• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel Universal Windowing Multicarrier Waveform for 5G Systems

    2021-12-16 07:49:32AhmedHammoodiLukmanAudahMontadarAbasTaherMazinAbedMohammedMustafaAljumailyAdeebSalhandShipunHamzah
    Computers Materials&Continua 2021年5期

    Ahmed Hammoodi,Lukman Audah,*,Montadar Abas Taher,Mazin Abed Mohammed,Mustafa S.Aljumaily,Adeeb Salh and Shipun A.Hamzah

    1Wireless and Radio Science Centre,Faculty of Electrical and Electronic Engineering,Universiti Tun Hussein Onn Malaysia,Parit Raja,86400,Malaysia

    2Department Communications Engineering,University of Diyala,Baqubah,32001,Iraq

    3College of Computer Science and Information Technology,University of Anbar,Anbar,31001,Iraq

    4Department of Electrical Engineering and Computer Science,University of Tennessee,Knoxville,TN,37901,USA

    Abstract:Fifth Generation(5G)systems aim to improve flexibility,coexistence and diverse service in several aspects to achieve the emerging applications requirements.Windowing and filtering of the traditional multicarrier waveforms are now considered common sense when designing more flexible waveforms.This paper proposed a Universal Windowing Multi-Carrier(UWMC)waveform design platform that is flexible,providing more easily coexists with different pulse shapes,and reduces the Out of Band Emissions (OOBE),which is generated by the traditional multicarrier methods that used in the previous generations of the mobile technology.The novel proposed approach is different from other approaches that have been proposed,and it is based on applying a novel modulation approach for the Quadrature-Amplitude Modulation (64-QAM) which is considered very popular in mobile technology.This new approach is done by employing flexible pulse shaping windowing,by assigning windows to various bands.This leads to decreased side-lobes,which are going to reduce OOBE and boost the spectral efficiency by assigning them to edge subscribers only.The new subband windowing (UWMC) will also maintain comprehensively the non-orthogonality by a variety of windowing and make sure to keep window time the same for all subbands.In addition,this paper shows that the new approach made the Bit Error Rate (BER)equal to the conventional Windowed-Orthogonal Frequency Division Multiplexing (W-OFDM).This platform achieved great improvement for some other Key Performance Indicators(KPI),such as the Peak to Average Power Ratio (PAPR) compared with the conventional (W-OFDM) and the conventional Universal Filtered Multicarrier(UFMC)approaches.In particular,the proposed windowing scheme outperforms previous designs in terms of the Power Spectral Density (PSD) by 58% and the (BER) by 1.5 dB and reduces the Complementary Cumulative Distribution Function Cubic Metric(CCDF-CM)by 24%.

    Keywords:5G waveform;window-OFDM;universal filtered multi-carrier;key performance indicators

    1 Introduction

    Modern wireless telecommunication technologies support many diverse services.The International Telecommunications Union (ITU) classified the fifth generation of wireless communications(i.e.,5G) into an enhanced Mobile Broadband (eMBB),massive Machine Type Communications(mMTC),Ultra-Reliable Low-Latency Communication (URLLC),Industrial Internet of Things(I-IoT),and many more use cases [1].Therefore,a flexible waveform design is required in order to handle such conflicting applications and use cases’requirements.The waveform design is essential for all of these use cases as it is considered the main component of the air interface between the base station and the mobile devices (UE’s).So,waveforms for 5G and beyond need to be designed to fulfill the required adaptability and flexibility.Although the Orthogonal Frequency Division Multiplexing (OFDM) and its variant with low Peak to Average Power Ratio (PAPR) [2]and multimedia streaming are widely used in systems and standards before the 5G,they have many drawbacks [3].

    Employing OFDM based waveforms offers several attractive attributes,such as effective hardware implementation (low cost,low complexity) hardware implementation,low-complexity equalization in the receiver side,and the straightforward integration with the Multiple Input Multiple Output (MIMO) system architectures [4,5].However,traditional OFDM systems also incur high PAPR,require complete synchronization between transmitters and receivers,and large Out Of Band Emissions (OOBEs),which has motivated many studies looking for better waveforms for 5G and beyond [6-9].The incumbent standard shows that 5G numerology requires adaptive waveform parameters with specific subcarrier spacing,such as 15,30,and 60 kHz for Frequency Range 1 (FR1);and specific symbol length [10].Future standards will also require improved resilience for these waveforms.OFDM also suffers from losing orthogonality when subcarrier spacing changes,e.g.,from 15 to 30 kHz,which causes interference with other sub bands [11].Interference between the carriers is generally controlled with windowing,filtering or guard band allocation [8].Although many waveform designs have been considered to provide the required flexibility while improving OFDM spectral efficiency and flexibility [1,12,13],a universal flexible waveform that fits all use cases for 5G and beyond networks remains elusive.

    The time domain OFDM waveform uses rectangular windows,equivalent to sinc-shape in the frequency domain.The main OFDM downside for high OOBE are sidelobes (at 1/f) for the sinc function (f),reducing coexistence for neighboring resources and high adjacent Channel Leakage Ratio (ACLR).Since overhead synchronization would reduce latency and increase power consumption power,various waveforms have been proposed to relieve OOBE leakage.A mandatory requirement for the 5G waveform is time domain localization and supporting required latency and short message transmission [5].Filtering and windowing have been recently proposed to reduce OOBE and provide asynchronous transmission,and can be applied into subcarrier and subband 5G waveforms [14].

