• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of Time Series Empowered with a Novel SREKRLS Algorithm

    2021-12-16 07:49:12BilalShoaibYasirJavedMuhammadAdnanKhanFahadAhmadRizwanMajeedMuhammadSaqibNawazMuhammadAdeelAshrafAbidIqbalandMuhammadIdrees
    Computers Materials&Continua 2021年5期

    Bilal Shoaib,Yasir Javed,Muhammad Adnan Khan,Fahad Ahmad,Rizwan Majeed,Muhammad Saqib Nawaz,Muhammad Adeel Ashraf,Abid Iqbal and Muhammad Idrees

    1School of Computer Science,Minhaj University Lahore,Lahore,54000,Pakistan

    2Prince Sultan University,Riyadh,11586,Saudi Arabia

    3Department of Computer Science,Riphah International University Lahore Campus,Lahore,54000,Pakistan

    4Department of Basic Sciences,Deanship of Common First Year,Jouf University,Sakaka,Aljouf,72341,Saudi Arabia

    5Directorate of IT,The Islamia University of Bahawalpur,Bahawalpur,63100,Pakistan

    6Department of Computer Science,University of Management and Technology,Lahore,54770,Pakistan

    7PUCIT,University of the Punjab,Lahore,54000,Pakistan

    Abstract:For the unforced dynamical non-linear state-space model,a new Q1 and efficient square root extended kernel recursive least square estimation algorithm is developed in this article.The proposed algorithm lends itself towards the parallel implementation as in the FPGA systems.With the help of an ortho-normal triangularization method,which relies on numerically stable givens rotation,matrix inversion causes a computational burden,is reduced.Matrix computation possesses many excellent numerical properties such as singularity,symmetry,skew symmetry,and triangularity is achieved by using this algorithm.The proposed method is validated for the prediction of stationary and non-stationary Mackey-Glass Time Series,along with that a component in the x-direction of the Lorenz Times Series is also predicted to illustrate its usefulness.By the learning curves regarding mean square error(MSE) are witnessed for demonstration with prediction performance of the proposed algorithm from where it’s concluded that the proposed algorithm performs better than EKRLS.This new SREKRLS based design positively offers an innovative era towards non-linear systolic arrays,which is efficient in developing very-large-scale integration(VLSI)applications with non-linear input data.Multiple experiments are carried out to validate the reliability,effectiveness,and applicability of the proposed algorithm and with different noise levels compared to the Extended kernel recursive least-squares(EKRLS)algorithm.

    Keywords:Kernel methods;square root adaptive filtering;givens rotation;mackey glass time series prediction;recursive least squares;kernel recursive least squares;extended kernel recursive least squares;square root extended kernel recursive least squares algorithm

    1 Introduction

    The Recursive least squares (RLS) algorithm is being studied for the previous two to three decades for solving well known linear signal processing problems such as object tracking,adaptive beamforming,control systems and channel equalization.RLS shows faster convergence than the Least Mean Square Algorithm.However,in non-stationary environments,the performance of the RLS algorithm slightly degrades.Extended RLS and Weighted Extended RLS Algorithm further extend the RLS family that significantly improves its performance in a non-stationary environment.Since the support vector machines have been successful in regression and learning techniques.A further extension to support vector machines is the kernel approach.To generate elegant and efficient nonlinear algorithms,the kernel approach is applied to linear signal processing algorithms such as Least Mean Square,Affine Projection,RLS,Extended RLS and Principal Component Analysis by reworking in the Reproducing Kernel Hilbert Spaces (RKHS) with the framed kernel trick.In recent decades,kernel-based learning algorithms such as vector machine learning,kernel discriminant analysis,kernel principal components analysis,etc.,have become widely known for research.In a complicated non-linear environment,these methods illustrate noticeable performance while dealing with regression and classification problems.The motive for the kernel-based approach is to transform content from inputs to feature space and then computing in the feature space through linear learning.The inputs have been transformed into the high dimensional feature space where they are linearly separable,and the linear computations have easily been applied.The famous kernel trick makes an inner product of the inputs linear while working in the high dimensional feature space.Kernel methods such as kernel LMS,kernel RLS,Kernel Affine Projection Algorithm,Extended kernel RLS,and kernel Principal component analysis have gained enormous popularity in the recent past while applied to many complex nonlinear problems [1-4].

