• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New Improved Ranked Set Sampling Designs with an Application to Real Data

    2021-12-16 07:49:24AmerIbrahimAlOmariandIbrahimAlmanjahie
    Computers Materials&Continua 2021年5期

    Amer Ibrahim Al-Omari and Ibrahim M.Almanjahie

    1Department of Mathematics,Faculty of Science,Al al-Bayt University,Mafraq,Jordan

    2Department of Mathematics,College of Science,King Khalid University,Abha,62529,Saudi Arabia

    3Statistical Research and Studies Support Unit,King Khalid University,Abha,62529,Saudi Arabia

    Abstract:This article proposes two new Ranked Set Sampling(RSS)designs for estimating the population parameters:Simple Z Ranked Set Sampling(SZRSS) and Generalized Z Ranked Set Sampling (GZRSS).These designs provide unbiased estimators for the mean of symmetric distributions.It is shown that for non-uniform symmetric distributions,the estimators of the mean under the suggested designs are more efficient than those obtained by RSS,Simple Random Sampling (SRS),extreme RSS and truncation based RSS designs.Also,the proposed RSS schemes outperform other RSS schemes and provide more efficient estimates than their competitors under imperfect rankings.The suggested mean estimators under perfect and imperfect rankings are more efficient than the linear regression estimator under SRS.Our proposed RSS designs are also extended to cover the estimation of the population median.Real data is used to examine wthe usefulness and efficiency of our estimators.

    Keywords:Ranked set sampling;unbiased estimator;simple random sampling;mean squared error;efficiency;imperfect ranking

    1 Introduction

    The Ranked Set Sampling (RSS) is originally derived by McIntyre [1]as a new design to increase the efficiency of pasture and forage yields estimates for fixed sample units.The RSS is considered when the study variable can simply be ranked than quantified.Takahasi et al.[2],independently,introduced the background of the RSS design,mathematically.It is shown that mean estimator by the RSS is unbiased,and provides more efficient estimates than the simple random sampling mean estimator.Even when the measured observations are ranked with errors,the RSS still provides an unbiased estimator,but the imperfect ranking is generally better than ordering based on random [3].Stokes [4]considered the case of measuring the variable of interest and concluded that the study variable can be ranked by some concomitant variables.The competence of the estimator then depends on the relation between the study variables and the ancillary variables.With perfect ranking,the estimation based on RSS is more adequate as compared to the regression estimation based on SRS,especially,when the study variables and the ancillary variables are highly correlated (say |ρ|>0.85) [5].

    In the last few decades,many applications and modifications of the RSS design have been proposed.Halls et al.[6]for considering an application of forage yields using RSS.Samawi et al.[7]introduced the Extreme RSS (ERSS) design.Al-Omari et al.[8]introduced ratio estimators of the population mean with missing values using RSS.Al-Omari [9]considered the median estimation based on double robust extreme RSS.Al-Saleh et al.[10]extended the work further and provided Multistage RSS (MSRSS) design.They proved that as the number of stages increases,the efficiency of the mean estimator under MSRSS increases and vice versa.A Robust L RSS procedure based on the idea of L estimators is suggested by Al-Naseer [11].Muttlak [12]introduced Median RSS (MRSS);he showed that it provides an unbiased estimator of the mean of symmetric distributions,and is more efficient than the SRS and RSS mean estimators.Jemain et al.[13]suggested multistage median RSS for estimating the population median and Jemain et al.[14]proposed some variations of RSS.Al-Omari [15]proposed ratio estimators of the population mean by considering ancillary information in SRS and median RSS and Al-Omari [16]considered the entropy estimation in RSS methods.Hossain et al.[17]suggested paired RSS for estimating the population mean.Shadid et al.[18]considered the BLUEs and BLIEs of the scale and location parameters together with the population mean using RSS.Al-Omari et al.[19]investigated the ratio estimation using a multi-stage median RSS approach.Al-Omari [20]proposed robust extreme RSS mean for mean estimation.Haq [21]proposed Shewhart control chart for monitoring process mean based on partially ordered judgment subset sampling.Haq et al.[22]suggested unbiased estimators for the basic linear regression model based on double RSS.Yu et al.[23]for investigating regression estimator in RSS.Al-Naseer et al.[24]proposed robust extreme RSS.Haq et al.[25]suggested some ratio estimators for the population mean in ERSS using two ancillary variables.Ozturk [26]studied sampling based on partially rankordered sets.Haq et al.[22]proposed the hybrid RSS method.Zamanzade et al.[27]introduced a new RSS estimation method for the population mean and variance.Haq [28]considered cluster sampling with hybrid RSS.Haq [29]studied the distribution function estimation under hybrid RSS.Al-Omari et al.[30,31]dealt with tests based on Laplace and logistic distributions.Al-Nasser et al.[32]studied information-theoretic weighted mean based on truncated RSS.Zamanzade et al.[33]used population proportion estimation in pair RSS.Haq [34]studied ordered partially subset sampling and consider the applications of this method to parametric inference.Al-Omari et al.[35]suggested a new RSS procedure called Truncation Based RSS (TBRSS),and showed that their estimator is unbaised of the population mean of symmetric distributions.Al-Nasser et al.[36]suggested minimax RSS method.Haq et al.[37]proposed the Hybrid ranked set sampling scheme.Wang et al.[38]investigated general ranked set sampling with cost consideration.Muttlak [39]introduced median ranked set sampling with concomitant variables and a comparison with ranked set sampling and regression estimators.For applications and new techniques based on RSS,we refer the readers to the references [40-44].