    Subcarrier filtering approaches,such as Filter Bank Multicarrier (FBMC) [6]and Generalized Frequency Division Multiplexing (GFDM),have better performance than conventional OFDM [15].However,FBMC and GFDM filters require a long tail of filter impulse responses to achieve this improved performance,which degrades latency and increases system complexity.

    Filtering and windowing subbands are a suitable solution for 5G and beyond waveforms to avoid these shortcomings.Filtered OFDM (F-OFDM) filters the whole transmitter bandwidth using a single filter [16];whereas full band filtering cannot remove the Inter-Carrier Interference (ICI)and Inter-Symbol Interference (ISI)influences,similar to standard OFDM.Therefore,filter tapes need to be raised to relieve OOBE constraints,thereby increasing complexity and latency [17].

    The UFMC waveform is well known in 5G and beyond paradigms.Several studies have shown that using UFMC in 5G waveforms improves traffic separation,robustness against a-synchronicity(time-frequency misalignment),fragmented spectrum support,sporadic access (short bursts of network access particularly by IoT devices),low-medium complexity,OFDM technology and knowledge base re-use,and short filter length when applying the filter for group of subcarriers.

    Window functions are used in digital signal processing to reduce side lobe suppression on the edge of the subcarrier.Gaussian pulses have the same performance in time and frequency domains but leak in orthogonality,hence ICI and ISI can be greatly identified [18].On the other hand,the selected waveform should also improve spectrum efficiency,time and frequency localization,and orthogonality between subcarriers.Unfortunately,these features cannot all be achieved simultaneously [18].Therefore,the waveform should be intelligently built to offer reasonable trade-off between time and frequency localization,and increased spectrum performance compared with the current waveform.

    This paper proposed a waveform incorporating flexible windowing shapes using the universal windowing multicarrier (UWMC) system and assessed its performance.The UWMC scheme provides flexibility to handle multicarrier signal OOBE,with assured trade-off for diverse pulse shape since increasing some parameters or factors in the frequency-time domain can affect time domain performance and vice versa.For example,contributions from OFDM subcarrier sidelobes to OOBE.Thus,multiple windowing schemes that suppress side-lobes have been used to edge subcarriers,with smaller windows employed for inner cases,e.g.,Kaiser windowing for edge subcarriers with raised cosine (RC) inner windows.However,this method decreases cyclic prefix(CP) length in conventional OFDM,originally intended to reduce multipath effects,which can cause ISI.Kaiser windowing in UFMC with different beta factors provided the required flexibility and additional control over OOBE [14],but ICI still occurred even with the enhanced spectral efficiency.

    Kaiser and RC windowing have been used with various roll-off factors to control OOBE and provide more flexibility.This paper focused on windowing shape diversity to reduce OOBE,enhance spectral efficiency,and improve flexible waveform coexistence compared with current systems.The proposed approach also significantly improved bit error rate (BER) and PAPR.

    The remainder of this paper is organized as follows.Section 2 discusses foundations for UWMC with different windowing.Section 3 explains the UWMC waveform concept and provides performance assessment parameters.Section 4 summarizes and concludes the paper.

    2 Universal Filtering Multi-Carrier(UFMC)Waveform

    The UFMC approach is a quadrature amplitude modulation (QAM) multicarrier modulation alternative to OFDM and FBMC waveforms for 5G.UFMC is similar to F-OFDM for subcarriers and filtering,but not the whole band.UFMC divides the whole bandwidth into subbands,and then filters each subband to reduce filter length of the filter and computational time compared with F-OFDM and FBMC.Subband UFMC is similar to conventional OFDM without filtering.Let OFDM be formulated as

    where X is the OFDM signal representing the inverse discrete time Fourier transform (IDFT)with size N;k is the time index;n is the frequency domain index.The X set is generated using quadrature Multilevel Amplitude Modulation (M-QAM) mapping and contains identically independent distributed (IID) random variables.The summation in Eq.(1).is either constructive or destructive,hence data coherence summation will result in a large PAPR.The Cyclic-Prefix OFDM (CP-OFDM) adopted for Long-Term Evolution (LTE) in the 4G mobile communications standard can be formed by adding rectangular windowing to the whole band,

    and executing rectangular windowing gives CP-OFDM as

    where L is window length w(n),which should be an odd number in this case;and W is the IDFT matrix with dimension N×N,where N is the number of subcarriers.Rectangular behavior in the frequency domain is achieved using the discrete time Fourier transform (DTFT) of w(n).

    whereFis for finite impulse response (FIR) filter Toeplitz matrix that provides convolution over the M-th band,where the whole band is subdivided to M subbands.Therefore,the UFMC system can be expressed as

    where M-QAM entries inXr,kare first converted to the time domain using the IDFT matrix column corresponding to the specified subband r within the frequency band;andis the corresponding subband filter.