    To increase the precision and accuracy of the kernel RLS algorithm,an error amending technique for the forecasting of the short-term wind-power system is introduced.This method iteratively collected the data at several intervals and gave a hybrid model for regression in wind power forecasting systems.On the other hand,after carefully selecting the input variables or data window length,this method also captures the characteristics of fluctuation because of the spatial and temporal correlations in wind farms identification error [5].

    The restricted window length in the sliding window KRLS algorithm appears to have an inability of handling temporal data points on a larger scale of time.A concept of the reservoir is established that contains a larger number of hidden units.All the units are interconnected sparsely and are viewed as a temporal structure that transforms the time series forecasting history into a particular state space in high dimensional feature space.The KRLS algorithm is used to estimate the relationship between the target and the reservoir state [6].

    The prediction of the transition matrix in RKHS is a challenging task.To cope with this issue,an extension in the EKRLS is introduced that constructed the state model in the conventional state space,and the Kalman filter is used to estimate the hidden states.The KRLS Algorithm estimates concealed states in model measurement.This approach shows suitable flexibility in estimating the noise model and allows a linear mapping in RKHS [7].

    Kernel adaptive filters use kernel functions that exhibit smoothness,symmetry,and linearity on the entire input domain.The activation function in the neural networks is also a kind of symmetrical kernel function.A flexible kernel expansion-based activation function reduces the overall cost of the system.By using kernels as an activation function in the neural networks helps in approximating the comprehensive mapping specified across a subset on a real line,either non-convex or a convex one [8].

    As a network grows with the incoming data samples,the overall computation time and memory time increases.A compact and accurate method of restricting network’s size can accelerate the learning time and computational burden in the kernel adaptive filtering.A least important data sample is removed from the dictionary and ordering the remaining data in centers by the value of their importance.This pruning technique to KRLS dramatically improves the convergence time of KRLS [9].

    Linear LMS is used for training the weights in the Cerebellar Model Articulated Neural(CMAC) Network in an online manner [10].CMAC method is a fast converging method,and typically only one epoch is required,so there is no issue of selecting a suitable learning rate.The use of the RLS algorithm in CMAC for weight updating is computationally inefficient [11-14].Kernel methods for CMAC,on the other hand,does have a computational burden,but the memory requirement and modeling capabilities are somehow improved [15,16].

    This research work presents a novelty of the square root EKRLS algorithm with a spontaneous dynamic model’s prediction for chaotic stationary and non-stationary time series.The square root version of EKRLS converges fast as compared to the EKRLS.The computational burden is also lowered because of the givens rotation that gives excellent online numerical stability.At each time step,the new patterns are added in the data window of the given’s rotation in the triangular form,and the rotations are performed with sines and cosines that avoid inverse at each iteration.The usefulness of the proposed algorithm is checked on the estimation for stationary and non-stationary cases of the chaotic and non-linear Mackey Glass time series prediction.

    The structure of the given paper is constructed with six sections.In,Section 2 details about the Extended RLS algorithm are presented.Section 3 carries a brief introduction of kernels and EKRLS.A unique unforced dynamical model of the proposed SREKRLS algorithm has discoursed in Section 4.For simplicity,all deviations and formulation of the algorithm are performed with the help of real variables.Section 5 holds the result of the simulation and discussion under the proposed framework.Conclusion and future directions are presented in Section 6.

    2 Algorithms

    When describing sequential approximation,a generic linear state-space model is given as:

    Eq.(1) represents the space model,and Eq.(2) represents an observation model.Here A,n(i)andv(i)represents the state transition matrix,state noisen(i)and even the process noise or observation.The state model is commonly referred to as the process equation,while the observation model is referred to as the measurement equation.Either the noises are white as well as the Gaussian distribution.Tab.1 shown Algorithm 2,which contains a summary of the Extended recursive least square algorithm (ERLS).