    In this paper,we extended the work in this area and proposed two new improved RSS designs called the Simple Z Ranked Set Sampling (SZRSS) and the Generalized Z Ranked Set Sampling (GZRSS) methods.For some cases,SZRSS becomes a particular case of GZRSS design.The proposed sampling procedure estimator is unbiased of the population mean for symmetric distributions.It is shown,theoretically and numerically,that under perfect and imperfect rankings for symmetric non-uniform distributions,the proposed mean estimators under the GZRSS design are more efficient than those obtained by RSS and TBRSS.For asymmetric distributions,the proposed estimators based on GZRSS are more precise as compared to the estimators based on RSS and TBRSS.Also,we extended our sampling designs for estimating the population median.The efficiency of the suggested median estimators under GZRSS is better than that based on the RSS and TBRSS estimators,for symmetric non-uniform and asymmetric distributions.The GZRSS estimator of the population mean is investigated based on perfect and imperfect rankings,and is also compared to the SRS linear regression mean estimator.It is noteworthy that for small to moderate correlation between the auxiliary and study variables,the proposed estimators are more efficient than the SRS linear regression estimator of the population mean.

    This paper is organized as follows.Some sampling methods are presented in Section 2.The proposed ZRSS designs are described in detail in Section 3.The problem of errors in ranking and a comparison with the SRS linear regression estimator is discussed in Section 4.The problem of estimating the population median is considered in Section 5.A detailed application to real data is given in Section 6,and finally,the paper is concluded in Section 7.

    2 Sampling Methods

    In this section,we explain some existing sampling schemes considered in this study.

    2.1 Ranked Set Sampling

    We describe the RSS design as follows:

    Step 1:Given the value of sample size,saym,identifym2units from the corresponding population.

    Step 2:These units are randomly allocated tomsets such that the size of each set ism.

    Step 3:Now,rank the units within each set,this ranking can be done visually or by an inexpensive method with respect to the study variable.Then select the smallest ranked unit from the first set ofmunits.Similarly,select the second smallest ranked unit from the second set ofmunits.The procedure continues until the largest ranked unit is selected from the last set.This completes a cycle of a ranked set sample of sizem.

    Step 4:For a large sample size,sayn,the above steps are repeatedrtimes until size of the sample becomesn=mr,forr≥1.

    LetZbe the variable of interest with a distribution function (cdf)F(z)and a probability density function (pdf)f(z).Suppose thatZhas a meanμand a varianceσ2.LetZ1,Z2,...,Zmbe a SRS of sizemdrawn from the pdff(y),i.e.,Zi~f(z),fori=1,2,...,m.Then,the mean of SRS is denoted by(an unbiased estimator ofμ),and variance isSuppose thatZij,i,j=1,2,3,...,mbemindependent SRS each of sizem.LetZi(1:m),Zi(2:m),...,Zi(m:m)denotes the order statistics of theith sampleZi1,Zi2,...,Zim.Now,implement the RSS method tomselected samples.This gives a balanced RSS of sizem,Z1(1:m),Z2(2:m),...,Zm(m:m).The RSS mean estimator is denoted by=Assuming thatg(i:m)(z)be the pdf of theith order statisticZ(i:m),and noting that for eachi,Zi(i:m)Z(i:m),wheredstands for equality in distribution.The pdf of theZ(i:m)is given byg(i:m)(z)={1?F(z)}m?i f(z),?∞

    2.2 Truncation Based RSS

    As we mentioned in the introduction that Al-Omari et al.[35]derived the TBRSS design;its describtion is as follows:

    Step 1:Choosemby SRS of sizemeach from the parent population.

    Step 2:Within each choden sample,rank the units visually based on the variable of interest or by any inexpensive method.

    Step 3:Define a coefficientδ=[αm],for 0≤α <0.5.Note that [t]denotes the integer part oft.

    Step 4:Choose the minumum ranked unit from the firstδsamples and the maximum ranked unit from the lastδsamples.From the remainingm?2δ,choose theith ranked unit from theith sample fori=δ+1,...,m?δ.

    Step 5:This finalizes a cycle of a TBRSS.Steps 1-4 are repeatedrtimes if needed to determine a sample of sizen=mr.

    The corresponding estimator of population mean based on TBRSS is=The estimatorbecomes unbiased if the population is symmetric.For symmetric populations,the variance ofis=Note that forδ=0,1,For samples of odd sizes,whenδ=(m?1)/2,The TBRSS and ERSS become equivalent.For further details and application of this method,see Al-Omari et al.[35].

    3 New Sampling Designs

    This section introduces two new RSS methods;namely,simple Z ranked set sampling (SZRSS)and generalized Z ranked set sampling (GZRSS) designs.

    3.1 Simple ZRSS Design

    The SZRSS procedure for both even and odd samples is described as follows.To get an SZRSS ofmsize,selectmrandom samples each of sizem.Without yet knowing the values in the samples,rank the units within each sample based on any inexpensive or cost free method.

    i) For evenm,choose the(i+1)th smallest ranked unit from the firstm/2 samples,fori=1,...,m/2.Similarly,choose(i?1)th the smallest ranked unit from the lastm/2 samples,fori=(m/2)+1,...,m.

    ii) For odd sample sizem,choose the(i+1)th smallest ranked unit from the first(m?1)/2 samples,fori=1,...,(m?1)/2.Then select the median of the((m+1)/2)th sample.From the last(m?1)/2 samples,select the(i?1)th smallest ranked unit,fori=(m+3)/2,(m+5)/2,...,m.

    This process provides a cycle of an SZRSS of sizemThe cycle are repeatedrtimes to determine the sizen=mr.The SZRSS estimator ofμfor an evenmis

    Lemma 1:(i) For symmetric distributions,the estimator(J=E or O) of the population meanμis unbiased.(ii) Var()

    Proof:

    (i) For the estimator,given in Eq.(1),we haveFor any symmetric distribution,μ(i:m)?μ=μ?μ(m?i+1:m),fori=1,2,...,m.After some simplications,we can writeFollow the same process to prove that

    (ii) The variance of Eq.(1) is defined as

    For any symmetric distribution,i=1,2,...,m.With some algebraic operations,we can writeNote that the variance decreases asiincreases for symmetric (non-uniform) distributions,with minimum value occuring ati=[(m+1)/2],i.e.,≤fori,j=1,2,...,[(m+1)/2]withi≥j.Here,[t]represents the greatest integer value oft.Therefore,and hence,which completes the proof.Follow the same process to prove that

    3.2 Generalized ZRSS Design

    Now,we propose a generalized ZRSS (GZRSS) design.The steps of selecting a GZRSS are given below in which the Steps 1-3 are similar to the TBRSS method.