    Fig.1 shows the complete UFMC system derived from Eq.(5).The process starts with zero padding at the receiver end to achieve two-fold up-sampling,and then selects subcarriers (downsampling) for a juncture using 2N-DFT until implementing M-QAM de-mapping to collect the received data.

    The filtering operation uses Physical Resource Blocks (PRBs) to facilitate design flexibility.Filter length ofis a critical design parameter,with filter length,(Pindex?1)and X containing one M-QAM symbol.Provided filter length in the frequency domain is sufficiently long,the time domain tail will be shorter (i.e.,in the order of cyclic prefix length of the traditional CP-OFDM) which enables the network to support transmitted short messages (TSM).

    Figure 1:UFMC system architecture

    The superior UFMC performance in both frequency and time domains leads to the improvement in the spectrum efficiency and is solely dependent solely on the suggested filter design.A technique which is simple,systematic,and easily implementable online technique,is the windowed-Sinc method [15].However,many In fact,there are different windows that can be applied here,hence and that is why this design is generally preferred.The filter can be expressed as

    wherehr(n)is the filter time domain response,and we can apply an ideal low pass filter sinc response [19].Using different windows can reduce OOBE and be more suitable for different numerology subcarrier spacing and secrecy (illegitimate eavesdropping will be unable to subtract the subcarriers).The resulting filter must be shifted in the frequency domain (a modulation property using DTFT) to align it with the allocated bandwidth center.

    The Gibbs phenomenon [19]ensures that if sinc filter windowing is applied in the time domain then output frequency ripples will occur near the dedicated bandwidth edge.This ripple frequency can be eliminated by expanding the allocated band for a few subcarriers at the transition edges or starting filter roll-off at the design edges of the subband.Thus,the filter passes frequencies as flat as possible for the allocated subband.

    Filter design is critical to system function,and should be approached by selecting the correct window function from the useful choices.Good design can significantly reduce OOBE and improve time and frequency localization [18],consequently enhancing spectrum efficiency by releasing more bands for user data,in contrast with conventional CP-OFDM.Section 2.1 shows how such a filtering scheme will increase data throughput.Thus,windowing is an efficient and simple tool to control inter-subband interference in a system with multiple UWMC numerologies multiplexed in the frequency domain [20].

    2.1 Proposed UWMC Waveform

    The proposed UWMC is a novel modulation scheme for the well-known quadrature-amplitude modulation (64-QAM).The underlying concept is to utilize flexible pulse shaping windowing,i.e.,windows with different bands,as shown in Fig.2,to reduce side-lobes,and then only assign them to edge subcarriers to increase spectral efficiency and decrease OOBE.UWMC subband windowing is also thorough to maintain non-orthogonality through various windowing and guarantee that all subbands take the same time window.The UWMC waveform baseband signal with N subcarriers can be expressed as

    where 1≤r≤M;+wKaiserorRC?1).N)is the corresponding subband windowing IDTF matrix;and the M-QAM symbol entries inXr,kare first converted to the time domain using theWr,kcolumn corresponding to the specified subband r within the frequency band.

    Fig.2 shows the complete UWMC system derived from Eq.(7).The process starts with zero-padding at the receiver end to achieve two-fold up-sampling,and then conducts 2N-DFT upon juncture subcarriers (down-sampling) until implementing M-QAM de-mapping to collect the received data.Time windowing schemes can be applied for spectral shaping with multiuser interference suppression at the received side,

    Data symbolsXr,kfor the r-th subband (i∈[1...M]) are transformed to the time domain using a tall IDFT matrix that includes corresponding columns from the inverse Fourier matrix for the respective subband positions in the available frequency range.System parameters can be adjusted according to propagation conditions and time-frequency offset requirements [4,5].This paper assumed that UWMC waveform subband sizes were equal for simplicity and length of subband windowing.The time domain signalfor subband windowing input r is

    where first UWMC symbol consists of(N+wKaiserorRC?1)samples and the remaining samples values are zero,

    Figure 2:UWMC system architecture

    The summation in time domain samples by the IFFT:

    with relevant symbol contributions

    The DTFT forwill depict windowing behavior in the frequency domain.Applying various algebraic simplifications,sinc(wKaiserorRC)can be expressed as

    The first windows combine Kaiser and RC windows,

    whereBessellis the zero-order modified Bessel function given as,

    whereβinput is the control side lobe attenuation in the Kaiser-Bessel window and balance between the main lobe width and side-lobe level is achieved by increasingβto reduce side-lobe level.However,this will increase complexity.

    Therefore,the UWMC approach suggests arranging two or more windows in various directions to avoid increasing complexity and orβ,creating a new window with a narrow main lobe width and reduced side lobe.For example,convolution in the time domain of two rectangular windows produces the Bartlett window [20],

    whereαis the stopband attenuation expressed in decibels.The Kaiser window product with RC window provides new coefficient windowing in the time domain referring to the frequency domain convolution,and UWMC individual waveforms per subband are more flexible for diverse implementation and specification designs for 5G waveforms.

    3 The Performance Evaluation of UWMC Waveform

    We evaluate UWMC waveform performance compared with windowed CP-OFDM (W-CPOFDM),treating all the subcarriers in the same way with respect to side-lobe suppression.Tab.1 shows the parameters used in the simulation experiments.