    Table 1:Algorithm 2 ERLS

    3 Introduction to Kernel Methods and EKRLS Algorithm

    This section is about the detailed description of positive definite kernels,feature space,or reproducing kernel Hilbert space,then the EKRLS algorithm along-with brief short details of the algorithm.

    3.1 Kernels

    The intended theme of using kernel functions is carrying out the transformation of points(xi)of input data to F a feature space asφ(x(i)).To discover the presence of linear relationships in data,several different methods can be applied in feature space [2].Symmetric,continuous,and positive definite property is maintained by the kernel method.k:X×X→R,X:input domain,a subset of Rm.The Gaussian kernel function is perhaps the most widely used kernel function:-

    Here,the kernel’s width is represented byσ.An adaptive algorithm is aided by kernel function for the manipulation of converted input data in feature space.Kernel function allows the adaptive algorithm to manage transformed inputs in feature space not know co-ordinates of data in a given space.The kernel function maintains the property of symmetry and convexity throughout the domain.

    As per mercer’s principle [1,2]every kernel mechanism k(c,c′)masks or transforms the input data in high dimensional feature space (reproducing kernel Hilbert space) [8]and generally calculated through inner products,provided as:

    Thus mapping/projection is being performed asφ:U→F.This method is also known as the famous kernel trick.The specified scheme is recycled to develop an algorithm named kernel filtering.

    3.2 Extended Kernel Recursive Least Squares Algorithm

    Triggering through particular un-forced dynamical non-linear state-space model state model is given in Eq.(5).

    The measurement model is given in Eq.(6).

    With the mean of zero,the measurement noise is white as well as no process noise due to a spontaneous dynamic model.When considering the model as mentioned above,recurrent ERSL equations are written as:

    Eq.(7) is the difference equation named Riccati in feature space.By keeping in view,the dimensions of this equation.This equation will be Decomposed and adjusted in matrix form for further computations through the given’s notation.

    Figure 1:Cell structure of the square root elements

    In Fig.1,the primary cell structure is described in the given’s rotation using high dimension feature space.The transition matrix will be dependent on the value of lambda.

    Fig.2 described the complete architecture of the given rotation works in RKHS.In the first quadrant,the input is transformed in the high dimensional feature space using a positive definite Gaussian kernel function.Then the inverse of the Riccati difference equation is computed by decomposing the M(n)in the triangular form.

    Figure 2:Architecture of the given’s rotation in the feature space

    4 Proposed Square Root Extended Kernel Recursive Least Squares Algorithm

    To acquire KRLS rotation-based characteristic for the unforced dynamic model,we first totally disregard the term n(n) because qI reduces as well as organizes the essential terms in the form of a matrix consisting of the critical terms noted as:

    1.A 1×1scaler βn+φ(n)TM(n?1)φ(n)

    2.A 1×nvectorφ(n)TM(n?1)A

    3.A vector n×1 vector AM(n?1)φ(n)

    4.An n×nmatrix AM(n?1)AT

    Given four terms,it carries all the information regarding Riccati difference Eq.(7).By keeping an eye on the dimensionality of these terms,we can arrange the terms described above in the form of a matrix,and the combined form of these terms will be written as given below:-

    Its factored form yields.

    We interpreted the equation’s RHS (8) as one matrix’ product and its transposed term.Application of this interpretation &matrix decomposition Lemma,we then set the Eq.(5) and calculate the unspecified or unclear as in Eq.(9).

    Non-zero block elements of the matrix call it matrix B is made up of scalarb11(n),vector term b21(i)and matrix B22(n)that forms as a result of unitary rotationΘ(n).To determine the missing or unknown elements in Eq.(7),take a square on both sides of Eq.(9).

    By identifying point whichΘ(n)is a unit matrix and hence,it is resultantΘ(n)Θ(n)Tis equivalent to unity.The remaining concepts are worded as follows:

    When fulfilling the above mentioned in Eqs.(10)-(13).

    The conceptr(i)1/2is the one-half power variance.The second equation accounts for the gain together with the term of variance.The Cholesky state-error correlation factor matrix is given for the third term.