    Step 1:Choosemsimple random samples,each with sizemselected from the corresponding population.

    Step 2:Within each sample,rank the units visually with respect to the variable of interest or by inexpensive or cost free method.

    Step 3:Define a coefficientδ=[αm],for 0≤α<0.5 and [t]symbolizes the integer value oft.

    Step 4:From the firstδsamples,draw the(i+1)th smallest ranked unit.From the lastδsamples,draw the(i?1)th smallest ranked unit.But from the remainingm?2δsamples,draw theith ranked unit from theith sample fori=δ+1,...,m?δ.

    Step 5:Previous steps finalize a cycle of a GZRSS of sizem.Steps 1-4 are donertimes if needed to determine a sample of sizen=mr.

    LetZ11,Z12,...,Z1m,Z21,Z22,...,Z2m,...,Zi1,Zi2,...,Zim,...,Zm1,Zm2,...,Zmmbemindependent simple random samples each of sizem.The GZRSS estimator of population meanμbased on this sample is

    and the corresponding variance isNote that forδ=0,we have

    Lemma 2:For symmetric distributions about its population meanμwe have

    Proof:

    (i) Take the expectation of,given in Eq.(2),we haveAsμ(i:m)?μ=μ?μ(m?i+1:m),fori=1,2,...,m.Therefore,we can writewhich completes the proof.

    (ii) Consider the estimator,given in Eq.(2),we have

    For any symmetric distribution,i=1,2,...,m.After some simplication,we can writeAs explain above,for symmetric (non-uniform) distributions,σ2(i:m)≤σ2(j:m)fori,j=1,2,...,[(m+1)/2]withi≥j.

    Therefore,σ2(1:m)>σ2(k+1:m)and hence,The equality is attained

    whenk=0,which completes the proof.

    As mentioned above,for symmetric (non-uniform) distributions,σ2(i:m)≤σ2(j:m)fori,j=1,2,...,[(m+1)/2]withi≥j.Therefore,all of the above differences are positive and henceThe equality is attained whenδ=0,which completes the proof.

    In the case of symmetric of the parent distribution,theEffofwith respect tois defined byFor asymmetric populations,theEffwill beNow,to illustrate the method,some choices of the sample sizemand the coefficientδare considered for normal and Weibull distributions.

    3.3 Examples

    3.3.1 Normal Distribution

    LetZ~N(0,1),where?∞

    Case I:δ=0:The computed results for expectation and the variance of the estimator,given in Eq.(2),are,respectively,=0.0721.TheEffofwith respect tois given by

    Case II:δ=1:The expectation ofis=0 and variance0.0613.TheEffofwith respect tois

    Case III:δ=2:The expectation of the estimator given in Eq.(2) iswith varianceTheEffofwith respect tois3.3703.

    3.3.2 Weibull Distribution

    LetZ~Weibull(2,1),having pdff(z)=z >0.The cdf and pdf of theith ranked unit from a ranked set sample form=5,respectively,areG(i:5)(z)=BetaRegularizedandg(i:5)(z)=

    Form=5,we haveBased on the order statistics,the means and variances areμ(1:5)=0.3963,μ(2:5)=0.6302,μ(3:5)=0.8479,μ(4:5)=1.0946,μ(5:5)=1.4619,andσ2(1:5)=0.0429,σ2(2:5)=0.0528,σ2(3:5)=0.0643σ2(4:5)=0.0850,σ2(5:5)=0.1459,respectively.Also,the cases below forδcan be treated as follows:

    Case I:Consider δ=0:

    Case II:Consider δ=1:Similarly,the mean (expectation) and variance ofare=0.8595 and=0.0135,respectively.As the estimator is not unbiased,therefore,the MSE ofis given byThe bias ofis=?0.0266.Therefore,=0.0143.TheEffofwith respect tois

    Case III:Considerδ=2:The mean and variance ofare=0.8537 and=0.0132.Again the estimator is biased with=?0.0324 andTheEffofwith respect tois

    Table 1:Exact Eff of mean estimators under symmetric distributions

    Now,we consider the mean estimation for some symmetric distributions,and also for some asymmetric distributions.The exact relative efficiencies of our proposed estimators are presented in Tabs.1 and 2.

    Tabs.1 and 2 show that,for symmetric distributions,the efficiency of the GZRSS increases as theδvalue increases except in the case of the uniform distribution.In the case of asymmetric distributions,generally,the efficiencies increase whenδincreases for 0 to 1,and they decrease function whenδ>1.For both asymmetric and symmetric distributions,the relative efficiency of mean estimators under GZRSS is an increasing function of the sample size.For all considered cases,GZRSS is more efficient than RSS and TBRSS except that TBRSS is more adequate than GZRSS when the considered distribution is standard uniform.

    4 Errors in Ranking and Comparison with SRS Regression Estimator

    We investigate the fulfillment of the suggested estimators for the mean under both GZRSS design and imperfect rankings.The suggested estimators under both rankings’ schemes are also compared with the SRS for the population mean based on the linear regression estimator.

