国产欧美网| 欧美日韩瑟瑟在线播放| 国产一区二区三区视频了| 免费少妇av软件| 18禁美女被吸乳视频| 国产精品秋霞免费鲁丝片| 夜夜躁狠狠躁天天躁| 变态另类成人亚洲欧美熟女 | 日日摸夜夜添夜夜添小说| 无遮挡黄片免费观看| 69av精品久久久久久| 极品人妻少妇av视频| 超碰97精品在线观看| 亚洲人成电影免费在线| 亚洲精品在线观看二区| 老司机午夜福利在线观看视频| 国产又爽黄色视频| 黄色丝袜av网址大全| 精品人妻在线不人妻| 欧美精品av麻豆av| 成年人免费黄色播放视频| 日韩人妻精品一区2区三区| 黄色成人免费大全| 高清黄色对白视频在线免费看| www日本在线高清视频| 麻豆av在线久日| 精品国产亚洲在线| 国产精品美女特级片免费视频播放器 | 如日韩欧美国产精品一区二区三区| 亚洲综合色网址| 中文字幕高清在线视频| 91字幕亚洲| 久久人妻福利社区极品人妻图片| 69精品国产乱码久久久| 久久人人爽av亚洲精品天堂| 热99国产精品久久久久久7| 日韩中文字幕欧美一区二区| 国产淫语在线视频| av超薄肉色丝袜交足视频| 91麻豆av在线| 一本综合久久免费| 啦啦啦 在线观看视频| 91九色精品人成在线观看| 在线看a的网站| 人妻丰满熟妇av一区二区三区 | 国产高清视频在线播放一区| 国产av一区二区精品久久| 久久精品成人免费网站| 女人精品久久久久毛片| 美国免费a级毛片| 大型黄色视频在线免费观看| 国产欧美亚洲国产| 桃红色精品国产亚洲av| www.熟女人妻精品国产| 麻豆乱淫一区二区| 19禁男女啪啪无遮挡网站| 精品国产一区二区久久| 精品少妇一区二区三区视频日本电影| 色94色欧美一区二区| 一级毛片精品| 深夜精品福利| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区免费欧美| 精品少妇久久久久久888优播| 丁香欧美五月| e午夜精品久久久久久久| 999久久久精品免费观看国产| 这个男人来自地球电影免费观看| 亚洲va日本ⅴa欧美va伊人久久| 国产成人精品在线电影| 99精品在免费线老司机午夜| 精品亚洲成a人片在线观看| 欧美色视频一区免费| 搡老熟女国产l中国老女人| 免费在线观看完整版高清| 国产精品久久电影中文字幕 | 亚洲性夜色夜夜综合| 免费在线观看日本一区| 日韩精品免费视频一区二区三区| 日韩一卡2卡3卡4卡2021年| 久久久久久久久免费视频了| 精品亚洲成国产av| 一边摸一边抽搐一进一小说 | 婷婷精品国产亚洲av在线 | 看黄色毛片网站| 999精品在线视频| 大陆偷拍与自拍| 一区在线观看完整版| 国内久久婷婷六月综合欲色啪| 精品国产超薄肉色丝袜足j| 丝袜美腿诱惑在线| 久久国产精品人妻蜜桃| 99国产极品粉嫩在线观看| 69av精品久久久久久| 两个人看的免费小视频| www.自偷自拍.com| 夜夜爽天天搞| 午夜91福利影院| 亚洲精品一二三| 中文字幕色久视频| 午夜视频精品福利| 99riav亚洲国产免费| 欧美激情久久久久久爽电影 | 老熟女久久久| 成年女人毛片免费观看观看9 | 亚洲avbb在线观看| 久久久久精品人妻al黑| 一本大道久久a久久精品| 国产黄色免费在线视频| 男人舔女人的私密视频| 亚洲精品乱久久久久久| 99精品欧美一区二区三区四区| 91在线观看av| 免费看十八禁软件| av天堂在线播放| 国产精品欧美亚洲77777| 日韩 欧美 亚洲 中文字幕| 波多野结衣一区麻豆| 美女福利国产在线| 亚洲专区中文字幕在线| 亚洲精品中文字幕一二三四区| 中文字幕最新亚洲高清| 亚洲精品在线美女| 色94色欧美一区二区| 香蕉国产在线看| 亚洲国产欧美网| 亚洲国产看品久久| 亚洲人成电影观看| 一级毛片女人18水好多| 成人特级黄色片久久久久久久|