    Theβn/2and 0 elements in the pre-array induce 2 variables to be created:r(n)variance andg(n)gain.Both these variables come mainly from the division and squaring term ofThe series of equations Eq.(14) through Eq.(16) gives a specific description of the extended kernel Square root RLS and explicitly provides us with definitions of EKRLS parameters.However,irrespective of this,the actual practice of a rotation matrix isΘθwhich is a unit matrix excluding for 4 points wherever the pairs of the poleskandloverlap.The pairs of column’s rowskandlare symbolized as rowskand,respectively.A complete summary of an algorithm i s specified in Tab.2,articulates the calculation from pre-array to pasture.

    Table 2:SREKRLS (spontaneous dynamical model) algorithm

    5 Simulations and Results

    In this part of a given paper,the findings of the prediction of Mackey Glass Time Series and the x-component of the 3-dimensional prediction of the Lorenz time series are discussed with the aid of the suggested algorithm.

    5.1 Prediction of Mackey Glass Time Series(PMGTS)

    To estimate MGTS,we found both stationary and non-stationary time series in this experiment.The Mackey Glass Time Series is created using the delay differential equation given below:

    Withα=0.1,β=0.2and τ=20.So,we obtain a seriesx(t)fort=1,2,3,4,...5000 by the delay as mentioned above differential equation.The series is received by the continuous curve ofx(t)with the time of a one-second interval.The cost function of the time series projections/predictions is provided here ase=‖ydes?yobt‖2,here,ydes=wTxtr,wandxtrare represents the weights that have been trained and samples for training,respectively.yobt=wTxte,wdenote weights that are trained andxtedenote samples that are utilized for testing.

    5.1.1 Stationary Series

    In this experiment,the filter’s order is taken as 10,i.e.,x(t)=[x(t?10),x(t?9),x(t?8),...,x(t?1)]T,for the prediction of the current onex(t)previous 10 sample points are used as input.Three thousand (3000) sampling points have been used for training purposes,while the next 250 sample points are absorbed with the proposed EKRLS algorithm for testing.Training with 1501-4500 sample points on the stationary sequence for the output analysis of the proposed algorithm is performed,while 4600-4850 sample points are used to evaluate the proposed algorithm.During the training step,weights are modified and tested using all these modified weights;learning curves are produced to evaluate the proposed algorithm through MSE (mean square error).Noise is applied to time series with multiple variances for further validation of the proposed algorithm’s output.Five hundred (500) Monte Carlo simulations are run for algorithmic weights modification,and these modified weights are used for the sample prediction.To produce results,zero-mean additive noise with a variance of 0.09 is applied to series;see Fig.3.

    Figure 3:Mean square error curves with stationary MGTSP for EKRLS and SREKRLS while noise variance (NV)=0.09

    The algorithm parameters used are set as EKRLS(A=αI,?=0.01,P(0)=λI with λ=β=0.01795,α=0.3 and Gaussian kernel with a width of 0.2),and the offered SREKRLS(A=αI,?=0.01,P(0)=λI with λ=β=0.01795,α=0.3 and Gaussian kernel with a width of 0.3).

    AWG noise of variance (0.07) is applied to the unique series,and the estimated output of the suggested algorithm is enhanced by 0.01 dB.The noise level for the proposed algorithm is increased by a variance of 0.20 to confirm the output and outcomes further;enhancement of 0.07 dB is shown with the EKRLS algorithm.From tests,it’s derived that the proposed algorithm shows more noise robustness.

    The curves present in Fig.4 depict the progression of 0.04 dB through the noise of variance of 0.2 and 0.05 dB progression if the noise of variance of 0.1 is applied;data present in Tab.3 shows mean square error with different noise variances for EKRLS and SREKRLS.

    Figure 4:MSE curve of EKRLS and SREKRLS for stationary Mackey Glass Time series Prediction with noise variance 0.1

    See Tab.3 for a comparative analysis of the proposed algorithm with EKRLS at different noise variance levels.It is noted that SREKRLS gives more attractive results in terms of mean square error as comparedto EKRLS.It’s also observed that the proposed SREKRLS gives more accurate results with high noise variance.