    4.1 Errors in Ranking

    Accurate ranking increases the efficiency of the RSS.However,Dell et al.[3]show that even if the ranking has some errors,the estimator under RSS still remains unbiased and performs at least as well as the SRS estimator.Here,we study the performance of the estimators under the proposed RSS designs,when ranking has some errors.The mostly used RSS model to study the effect of errors in ranking is based on the ranking with respect to a concomitant variable that is correlated with the study variable.The efficiency of the estimator now depends on the correlation value between the study variableZand the concomitant or ancillary variableW.Stokes [4]suggested a model for imperfect ranking assuming that an ancillary variableWis available,can be simply measured and is correlated with the interest variableZ.For further details see Stokes [4],Patil et al.[5]and Muttlak [39].Stokes [4]imposed the following assumptions considered in developing the following model:

    (i) The relationship betweenZand the regressorWis linear,

    Table 2:Exact Eff comparison of mean estimators under asymmetric distributions

    If(Z,W)follows the bivariate normal distribution,then both conditions are easily satisfied.Following Stokes [4]and (i),we can writeZ[i:m]=μZ+i=1,2,...,m,where whereρis the coefficient of correlation,σZandσWare the population standard deviations,μZandμWare the corresponding means.Note that the ranking of the auxiliary variableWis perfect whereas the ranking ofZis imperfect,i.e.,the ranking ofZhas some errors.Here,W(i:m)andZ[i:m]denote theith order statistic and theith judgment order statistic of a random sample of sizem.ξidenotes the error term with zero mean and a constant variance,i.e.,E(ξi)=0 and Var(ξi)=As SZRSS becomes a special case of GZRSS,therefore,we consider the estimator based on GZRSS.Now,the mean of the study variableZwith ranking based on the auxiliary variableWunder GZRSS can be written aswhereis unbiased estimaor ofμY,and it variance isNote that if we considerδ=0 in,then it becomes the simple RSS estimator of population mean.The efficiency ofwith respect tois

    The exact efficiencies of our proposed estimators under GZRSS with respect to RSS and TBRSS are given in Tab.3.

    It is clear from the results given in Tab.3 that,as the efficiencies under each design are a function of the correlation coefficientρ,i.e.,as the value ofρincreases,the relative efficiencies increase and vice versa.As expected,the increase in the sample size also increases the efficiency of the estimator under each of the RSS design.The proposed estimators are better than the existing counterparts.

    4.2 Comparison with Regression Estimator Based on SRS

    Patil et al.[5]compared the estimator of a population mean under RSS with the regression estimator based on SRS.It is shown that for a small correlation between the study variable and the ancillary variable,the RSS mean estimator is better than the regression estimator under SRS.In this section,we compare the performance of the proposed mean estimator under GZRSS with respect to the SRS regression estimator.It is assumed that the population mean of the ancillary variable is known.Following Muttlak [39],the linear regression ofZonWisZi=α+βWi+ξi,i=1,2,...,m,whereαandβare the intercept and slope of the regression line.Here,ξiis error term with zero mean.The linear regression estimator of the population meanμZwhenμWis known is

    whereandare the corresponding sample mean ofZandW,based on an SRS of sizem.Note that,is the least square estimator of the slopeβof the regression line.Sukhatme and Sukhatme (1970) showed that the regression estimator given in Eq.(3) of the population meanμZis an unbiased estimator once the joint distribution ofZandWis a bivariate normal distribution.The variance ofis given byIn case of perfect ranking,theEffofrelative tois given bySimilarly,in case of imperfect ranking,theEffofrelative tois given by

    In Tab.4,we provide exact relative efficiencies of the proposed estimators with respect to the classical linear regression estimator of mean.Note that the proposed mean estimator with perfect ranking under GZRSS outperforms other competitor estimators when the value ofρis less than 0.9.

    Similarly,in Tab.5,we compared the performance of the suggested estimators under imperfect ranking with respect to the linear regression estimator.It is worth mentioning that even when there are errors in ranking,the proposed estimator is still more efficient than the linear regression estimator when the value ofρis less than 0.8.The efficiencies of the newly estimators are high based on perfect ranking as compared with the case of imperfect ranking.Note that here RE is a decreasing function of sample size because the performance of linear regression estimator is increasing with the increasing of the sample size.For all of the cases,GZRSS mean estimator always performs better than the TBRSS estimator.

    Table 4:The Eff of the SRS linear regression estimator with respect to the GZRSS estimator based on perfect ranking

    Table 5:The Eff of the SRS linear regression estimator with respect to the GZRSS estimator based on imperfect ranking

    5 Estimation of Population Median

    Estimation of the population median based on the sampling methods,studied in this paper,is presented in this section.LetQbe the population median andZ1,Z2,...,Zmbe an SRS of sizem.Then,the median estimator is given byfor oddm,andfor evenm.From RSS units of sizem,i.e.,Z1(1:m),Z2(2:m),...,Zm(m:m),the population median estimator based on the RSS isThe corresponding population median estimator based on the GZRSS is=medianThe efficiencies ofandwith respect to,are given bywhereh=GZRSS,RSS.The estimated MSE of any median estimator is defined ash=GZRSS,RSS,SRS.The median estimation of some symmetric and asymmetric distributions is considered here based on extensive Monte Carlo simulations.The obtained results are presented in Tabs.6-8.

    Table 6:Eff comparison of median estimators under symmetric distributions

    Table 7:Eff comparison of median estimators under asymmetric distributions

    The results,given in Tabs.6 and 7,reveal that the attainment in efficiency determined by using the GZRSS method.For instance,whenm=7 andδ=2,the RE of the GZRSS is 3.5187 for estimating the median of the student’stdistribution.Also,GZRSS is more efficient than RSS and TBRSS based on the same sample size for a fixed value ofδ.To study the performance of the proposed median estimators under GZRSS for imperfect rankings,we have considered standard bivariate normal distribution.The relative efficiencies of the median estimators are obtained for different values of correlation coefficient using extensive Monte Carlo simulations and are displayed in Tab.8.

    According to the results given in Tab.8,the median estimators under proposed designs are at least as efficient as compared with the SRS median estimator.Here,the relative efficiencies are also increasing function ofmandρ.The results under GZRSS are efficient as compared to RSS and TBRSS under perfect and imperfect rankings.