    Figs.3 and 4 show that UWMC waveform OOBE is less than for W-CP-OFDM and conventional UFMC.Thus,the proposed UWMC waveform provides OOBE suppression and better spectral efficiency compared with conventional UFMC and W-OFDM.Conventional UFMC also requires more side lobe attenuation for Dolph-Chebyshev to achieve the same level.These results are significant in at least two major respects:better coexistence with incumbent systems (e.g.,a cognitive radio paradigm),and different numerology concepts.Adjacent channel leakage ratio(ACLR),For UWMC is superior to UFMC and CP-OFDM by 21% and 140%,respectively.

    Table 1:Simulation parameters

    Figure 3:Conventional universal filtered multicarrier (UFMC) power spectral density (PSD)

    The complementary Cumulative Distribution Function Cubic Metric (CCDF-CM) is measured in dB,and provides a good comparison between different 5G systems.Fig.5 compares CCDF-CM for UWMC,UFMC,and CP-OFDM.CCDF-CM for conventional UFMC=4.2 dB,with 3.4 dB for UWMC,i.e.,UWMC reduces CCDF-CM by 24%.This enhancement was due to the cutting for the windowing only on the edge,which reduced subcarrier discontinuity compared with conventional UFMC [21].

    Figure 4:Power spectral density for proposed universal filtered multicarrier (UFMC) and windowed cyclic prefix orthogonal frequency division multiplexing (W-CP-OFDM) platforms

    Table 2:Adjacent channel leakage ratio (ACLR) for cyclic prefix orthogonal frequency division multiplexing (CP-OFDM),universal filtered multicarrier (UFMC),and proposed universal windowing multicarrier (UWMC) performance

    Fig.6 shows BER performance for UFCM,W-OFDM,and UWMC waveforms.Conventional UFMC achieved the poorest performance,requiring more transmission power,whereas W-OFDM and UWMC achieved comparable performance at 20 dB SNR.These findings may help us understand how to control the OOBE when using a mixed windowing waveform.In addition,the UWMC waveform is proven to be more suitable when we need to use different windowing and different bands in the receiving side (Rx) and with more secrecy.

    Tab.2 shows that UWMC individual window per subband is a more flexible waveform for designing 5G versatile applications and requirements.Tab.3 lists UWMC waveform advantages compared with conventional UFMC.

    Figure 5:Complementary cumulative distribution function cubic metric (CCDF-CM) for proposed universal filtered multicarrier (UWMC),windowed orthogonal frequency division multiplexing (OFDM),and cyclic preference windowed orthogonal frequency division multiplexing(CP-OFDM) waveforms

    Figure 6:The BER comparison of UFMC,W-OFDM and UWMC waveform

    We have focused 5G network parameters OOBE,PSD,BER,ACLR/ACPR,and CCDF,but improving some parameters could negatively affect others.For example,improving OOBE could also increase computational complexity or BER,and vice versa [22].Tab.4 compares the proposed UWMC with benchmarks for related work based on this argument.The most common waveform is CP-OFDM with windowing being applied to CP-OFDM to minimize OOBE for the waveform.Subsequently,UFMC is considered a promising waveform for 5G technology because it has lower latency and better BER than CP-OFDM but remains more complex to build.Both CP-OFDM and UFMC suffer from high OOBE,with conventional UFMC being somewhat better than CP-OFDM.The proposed UWMC waveform has not been evaluated,but our approach can simultaneously reduce OOBE,PAPR,BER,and CCDF-CM;with lower complexity than conventional UFMC and more suitable for coexistence with legacy systems.However,CP-OFDM has lower complexity than UWMC.

    Table 3:The advantages proposed waveform

    Table 4:Comparing our waveform with the benchmark

    This study indicates that the proposed UWMC framework has better spectral efficiency,can reduce ICI due to improved UWMC signals,and is more flexible for different numerology for FR1 and FR2 for different services compared with current approaches.UWMC shows better performance and consumes lower power than the CP-OFDM and conventional UFMC.

    4 Conclusion

    This paper proposed a new and flexible waveform suitable for 5G and beyond (UWMC)and evaluated its performance compared with several current approaches using multiple KPIs(PSD,CCDF-CM,BER,and ACLR).UWMC achieved less OOBE,better spectral efficiency,and comparable BER to conventional W-OFDM;with better frequency localization,which is critical for asynchronous transmission across adjacent subbands and harmony with different numerologies in the network.These results provide important insights into it and have the resilience to control each side.Hence,it prevents needless OOBE from deactivating that lowering spectral efficiency when requirements are different on each side of the band.Future work directions will include integrating the suggested waveform into multi-layer scheduling,precoding,and waveform design,which is strongly required for 4G and 5G network coexistence.The UWMC waveform provides essentially improved flexibility to facilitate this goal.