    Table 3:Mean square error with stationary MGTSP at different noise variance

    5.1.2 Non-Stationary Series

    For more examination and validation of the proposed algorithm’s behavior in comparison with EKRLS,a non-stationary series with the addition of a sinusoidal (y=0.3sin(2πft),f=1/5000) with an amplitude of 0.3 having an occurrence of five thousand (5000) samples/second is summed up with original MGTSP.The same factors and samples are used as in stationary series.

    Figs.5-8 show that MSE curves when noise variance is set as 0.09,0.07,0.2,and 0.1,respectively.

    Figure 5:Mean square error with non-stationary MGTSP for EKRLS and SREKRLS while noise variance (NV)=0.09

    Tab.4 provides insight into the mean square error values for different values of noise variance(NV) with non-stationary MGTSP for both EKRLS and SREKRLS.

    5.2 Lorenz’Time Series Prediction

    The Lorenz series is a non-linear,3D,and deterministic equation.It is represented as a sequence of fractional differential equations provided under:

    Figure 6:Mean square error with non-stationary MGTSP for EKRLS and SREKRLS while noise variance (NV)=0.2

    Figure 7:Mean square error for x-component of LTSP of EKRLS and SREKRLS while noise variance is absent

    Lorenz’ unpredictable conduct on the parameters,α=10,γ=28and B=With the help of a first-order approximation procedure including a sample time of 0.001 s with some the initial conditions are defined asx(0)y(0)=1 andz(0)=1.This type of series is a threedimensional (3D) Lorenz series.Thus finding the component named as x of LTS and derive 5000 training incidences,i.e.,1500-4500 for the preparation of training the suggested algorithm and its corresponding part,while the rest of the 300 samples are utilized as a testing set.In terms of mean square error,learning curves in the absence of noise are shown in Fig.8.To predict the current one,the sequence of the filter is designated as three (3).The algorithm parameters can be optimized as EKRLS:(A=αI,?=0.01,P(0)=λIwith λ=β=0.01795,α=0.3andGaussian kernel with a width of 0.2),and the proposed SREKRLS(A=αI,?=0.01,P(0)=λIwithλ=β=0.01795,α=0.3and Gaussian kernel with a width of0.4).

    Figure 8:Mean square error for x-component of LTSP of EKRLS and SREKRLS while noise variance (NV)=0.09

    Table 4:Mean square error with non-stationary MGTSP at different noise variance

    In Fig.8 Proposed algorithm’s performance is evaluated without adding noise;performance improvement is recorded of 0.02 dB as compared to EKRLS.

    For further investigation in performance,noise variance of 0.09 is added in Lorenz Series’x-component,and performance is observed see Fig.8.

    Performance results produced by the proposed algorithm compared to EKRLS are displayed in Tab.5.When noise is present or absent,conditions are applied to series generated to the X-Component of LTSP with different noise variances.

    Table 5:Mean square error for x-component of LTSP of EKRLS and SREKRLS

    6 Conclusion

    The proposed algorithm offers an enhanced square root algorithm called Extended Kernel Recursive Least Square (EKRTS).The EKRLS algorithm topic is also presented with reasonable discussion.One version of the stationary and non-stationary Mackey Glass Time Series prediction is seen at various noise levels.By the learning curves regarding mean square error (MSE) are witnessed for demonstration with prediction performance of the proposed algorithm from where it’s concluded that the proposed algorithm performs better than EKRLS.For further testing,the validity of the proposed algorithm,LTSP’s x-component is also predicted.This new SREKRLS based design positively offers an innovative era towards non-linear systolic arrays,which is efficient in developing very-large-scale integration (VLSI) applications with non-linear input data.

    Acknowledgement:Thanks to our families &colleagues,who supported us morally.