    Table 8:Eff comparison of median estimators under bivariate normal distribution

    6 An Application to Real Data

    To illustrate the use of the GZRSS method in the field,a real data set is considered for both mean and median estimation.This real data set is considered by Platt et al.[45]and it is related to the height and diameter of 399 conifers (Pinus Palustris) trees.The data consists of 7 variables of which we have considered only 2 variables.Let the variable of interestZrepresents the height of the conifer tree measured in feet while the ancillary variableWis the diameter of the tree at breast height.In Tab.9,we provide the summary statistics of the data,and the corresponding plots of the data are displayed in Fig.1.

    Table 9:Statistics summary of the trees data

    Figure 1:List plot (left) and histogram (right) of the 399-tree data

    Table 10:The Eff of estimating of the population mean and median of the study variable based on perfect and imperfect rankings

    For the diameter and the height,the coefficients of skewness are 0.884 and 1.619 respectively,indicating that these data are non-symmetric.The MSEs for various estimators (under SRS,RSS,TBRSS and GZRSS methods) were calculated by one million iterations.The obtained results are summarized in Tab.10.The samples were drawn using SRS without replacement.The results given in Tab.10 are the mean and median estimation values of the trees’ heights under perfect and imperfect rankings.These results demonstrate that the GZRSS estimators are more efficient than their competitors.As we concluded in the above sections,the RE increases as sample size increases and vice versa.The perfect ranking provides efficient estimates than imperfect ranking.Also,the relative efficiencies under GZRSS in median estimation are greater than mean estimation because the data is asymmetrically distributed.The GZRSS is recommended for estimating the mean and median of the trees data.

    7 Conclusions

    We propose two new efficient RSS sampling methods for estimating the population mean and median.The proposed estimators based on the new designs are compared with their competitors using SRS,RSS and TBRSS techniques based on the same number of quantified units.It turns out that the GZRSS estimators of the population mean for symmetric populations are unbiased.It is worth mentioning that for non-uniform symmetric distributions,under perfect and imperfect rankings,the mean estimators under the proposed GZRSS are more efficient than those under SRS,RSS and TBRSS methods.We also compare the performance of the mean estimator under GZRSS with the SRS linear regression estimators.It is observed that for small and moderate correlation between the study and ancillary variables,the suggested estimators are more efficient than the SRS linear regression estimator for perfect and imperfect rankings.Therefore,we recommend the use of the proposed sampling methods over the existing RSS methods,considered here.The proposed methods,in this paper,can be considered in many real applications,such as mean estimation in case of missing data [46],quality control charts for monitoring the process mean [47],and in acceptance sampling plans [48,49].