    Funding Statement:This work was supported in part by the Ministry of Higher Education Malaysia through the Fundamental Research Grant Scheme (FRGS/1/2019/TK04/UTHM/02/8)and the University Tun Hussein Onn Malaysia.The authors would like to thank the Ministry of Higher Education Malaysia and Universiti Tun Hussein Onn Malaysia for the generous financial support.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    欧美bdsm另类| 国产精品嫩草影院av在线观看| 你懂的网址亚洲精品在线观看 | 干丝袜人妻中文字幕| 亚洲熟妇中文字幕五十中出| 日韩国内少妇激情av| 91精品国产九色| 丝袜美腿在线中文| 色噜噜av男人的天堂激情| 网址你懂的国产日韩在线| 日本-黄色视频高清免费观看| 热99在线观看视频| 一区二区三区免费毛片| 女人被狂操c到高潮| 少妇的逼水好多| 身体一侧抽搐| www.色视频.com| 欧美成人a在线观看| 一级毛片我不卡| 综合色av麻豆| 九九热线精品视视频播放| 久久久精品94久久精品| 国产一区二区在线av高清观看| 国产国拍精品亚洲av在线观看| 亚洲一级一片aⅴ在线观看| 国产私拍福利视频在线观看| 欧美bdsm另类| 一区福利在线观看| 精品一区二区免费观看| 国产国拍精品亚洲av在线观看| a级毛片a级免费在线| 欧美性感艳星| 一边摸一边抽搐一进一小说| 国产精品嫩草影院av在线观看| 一夜夜www| 欧美成人a在线观看| 日本一二三区视频观看| 亚洲精品国产av成人精品 | 看黄色毛片网站| 可以在线观看毛片的网站| 日本一本二区三区精品| 亚洲av中文字字幕乱码综合| 搡老熟女国产l中国老女人| 亚洲人成网站在线播放欧美日韩| 全区人妻精品视频| 少妇高潮的动态图| 国产亚洲精品综合一区在线观看| 午夜视频国产福利| 国产在线男女| 免费av观看视频| 黄色配什么色好看| 国产黄片美女视频| 国产白丝娇喘喷水9色精品| 国产亚洲精品av在线| 九九在线视频观看精品| 成人特级黄色片久久久久久久| 一级黄色大片毛片| 99久久九九国产精品国产免费| av在线蜜桃| 色在线成人网| 国产精品久久久久久精品电影| 丰满乱子伦码专区| 日本爱情动作片www.在线观看 | eeuss影院久久| 日本色播在线视频| 欧美日韩精品成人综合77777| 久久精品夜夜夜夜夜久久蜜豆| 亚洲综合色惰| 国产国拍精品亚洲av在线观看| 国产精品日韩av在线免费观看| 丰满乱子伦码专区| 欧美激情在线99| 亚洲高清免费不卡视频| 国内精品宾馆在线| 国产日本99.免费观看| 极品教师在线视频| 99精品在免费线老司机午夜| 婷婷精品国产亚洲av| 精品一区二区免费观看| 午夜免费激情av| 久久人妻av系列| 亚洲电影在线观看av| 97超视频在线观看视频| 99久久精品国产国产毛片| 国产在线精品亚洲第一网站| 欧美一区二区精品小视频在线| 国产精品三级大全| 成人鲁丝片一二三区免费| 国产精品亚洲美女久久久| 欧美日韩在线观看h| 免费看美女性在线毛片视频| 欧美成人精品欧美一级黄| 亚洲精品久久国产高清桃花| 中文字幕熟女人妻在线| 国产黄色小视频在线观看| 性色avwww在线观看| 国产真实乱freesex| 91精品国产九色| 日韩大尺度精品在线看网址| 亚洲国产日韩欧美精品在线观看| 久久久欧美国产精品| 波多野结衣高清无吗| 免费av毛片视频| 天美传媒精品一区二区| 91精品国产九色| h日本视频在线播放| 久久久成人免费电影| 亚洲欧美清纯卡通| 久久久久久久久中文| 亚洲自拍偷在线| 91在线精品国自产拍蜜月| 国产91av在线免费观看| 亚洲国产高清在线一区二区三| 亚洲自偷自拍三级| 麻豆精品久久久久久蜜桃| 欧美激情国产日韩精品一区| 日韩欧美一区二区三区在线观看| 三级毛片av免费| 色5月婷婷丁香| 久久精品久久久久久噜噜老黄 | 九九热线精品视视频播放| 日本黄色片子视频| 亚洲经典国产精华液单| 国产男靠女视频免费网站| 欧美精品国产亚洲| 在线观看美女被高潮喷水网站| 日韩欧美三级三区| 久久精品影院6| 亚洲无线在线观看| 性色avwww在线观看| 麻豆精品久久久久久蜜桃| 在线国产一区二区在线| 三级经典国产精品| 久久精品国产亚洲av涩爱 | 内地一区二区视频在线| 成人美女网站在线观看视频| 看免费成人av毛片| 人人妻,人人澡人人爽秒播| 在线观看美女被高潮喷水网站| 蜜桃久久精品国产亚洲av| 一个人看的www免费观看视频| 91麻豆精品激情在线观看国产| 亚洲精品国产av成人精品 | 一级毛片电影观看 | 日本爱情动作片www.