    Funding Statement:This work is funded by Prince Sultan University,Riyadh,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    欧美一级a爱片免费观看看 | av福利片在线| 欧美另类亚洲清纯唯美| 美国免费a级毛片| 老汉色∧v一级毛片| 午夜福利一区二区在线看| 中文字幕另类日韩欧美亚洲嫩草| 国产成人一区二区三区免费视频网站| 99精品在免费线老司机午夜| 悠悠久久av| 国产私拍福利视频在线观看| 母亲3免费完整高清在线观看| 桃色一区二区三区在线观看| 91九色精品人成在线观看| 国产高清视频在线播放一区| 久久中文看片网| 日日干狠狠操夜夜爽| 99精品久久久久人妻精品| 波多野结衣一区麻豆| 欧美另类亚洲清纯唯美| 两个人看的免费小视频| 侵犯人妻中文字幕一二三四区| 亚洲av成人不卡在线观看播放网| 亚洲精品美女久久av网站| 一边摸一边抽搐一进一小说| 欧美国产日韩亚洲一区| 午夜激情av网站| 色在线成人网| 男女之事视频高清在线观看| 精品午夜福利视频在线观看一区| 色婷婷久久久亚洲欧美| 国产男靠女视频免费网站| 精品国产乱码久久久久久男人| 一区在线观看完整版| 久久久久精品国产欧美久久久| 岛国在线观看网站| 国产主播在线观看一区二区| 久久精品成人免费网站| 桃色一区二区三区在线观看| 精品久久久精品久久久| 亚洲欧美日韩无卡精品| 久久人妻福利社区极品人妻图片| 国产精品秋霞免费鲁丝片| 人妻丰满熟妇av一区二区三区| 欧美成人午夜精品| 人人妻人人爽人人添夜夜欢视频| 欧美成狂野欧美在线观看| 亚洲天堂国产精品一区在线| 精品少妇一区二区三区视频日本电影| 日韩 欧美 亚洲 中文字幕| 午夜亚洲福利在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 香蕉久久夜色| 日本欧美视频一区| 亚洲九九香蕉| 亚洲第一欧美日韩一区二区三区| 亚洲av五月六月丁香网| 色综合亚洲欧美另类图片| 日韩av在线大香蕉| 国产高清videossex| 97人妻天天添夜夜摸| 人人妻人人澡欧美一区二区 | 正在播放国产对白刺激| 国产精品日韩av在线免费观看 | 精品欧美一区二区三区在线| 中文字幕久久专区| 青草久久国产| 国产蜜桃级精品一区二区三区| 成人欧美大片| 法律面前人人平等表现在哪些方面| 国产av又大| 午夜福利在线观看吧| 黄频高清免费视频| 日韩三级视频一区二区三区| 日韩欧美一区二区三区在线观看| 午夜影院日韩av| 久久久久久人人人人人| 纯流量卡能插随身wifi吗| 亚洲中文字幕一区二区三区有码在线看 | 精品无人区乱码1区二区| 亚洲人成电影观看| а√天堂www在线а√下载| 黄色视频不卡| 88av欧美| 99精品欧美一区二区三区四区| 亚洲国产看品久久| 亚洲自拍偷在线| 欧美一区二区精品小视频在线| 国产精品免费视频内射| 白带黄色成豆腐渣| av专区在线播放| 国产精品永久免费网站| 蜜桃久久精品国产亚洲av| x7x7x7水蜜桃| 精品一区二区三区视频在线| 国产精品久久视频播放| 午夜亚洲福利在线播放| 91久久精品国产一区二区三区| 欧美黑人欧美精品刺激| 午夜a级毛片| 999久久久精品免费观看国产| av天堂中文字幕网| 亚洲va日本ⅴa欧美va伊人久久| 人人妻人人看人人澡| 十八禁国产超污无遮挡网站| 老司机午夜福利在线观看视频| 亚洲人成伊人成综合网2020| 1024手机看黄色片| 69av精品久久久久久| 国产精品日韩av在线免费观看| 色综合亚洲欧美另类图片| 亚洲成人久久性| 亚洲成av人片在线播放无| 欧美国产日韩亚洲一区| 亚洲成a人片在线一区二区| 久久久午夜欧美精品| 全区人妻精品视频| 免费看光身美女| 