    Funding Statement:The authors extend their appreciation to Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Program under Grant No.R.G.P.2/68/41.I.M.A.and A.I.A.received the grant.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    中出人妻视频一区二区| 精品熟女少妇八av免费久了| 国产精华一区二区三区| 午夜精品在线福利| 在线av久久热| 午夜福利影视在线免费观看| 亚洲专区中文字幕在线| 黄色视频不卡| 久99久视频精品免费| 久久久久精品国产欧美久久久| 免费日韩欧美在线观看| 国产男靠女视频免费网站| 天堂√8在线中文| 久久精品成人免费网站| 夫妻午夜视频| av免费在线观看网站| tube8黄色片| 视频区欧美日本亚洲| 国产精品成人在线| 正在播放国产对白刺激| 黑人巨大精品欧美一区二区mp4| 天天影视国产精品| 91av网站免费观看| 亚洲第一欧美日韩一区二区三区| 超碰成人久久| 精品一区二区三卡| 国产亚洲欧美在线一区二区| 99热国产这里只有精品6| 淫妇啪啪啪对白视频| 久热爱精品视频在线9| 啦啦啦免费观看视频1| 久久中文字幕一级| 国产单亲对白刺激| 老司机亚洲免费影院| 男女午夜视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 少妇的丰满在线观看| 亚洲国产欧美网| 欧美+亚洲+日韩+国产| 国产欧美日韩精品亚洲av| 国产成人影院久久av| 欧美中文综合在线视频| 国产精品免费视频内射| 午夜免费观看网址| 久久九九热精品免费| 欧美精品av麻豆av| 动漫黄色视频在线观看| www.999成人在线观看| 亚洲人成电影观看| 午夜免费鲁丝| 久久久久久久国产电影| 久久国产精品大桥未久av| 三级毛片av免费| 窝窝影院91人妻| 亚洲精品中文字幕在线视频| 岛国毛片在线播放| 国产麻豆69| 久久 成人 亚洲| 久久久久久人人人人人| 午夜福利免费观看在线| 久久久久久亚洲精品国产蜜桃av| 热99国产精品久久久久久7| 国产野战对白在线观看| 亚洲精品中文字幕一二三四区| 最新在线观看一区二区三区| 欧美精品啪啪一区二区三区| 国产av一区二区精品久久| 天天操日日干夜夜撸| 777米奇影视久久| 超碰成人久久| 日本五十路高清| 一区二区日韩欧美中文字幕| 久久精品91无色码中文字幕| 亚洲情色 制服丝袜| 香蕉久久夜色| 免费在线观看影片大全网站| 午夜福利,免费看| 日韩三级视频一区二区三区| 亚洲欧美激情综合另类| 国产精品久久久久成人av| 亚洲国产精品sss在线观看 | 日韩欧美一区二区三区在线观看 | 欧美乱码精品一区二区三区| 午夜影院日韩av| 99国产综合亚洲精品| 性少妇av在线| 美女国产高潮福利片在线看| 久久精品国产清高在天天线| av福利片在线| 老司机深夜福利视频在线观看| 午夜福利视频在线观看免费| 亚洲黑人精品在线| 在线播放国产精品三级| 久久婷婷成人综合色麻豆| 中文字幕人妻丝袜一区二区| 久久久国产成人免费| 国产精品电影一区二区三区 | 最新在线观看一区二区三区| 国产精品免费视频内射| 岛国毛片在线播放| 国产成人欧美在线观看 | 十八禁人妻一区二区| 久久影院123| 日韩中文字幕欧美一区二区| 90打野战视频偷拍视频| 中文字幕色久视频| a级毛片黄视频| 一区福利在线观看| 久久精品91无色码中文字幕| 最近最新中文字幕大全电影3 | 精品免费久久久久久久清纯 | 捣出白浆h1v1| 操出白浆在线播放| 欧美性长视频在线观看| 精品人妻在线不人妻| 久久天躁狠狠躁夜夜2o2o| 国产高清videossex| 日韩中文字幕欧美一区二区| 黄色视频,在线免费观看| 国产精品欧美亚洲77777| 黄色成人免费大全| 黄色视频不卡| 大片电影免费在线观看免费| 国产精品乱码一区二三区的特点 | 国产精品影院久久| 99国产精品一区二区蜜桃av | 啦啦啦 在线观看视频| 美女 人体艺术 gogo| 欧美乱码精品一区二区三区| 午夜免费观看网址| 国产精品秋霞免费鲁丝片| 韩国av一区二区三区四区| 国产在线一区二区三区精| 露出奶头的视频| 在线av久久热| 动漫黄色视频在线观看| 狠狠婷婷综合久久久久久88av| 亚洲综合色网址| 欧美激情久久久久久爽电影 | 欧美激情极品国产一区二区三区| 国产成人一区二区三区免费视频网站| 热99国产精品久久久久久7| 国产野战对白在线观看| 色精品久久人妻99蜜桃| 国产成人免费无遮挡视频| 午夜免费成人在线视频| av超薄肉色丝袜交足视频| 制服人妻中文乱码| 亚洲国产欧美日韩在线播放| 最近最新中文字幕大全免费视频| 国产精品电影一区二区三区 | 伦理电影免费视频| 亚洲av成人不卡在线观看播放网| 亚洲一区二区三区欧美精品| 亚洲中文日韩欧美视频| 成年动漫av网址| 欧美乱妇无乱码| 一级毛片高清免费大全| 国产精品香港三级国产av潘金莲| 中文字幕人妻熟女乱码| 又黄又爽又免费观看的视频| 十八禁网站免费在线| 精品无人区乱码1区二区| 高清欧美精品videossex| 精品一品国产午夜福利视频| 欧美成狂野欧美在线观看| 成人精品一区二区免费| 天天影视国产精品| 久久性视频一级片| 午夜日韩欧美国产| 80岁老熟妇乱子伦牲交| 操美女的视频在线观看| 黄网站色视频无遮挡免费观看| videosex国产| 久久久久精品国产欧美久久久| 老熟妇仑乱视频hdxx| 丝袜美腿诱惑在线| 国产精品一区二区免费欧美| 午夜福利欧美成人| 国产熟女午夜一区二区三区| 国产精品国产高清国产av | 色综合婷婷激情| 亚洲国产看品久久| 18禁黄网站禁片午夜丰满| 亚洲国产精品合色在线| 91成年电影在线观看| 精品午夜福利视频在线观看一区| 悠悠久久av| 久久人妻熟女aⅴ| 成人影院久久| 村上凉子中文字幕在线| 制服诱惑二区| 亚洲av片天天在线观看| 