在线观看 | 黑人高潮一二区| 超碰av人人做人人爽久久| 国产精品无大码| 久久精品国产自在天天线| 色哟哟·www| 欧美激情在线99| 国产精华一区二区三区| 99久国产av精品| 免费av不卡在线播放| 久久久久久久久久黄片| 国产精品美女特级片免费视频播放器| 久久久久国产精品人妻aⅴ院| 国产精品国产三级国产av玫瑰| 简卡轻食公司| av福利片在线观看| 亚洲熟妇熟女久久| 亚洲av电影不卡..在线观看| 欧美一区二区精品小视频在线| 我要看日韩黄色一级片| 观看免费一级毛片| 自拍偷自拍亚洲精品老妇| 毛片一级片免费看久久久久| 精品久久久久久久人妻蜜臀av| 午夜福利18| 日韩av在线大香蕉| 99热这里只有是精品在线观看| 国产日本99.免费观看| 亚洲欧美精品综合久久99| 午夜精品国产一区二区电影 | 人妻夜夜爽99麻豆av| 亚洲精品一区av在线观看| 中出人妻视频一区二区| a级毛片免费高清观看在线播放| 久久久久九九精品影院| 噜噜噜噜噜久久久久久91| 在现免费观看毛片| 又爽又黄a免费视频| 麻豆精品久久久久久蜜桃| 天天一区二区日本电影三级| 久久久久免费精品人妻一区二区| 熟女电影av网| 国产精品久久久久久亚洲av鲁大| 男人舔女人下体高潮全视频| 午夜a级毛片| 国产精品日韩av在线免费观看| 嫩草影院精品99| 99在线人妻在线中文字幕| 欧美xxxx黑人xx丫x性爽| 热99re8久久精品国产| 国产久久久一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 91在线精品国自产拍蜜月| 国产成人a区在线观看| 大型黄色视频在线免费观看| 亚洲五月天丁香| 免费观看精品视频网站| 国产精品av视频在线免费观看| 好男人在线观看高清免费视频| 一个人看视频在线观看www免费| 亚洲av美国av| 亚洲一区高清亚洲精品| 国产精品综合久久久久久久免费| 亚洲婷婷狠狠爱综合网| 国产精品亚洲美女久久久| 精品乱码久久久久久99久播| 成年av动漫网址| 大型黄色视频在线免费观看| 久久九九热精品免费| 两性午夜刺激爽爽歪歪视频在线观看| 有码 亚洲区| 亚洲欧美精品综合久久99| 99久久久亚洲精品蜜臀av| 成人特级av手机在线观看| 一本久久中文字幕| 人妻少妇偷人精品九色| 我要搜黄色片| 亚洲人与动物交配视频| 老女人水多毛片| 久久久欧美国产精品| 婷婷亚洲欧美| 日韩大尺度精品在线看网址| 成人特级黄色片久久久久久久| av免费在线看不卡| 最后的刺客免费高清国语| 欧美最黄视频在线播放免费| 亚洲av中文av极速乱| 欧美日韩乱码在线| 色av中文字幕| 国产高清不卡午夜福利| 色吧在线观看| 深爱激情五月婷婷| 国产av一区在线观看免费| 国产高潮美女av| 我要搜黄色片| 日本三级黄在线观看| 欧美激情久久久久久爽电影| 国内揄拍国产精品人妻在线| 久久久久国内视频| 国产综合懂色| 少妇熟女aⅴ在线视频| 91久久精品电影网| 国产成年人精品一区二区| videossex国产| 欧美极品一区二区三区四区| 国产亚洲精品av在线| 亚洲中文字幕日韩| www日本黄色视频网| 哪里可以看免费的av片| 日韩高清综合在线| 国产91av在线免费观看| 国产成人freesex在线 | 一个人观看的视频www高清免费观看| 久99久视频精品免费| 啦啦啦韩国在线观看视频| 在线a可以看的网站| 成人三级黄色视频| 日韩强制内射视频| 亚洲成人久久爱视频| 99热精品在线国产| 午夜福利在线观看免费完整高清在 | 内地一区二区视频在线| 日韩,欧美,国产一区二区三区 | 久久草成人影院| 91狼人影院| 国产三级中文精品| 久久人人爽人人爽人人片va| 毛片女人毛片| 级片在线观看| 亚洲专区国产一区二区| 少妇被粗大猛烈的视频| 欧美一区二区亚洲| 性欧美人与动物交配| 搡老熟女国产l中国老女人| 男人舔奶头视频| av免费在线看不卡| 亚洲精品国产av成人精品 | 国产一区二区三区av在线 | 国产精品一及| 欧美性猛交╳xxx乱大交人| av卡一久久| 国产精品久久电影中文字幕| 久久精品国产亚洲av涩爱 | 男女那种视频在线观看| 亚洲丝袜综合中文字幕| 全区人妻精品视频| 日日撸夜夜添| 久久久久九九精品影院| 国产又黄又爽又无遮挡在线| 