亚洲 国产 在线| 国产精品九九99| 日韩有码中文字幕| 亚洲欧美精品综合一区二区三区| 精品久久久久久久毛片微露脸| 日韩欧美在线二视频 | 性少妇av在线| 亚洲精品中文字幕在线视频| 久久久久久久久久久久大奶| 亚洲午夜理论影院| 亚洲男人天堂网一区| 极品人妻少妇av视频| 欧美日韩精品网址| 日韩视频一区二区在线观看| 久久人人爽av亚洲精品天堂| 国产又色又爽无遮挡免费看| 国产国语露脸激情在线看| 亚洲色图av天堂| 久久久久精品人妻al黑| 伦理电影免费视频| 亚洲第一av免费看| 亚洲欧美激情综合另类| 美女视频免费永久观看网站| av网站免费在线观看视频| xxxhd国产人妻xxx| 人妻 亚洲 视频| 国产成人一区二区三区免费视频网站| 妹子高潮喷水视频| 亚洲欧美一区二区三区黑人| 人人妻人人添人人爽欧美一区卜| 无遮挡黄片免费观看| 国产色视频综合| 超碰成人久久| 国产一区二区三区在线臀色熟女 | 777久久人妻少妇嫩草av网站| 人人妻人人爽人人添夜夜欢视频| 亚洲精品国产一区二区精华液| 国产欧美日韩一区二区三区在线| 久久天躁狠狠躁夜夜2o2o| 亚洲国产欧美网| 宅男免费午夜| 欧洲精品卡2卡3卡4卡5卡区| 91成人精品电影| 久久精品亚洲av国产电影网| 手机成人av网站| 久久香蕉国产精品| 成人18禁高潮啪啪吃奶动态图| 精品人妻1区二区| 亚洲五月婷婷丁香| 757午夜福利合集在线观看| 啦啦啦 在线观看视频| 日韩欧美在线二视频 | 国产精品欧美亚洲77777| 老熟女久久久| 波多野结衣一区麻豆| 欧美不卡视频在线免费观看 | 女警被强在线播放| 天堂俺去俺来也www色官网| 国产精品九九99| 性少妇av在线| 女性被躁到高潮视频| a级片在线免费高清观看视频| 久久香蕉激情| a级毛片黄视频| 午夜福利免费观看在线| 人人妻人人添人人爽欧美一区卜| 1024香蕉在线观看| 久久久国产一区二区| 黑人巨大精品欧美一区二区蜜桃| 一区二区三区精品91| 久久久久久人人人人人| 久久性视频一级片| 国产精品98久久久久久宅男小说| 亚洲av日韩在线播放| 一级毛片精品| 亚洲av美国av| 在线播放国产精品三级| 一级a爱片免费观看的视频| 欧美人与性动交α欧美精品济南到| 一级毛片女人18水好多| 天天躁夜夜躁狠狠躁躁| 如日韩欧美国产精品一区二区三区| 欧美日韩瑟瑟在线播放| 欧美日韩亚洲综合一区二区三区_| 久久久久久久久免费视频了| 黄色女人牲交| 午夜成年电影在线免费观看| 亚洲成人免费av在线播放| 成人黄色视频免费在线看| 国产乱人伦免费视频| 国内毛片毛片毛片毛片毛片| 看黄色毛片网站| av视频免费观看在线观看| 操美女的视频在线观看| 亚洲全国av大片| 欧美成狂野欧美在线观看| av免费在线观看网站| 国产伦人伦偷精品视频| 韩国av一区二区三区四区| 99在线人妻在线中文字幕 | 欧美激情极品国产一区二区三区| 人妻丰满熟妇av一区二区三区 | 中文字幕人妻熟女乱码| 亚洲欧美一区二区三区久久| 欧美+亚洲+日韩+国产| 丝袜美腿诱惑在线| 久久草成人影院| 欧美成人午夜精品| 国产精品九九99| 女人被狂操c到高潮| www日本在线高清视频| 国产av一区二区精品久久| tocl精华| 99久久99久久久精品蜜桃| 国产又色又爽无遮挡免费看| 亚洲五月婷婷丁香| 热re99久久国产66热| 在线观看一区二区三区激情| 啪啪无遮挡十八禁网站| 搡老乐熟女国产| 天天躁夜夜躁狠狠躁躁| 亚洲精品中文字幕一二三四区| 亚洲欧洲精品一区二区精品久久久| 亚洲精品国产区一区二| 叶爱在线成人免费视频播放| 国产人伦9x9x在线观看| 12—13女人毛片做爰片一| 色94色欧美一区二区| 熟女少妇亚洲综合色aaa.| 国产精品影院久久| 日本撒尿小便嘘嘘汇集6| 欧美日韩亚洲高清精品| 两性夫妻黄色片| 黄色成人免费大全| a级毛片在线看网站| 女性被躁到高潮视频| 精品国产乱码久久久久久男人| 少妇猛男粗大的猛烈进出视频| 一本一本久久a久久精品综合妖精| 国内久久婷婷六月综合欲色啪| 午夜福利欧美成人| 熟女少妇亚洲综合色aaa.| 搡老岳熟女国产| 美女 人体艺术 gogo| 中文字幕制服av| 麻豆国产av国片精品| 麻豆乱淫一区二区| 大陆偷拍与自拍| 国产精品永久免费网站| 成人国产一区最新在线观看| 母亲3免费完整高清在线观看| 久久精品亚洲精品国产色婷小说| 丝袜美腿诱惑在线| 不卡av一区二区三区| 少妇裸体淫交视频免费看高清 | 黄色a级毛片大全视频| 丰满的人妻完整版| 成人18禁高潮啪啪吃奶动态图| 黄色女人牲交| 最新美女视频免费是黄的| 亚洲视频免费观看视频| 亚洲情色 制服丝袜| 欧美老熟妇乱子伦牲交| 欧美精品av麻豆av| 午夜福利,免费看| 两个人看的免费小视频| 高清视频免费观看一区二区| 久久青草综合色| 91精品三级在线观看| xxx96com| 99精品欧美一区二区三区四区| 久久ye,这里只有精品| 热99久久久久精品小说推荐| 国产aⅴ精品一区二区三区波| 国产av一区二区精品久久| 欧美国产精品一级二级三级| 日韩欧美一区二区三区在线观看 | 国产一区有黄有色的免费视频| 在线av久久热| 午夜福利欧美成人| 国产精品永久免费网站| 日韩欧美三级三区| 人人妻人人添人人爽欧美一区卜| 亚洲熟妇中文字幕五十中出 | 久久久久久免费高清国产稀缺| 两性夫妻黄色片| 国产精品久久久久久精品古装| 成人手机av| 成人特级黄色片久久久久久久| 国产成人影院久久av| 亚洲中文字幕日韩| 麻豆国产av国片精品| 每晚都被弄得嗷嗷叫到高潮| 日本一区二区免费在线视频| 国产在线一区二区三区精| 日本vs欧美在线观看视频| 精品亚洲成a人片在线观看| 最新在线观看一区二区三区| 日韩 欧美 亚洲 中文字幕| 国产男女内射视频| a级片在线免费高清观看视频| 国产精品一区二区免费欧美| 岛国毛片在线播放| 女人爽到高潮嗷嗷叫在线视频| 99精国产麻豆久久婷婷| 高清欧美精品videossex| а√天堂www在线а√下载 | 99精品久久久久人妻精品| 美女视频免费永久观看网站| 久久久精品国产亚洲av高清涩受| 天天躁狠狠躁夜夜躁狠狠躁| 欧洲精品卡2卡3卡4卡5卡区| 精品乱码久久久久久99久播| 中文字幕av电影在线播放| 国产精品.