在线a可以看的网站| 国产精品久久久久久精品电影| videossex国产| 老师上课跳d突然被开到最大视频| 日韩精品中文字幕看吧| eeuss影院久久| 亚洲欧美日韩卡通动漫| 午夜精品国产一区二区电影 | 少妇的逼好多水| 老司机影院成人| 日本一本二区三区精品| 国产午夜福利久久久久久| 天堂动漫精品| 精品欧美国产一区二区三| 99精品在免费线老司机午夜| 午夜福利高清视频| 有码 亚洲区| 别揉我奶头~嗯~啊~动态视频| 亚洲丝袜综合中文字幕| 精品人妻偷拍中文字幕| 男女边吃奶边做爰视频| 少妇人妻精品综合一区二区 | 日本在线视频免费播放| 又黄又爽又免费观看的视频| 亚洲av成人av| 韩国av在线不卡| 国产成人freesex在线 | 中文字幕精品亚洲无线码一区| 99久久精品一区二区三区| 我的老师免费观看完整版| 日韩强制内射视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人av在线免费| 国产av不卡久久| 国产成人aa在线观看| 国产高清三级在线| av天堂在线播放| 综合色丁香网| 老女人水多毛片| 97碰自拍视频| 我要搜黄色片| 干丝袜人妻中文字幕| 三级男女做爰猛烈吃奶摸视频| 免费av毛片视频| 一区二区三区免费毛片| 老师上课跳d突然被开到最大视频| 国产女主播在线喷水免费视频网站 | 日韩精品有码人妻一区| 国产淫片久久久久久久久| 国产精品乱码一区二三区的特点| 长腿黑丝高跟| 日韩大尺度精品在线看网址| 九色成人免费人妻av| 日本一本二区三区精品| 国产男人的电影天堂91| 一级毛片aaaaaa免费看小| 波多野结衣高清作品| 中文在线观看免费www的网站| 色噜噜av男人的天堂激情| 女人被狂操c到高潮| 2021天堂中文幕一二区在线观| 成人av在线播放网站| 免费在线观看影片大全网站| 成人性生交大片免费视频hd| 一进一出抽搐gif免费好疼| 亚洲最大成人手机在线| 一个人看视频在线观看www免费| 我的女老师完整版在线观看| 亚洲精品日韩在线中文字幕 | 欧美高清成人免费视频www| 美女大奶头视频| 成人性生交大片免费视频hd| 国语自产精品视频在线第100页| 久久久久久国产a免费观看| 欧美高清性xxxxhd video| 国产女主播在线喷水免费视频网站 | 黄色欧美视频在线观看| 色哟哟·www| 国产激情偷乱视频一区二区| 久久久精品欧美日韩精品| 国产精品不卡视频一区二区| 校园人妻丝袜中文字幕| 少妇熟女aⅴ在线视频| av在线播放精品| 亚洲国产精品合色在线| 精品久久久久久久末码| 日本成人三级电影网站| 在线观看午夜福利视频| 国产极品精品免费视频能看的| 日韩欧美精品免费久久| 在线天堂最新版资源| 俺也久久电影网| 国产精品亚洲一级av第二区| 男女视频在线观看网站免费| 全区人妻精品视频| 成人av在线播放网站| 大型黄色视频在线免费观看| 国产精品一二三区在线看| 亚洲成人精品中文字幕电影| 精品久久久久久成人av| 国产蜜桃级精品一区二区三区| 久久精品国产亚洲av天美| 国产精品久久久久久精品电影| 中文在线观看免费www的网站| 精品乱码久久久久久99久播| 一级毛片aaaaaa免费看小| 久久久久久久午夜电影| 亚洲成av人片在线播放无| 欧美一区二区亚洲| 亚洲av五月六月丁香网| 美女cb高潮喷水在线观看| 身体一侧抽搐| 久久人人爽人人片av| 欧美又色又爽又黄视频| 啦啦啦啦在线视频资源| 国产午夜精品久久久久久一区二区三区 | 亚洲人成网站在线观看播放| 亚洲av一区综合| 国内精品一区二区在线观看| 成人无遮挡网站| 亚洲人成网站在线播放欧美日韩| 亚洲国产色片| 欧美日本亚洲视频在线播放| 99热这里只有精品一区| 在线免费观看的www视频| 大又大粗又爽又黄少妇毛片口| 97在线视频观看| 搡老熟女国产l中国老女人| 校园人妻丝袜中文字幕| 国产高清不卡午夜福利| 国产欧美日韩一区二区精品| 日产精品乱码卡一卡2卡三| 亚洲成a人片在线一区二区| 亚洲美女黄片视频| 亚洲精品乱码久久久v下载方式| 免费电影在线观看免费观看| 免费一级毛片在线播放高清视频| 嫩草影院精品99| 精品少妇黑人巨大在线播放 | 久久综合国产亚洲精品| 一个人看的www免费观看视频| 一本久久中文字幕| ponron亚洲| 秋霞在线观看毛片| av国产免费在线观看| 久久精品国产鲁丝片午夜精品| 欧美日韩一区二区视频在线观看视频在线 | 日韩欧美三级三区| 精品久久久久久久人妻蜜臀av| 久久综合国产亚洲精品| 国产精品1区2区在线观看.