久久久| 一区二区三区国产精品乱码| 黄色视频,在线免费观看| 国产免费男女视频| 亚洲精华国产精华精| 黑人巨大精品欧美一区二区mp4| 亚洲五月婷婷丁香| 18禁观看日本| 国产区一区二久久| 午夜福利乱码中文字幕| av天堂久久9| 深夜精品福利| 免费一级毛片在线播放高清视频 | 天堂动漫精品| 男男h啪啪无遮挡| 免费高清在线观看日韩| www日本在线高清视频| a级毛片在线看网站| 亚洲中文字幕日韩| 国产极品粉嫩免费观看在线| 男女午夜视频在线观看| 亚洲国产中文字幕在线视频| 高清视频免费观看一区二区| 国产成人精品久久二区二区免费| 亚洲av第一区精品v没综合| 欧美精品亚洲一区二区| 久久精品亚洲av国产电影网| 伊人久久大香线蕉亚洲五| 国产区一区二久久| 一区二区日韩欧美中文字幕| 午夜免费鲁丝| 黑丝袜美女国产一区| 一本大道久久a久久精品| 满18在线观看网站| 欧美一级毛片孕妇| 亚洲精品久久成人aⅴ小说| 丰满人妻熟妇乱又伦精品不卡| 欧美黄色片欧美黄色片| 中文字幕高清在线视频| 免费女性裸体啪啪无遮挡网站| 手机成人av网站| 乱人伦中国视频| 精品一区二区三区四区五区乱码| 啦啦啦免费观看视频1| 欧美国产精品一级二级三级| 日本黄色日本黄色录像| 亚洲一区二区三区不卡视频| 中亚洲国语对白在线视频| 久久久久久免费高清国产稀缺| 18禁黄网站禁片午夜丰满| 无遮挡黄片免费观看| 亚洲国产中文字幕在线视频| 91精品三级在线观看| 在线国产一区二区在线| 满18在线观看网站| 妹子高潮喷水视频| 99热网站在线观看| 国产av一区二区精品久久| 亚洲在线自拍视频| 国产av精品麻豆| 欧美日韩精品网址| 69精品国产乱码久久久| 免费看a级黄色片| 色综合欧美亚洲国产小说| 国产av一区二区精品久久| 高潮久久久久久久久久久不卡| 欧美日韩中文字幕国产精品一区二区三区 | 一级毛片精品| 男女之事视频高清在线观看| 精品少妇一区二区三区视频日本电影| 99热国产这里只有精品6| tube8黄色片| 精品欧美一区二区三区在线| 纯流量卡能插随身wifi吗| 别揉我奶头~嗯~啊~动态视频| 91字幕亚洲| 色综合欧美亚洲国产小说| 精品乱码久久久久久99久播| 91在线观看av| 亚洲精品自拍成人| 精品电影一区二区在线| 久久久久国产一级毛片高清牌| 黄色女人牲交| 男男h啪啪无遮挡| 国产成人精品久久二区二区91| 一边摸一边做爽爽视频免费| 久久这里只有精品19| 巨乳人妻的诱惑在线观看| 精品第一国产精品| 91成年电影在线观看| 下体分泌物呈黄色| 中文字幕人妻熟女乱码| 99re在线观看精品视频| 91大片在线观看| 午夜福利在线免费观看网站| 黄色成人免费大全| 国产欧美日韩综合在线一区二区| 天天影视国产精品| 夜夜躁狠狠躁天天躁| 丝袜美腿诱惑在线| 亚洲中文字幕日韩| 国产区一区二久久| 亚洲,欧美精品.| 午夜91福利影院| 母亲3免费完整高清在线观看| 女人被躁到高潮嗷嗷叫费观| 少妇的丰满在线观看| 在线免费观看的www视频| 亚洲中文日韩欧美视频| a级毛片在线看网站| 亚洲专区中文字幕在线| 亚洲国产中文字幕在线视频| 岛国毛片在线播放| 成年版毛片免费区| 一级作爱视频免费观看| 天天影视国产精品| 一级毛片女人18水好多| 亚洲一码二码三码区别大吗| 建设人人有责人人尽责人人享有的| 极品人妻少妇av视频| 国产精品久久久人人做人人爽| 国产激情欧美一区二区| 交换朋友夫妻互换小说| 天天躁夜夜躁狠狠躁躁| 欧美国产精品一级二级三级| 人人妻人人澡人人爽人人夜夜| 9热在线视频观看99| 免费观看a级毛片全部| 久久国产精品男人的天堂亚洲| 亚洲情色 制服丝袜| 久久人妻福利社区极品人妻图片| 麻豆乱淫一区二区| 国产97色在线日韩免费| av在线播放免费不卡| xxxhd国产人妻xxx| 99国产精品一区二区蜜桃av | 久久草成人影院| 亚洲熟妇中文字幕五十中出 | 国产精品香港三级国产av潘金莲| 日日爽夜夜爽网站| 一级片免费观看大全| 欧美+亚洲+日韩+国产| 国内久久婷婷六月综合欲色啪| 一个人免费在线观看的高清视频| 亚洲五月色婷婷综合| 操美女的视频在线观看| 欧美黄色片欧美黄色片| 两性午夜刺激爽爽歪歪视频在线观看 | 一级作爱视频免费观看| 成年动漫av网址| 一级毛片高清免费大全| 久久久久国内视频| 新久久久久国产一级毛片| xxx96com| 亚洲av日韩在线播放| 纯流量卡能插随身wifi吗| 法律面前人人平等表现在哪些方面| videosex国产| 中文亚洲av片在线观看爽 | 亚洲,欧美精品.| 亚洲自偷自拍图片 自拍| 久9热在线精品视频| 啦啦啦免费观看视频1| 中文字幕av电影在线播放| 国产精品 国内视频| 亚洲少妇的诱惑av| 50天的宝宝边吃奶边哭怎么回事| 男女之事视频高清在线观看| 少妇粗大呻吟视频| 免费av中文字幕在线| 国产精品一区二区在线观看99| 久久香蕉精品热| 少妇的丰满在线观看| 久久久水蜜桃国产精品网| 国产精品99久久99久久久不卡| 日韩一卡2卡3卡4卡2021年| 亚洲男人天堂网一区| 女性被躁到高潮视频| 热99re8久久精品国产| 国产91精品成人一区二区三区| 好看av亚洲va欧美ⅴa在| 中文欧美无线码| 一a级毛片在线观看| 色播在线永久视频| 中文欧美无线码| 国产精品香港三级国产av潘金莲| 在线国产一区二区在线| 91国产中文字幕| av在线播放免费不卡| 亚洲国产欧美网| 欧美精品一区二区免费开放| avwww免费| 9191精品国产免费久久| 久久久久国内视频| 丁香欧美五月| 亚洲中文日韩欧美视频| 91国产中文字幕| 精品视频人人做人人爽| netflix在线观看网站| 欧美日韩视频精品一区| 一区二区日韩欧美中文字幕| av电影中文网址| 亚洲人成电影免费在线| 亚洲精品一二三| 99国产精品一区二区三区| 99久久国产精品久久久| 一本一本久久a久久精品综合妖精| 曰老女人黄片|