| 免费观看的影片在线观看| 国产爱豆传媒在线观看| 国产精品伦人一区二区| 高清日韩中文字幕在线| 99热精品在线国产| 观看美女的网站| 黄色日韩在线| 久久久精品94久久精品| 欧美极品一区二区三区四区| 99热只有精品国产| 国产在线男女| 两个人视频免费观看高清| 精品不卡国产一区二区三区| 精品一区二区三区视频在线| 村上凉子中文字幕在线| av黄色大香蕉| 变态另类丝袜制服| 联通29元200g的流量卡| 亚洲国产欧洲综合997久久,| 国产精品一区二区免费欧美| 国产伦精品一区二区三区视频9| 精品日产1卡2卡| 成人三级黄色视频| 性欧美人与动物交配| 日韩欧美精品v在线| 国产视频内射| ponron亚洲| 在线免费观看不下载黄p国产| 日日啪夜夜撸| 夜夜夜夜夜久久久久| 悠悠久久av| 99在线视频只有这里精品首页| 国内精品美女久久久久久| 18禁在线无遮挡免费观看视频 | 免费看美女性在线毛片视频| 国产激情偷乱视频一区二区| 日韩三级伦理在线观看| 中文在线观看免费www的网站| 99久久精品热视频| 国产精品久久电影中文字幕| av国产免费在线观看| 成人鲁丝片一二三区免费| 日产精品乱码卡一卡2卡三| 最近的中文字幕免费完整| 欧美日韩一区二区视频在线观看视频在线 | 国产在视频线在精品| 日韩中字成人| 国产视频内射| 最好的美女福利视频网| 51国产日韩欧美| 又粗又爽又猛毛片免费看| 国产美女午夜福利| 欧美+亚洲+日韩+国产| 国产视频内射| 国产精品av视频在线免费观看| 级片在线观看| 久久久精品欧美日韩精品| 一个人看的www免费观看视频| 久久久国产成人免费| 国产 一区精品| 中出人妻视频一区二区| 精品午夜福利在线看| 91狼人影院| 国产成人影院久久av| 神马国产精品三级电影在线观看| 欧美国产日韩亚洲一区| 黑人高潮一二区| 国产成人a区在线观看| 国产亚洲91精品色在线| 国产成人freesex在线 | 日韩av不卡免费在线播放| 午夜福利成人在线免费观看| 少妇的逼好多水| 午夜视频国产福利| 我要看日韩黄色一级片| 国产免费男女视频| 99久国产av精品国产电影| 村上凉子中文字幕在线| 女的被弄到高潮叫床怎么办| 久久精品国产自在天天线| 级片在线观看| 国产精品精品国产色婷婷| 国产老妇女一区| 免费在线观看成人毛片| 高清日韩中文字幕在线| av在线亚洲专区| 一本久久中文字幕| 午夜福利18| 国产精品一区二区免费欧美| 99九九线精品视频在线观看视频| 亚洲成人av在线免费| 午夜激情福利司机影院| 久久久成人免费电影| 18+在线观看网站| 国模一区二区三区四区视频| 日本五十路高清| 国产大屁股一区二区在线视频| av在线天堂中文字幕| 在线a可以看的网站| 麻豆乱淫一区二区| 色吧在线观看| 国产精品99久久久久久久久| 男人的好看免费观看在线视频| 日日啪夜夜撸| 观看免费一级毛片| 日韩成人av中文字幕在线观看 | 97超级碰碰碰精品色视频在线观看| 日韩精品有码人妻一区| 成人精品一区二区免费| 国产精品久久久久久av不卡| 国产精品久久久久久亚洲av鲁大| 中文字幕人妻熟人妻熟丝袜美| av在线天堂中文字幕| av.在线天堂| 91精品国产九色| 国产av不卡久久| 亚洲av五月六月丁香网| 在线免费观看不下载黄p国产| 免费av毛片视频| 色5月婷婷丁香| 男插女下体视频免费在线播放| av中文乱码字幕在线| 又黄又爽又刺激的免费视频.| 免费大片18禁| 国产午夜福利久久久久久| 国产v大片淫在线免费观看| 国产男人的电影天堂91| 少妇高潮的动态图| 秋霞在线观看毛片| 在线免费观看的www视频| 日韩国内少妇激情av| 简卡轻食公司| 色综合亚洲欧美另类图片| 国产亚洲精品综合一区在线观看| 一本久久中文字幕| 免费看a级黄色片| 欧美一级a爱片免费观看看| 99国产精品一区二区蜜桃av| 嫩草影视91久久| 丝袜喷水一区| 岛国在线免费视频观看| 亚洲精品亚洲一区二区| 观看免费一级毛片| 91在线精品国自产拍蜜月| 日韩人妻高清精品专区| 一本精品99久久精品77| 亚洲av第一区精品v没综合| 久久热精品热| 亚洲不卡免费看| 美女xxoo啪啪120秒动态图| 熟女电影av网| 精品午夜福利视频在线观看一区| 久久久精品94久久精品| 夜夜看夜夜爽夜夜摸| 成熟少妇高潮喷水视频| 日韩强制内射视频| 亚洲中文字幕一区二区三区有码在线看| 欧美另类亚洲清纯唯美| 乱人视频在线观看| 免费在线观看影片大全网站| 国产精品永久免费网站| 美女xxoo啪啪120秒动态图| 免费在线观看影片大全网站| 欧美国产日韩亚洲一区| 观看美女的网站| 国产乱人视频| 天堂影院成人在线观看| 免费看美女性在线毛片视频| 国产精品综合久久久久久久免费| 精品人妻一区二区三区麻豆 | 天堂av国产一区二区熟女人妻|