国产欧美日韩精品一区二区| 久久精品国产鲁丝片午夜精品 | 成人美女网站在线观看视频| 老司机福利观看| 午夜精品久久久久久毛片777| 少妇猛男粗大的猛烈进出视频 | 色在线成人网| 精品人妻偷拍中文字幕| 成年版毛片免费区| 中文字幕高清在线视频| 日本一本二区三区精品| 校园春色视频在线观看| 亚洲成a人片在线一区二区| 亚洲欧美清纯卡通| 午夜亚洲福利在线播放| 麻豆国产97在线/欧美| 日日撸夜夜添| 日韩中字成人| 国产午夜精品久久久久久一区二区三区 | 亚洲av第一区精品v没综合| 床上黄色一级片| 欧美黑人欧美精品刺激| 国产成年人精品一区二区| 搡女人真爽免费视频火全软件 | 色吧在线观看| 免费av毛片视频| 少妇丰满av| 亚洲精品在线观看二区| 精品一区二区三区视频在线观看免费| 99久久九九国产精品国产免费| 窝窝影院91人妻| 中文字幕久久专区| 久久国产精品人妻蜜桃| 欧美另类亚洲清纯唯美| 久久精品国产亚洲网站| 麻豆国产av国片精品| 久久午夜亚洲精品久久| 中亚洲国语对白在线视频| а√天堂www在线а√下载| 久久久久久大精品| 国产精品久久视频播放| 麻豆av噜噜一区二区三区| 日韩欧美国产在线观看| 久久久久国产精品人妻aⅴ院| 国产免费一级a男人的天堂| 国产 一区精品| 国产精品一区二区三区四区久久| 一个人免费在线观看电影| 亚洲四区av| 中出人妻视频一区二区| 午夜精品一区二区三区免费看| 黄色配什么色好看| 中文字幕av成人在线电影| 久久精品国产清高在天天线| 日韩欧美免费精品| 最近在线观看免费完整版| 老司机福利观看| 欧美日本视频| 亚洲电影在线观看av| 美女大奶头视频| 哪里可以看免费的av片| 一边摸一边抽搐一进一小说| 美女高潮的动态| 亚洲av中文字字幕乱码综合| 国产熟女欧美一区二区| 久久国产乱子免费精品| 国产国拍精品亚洲av在线观看| 精品免费久久久久久久清纯| 久久久色成人| 又爽又黄a免费视频| 欧美激情国产日韩精品一区| 我的老师免费观看完整版| 热99在线观看视频| 俄罗斯特黄特色一大片| 男插女下体视频免费在线播放| 啦啦啦啦在线视频资源| 日韩大尺度精品在线看网址| 国产精品亚洲一级av第二区| 国产免费av片在线观看野外av| 91久久精品国产一区二区成人| 欧美3d第一页| 91在线观看av| 成人国产一区最新在线观看| 免费高清视频大片| www.www免费av| 亚洲精品乱码久久久v下载方式| 日韩国内少妇激情av| 亚洲自拍偷在线| 99九九线精品视频在线观看视频| 很黄的视频免费| 黄色丝袜av网址大全| 国产午夜精品论理片| 88av欧美| 国产一区二区亚洲精品在线观看| 久久久久国内视频| 中文字幕免费在线视频6| 日本熟妇午夜| 欧美bdsm另类| 日本免费a在线| 两人在一起打扑克的视频| 看片在线看免费视频| 欧美三级亚洲精品| 丰满人妻一区二区三区视频av| 岛国在线免费视频观看| 中文字幕精品亚洲无线码一区| 国产精品伦人一区二区| 99久久精品国产国产毛片| 禁无遮挡网站| 午夜激情福利司机影院| 亚洲人成网站在线播| 亚洲av不卡在线观看| 亚洲精品乱码久久久v下载方式| 日日夜夜操网爽| 亚洲中文日韩欧美视频| 日韩精品中文字幕看吧| 国产一级毛片七仙女欲春2| 国产午夜精品久久久久久一区二区三区 | 日韩大尺度精品在线看网址| 乱码一卡2卡4卡精品| 亚洲欧美日韩高清在线视频| 免费一级毛片在线播放高清视频| 精品国内亚洲2022精品成人| 国产精品人妻久久久久久| 成年版毛片免费区| 亚洲专区中文字幕在线| 亚洲美女黄片视频| 丰满的人妻完整版| a级毛片a级免费在线| 69av精品久久久久久| 国产成人aa在线观看| 男人狂女人下面高潮的视频| 精品午夜福利视频在线观看一区| 日本黄色片子视频| 国产成人a区在线观看| 日韩一区二区视频免费看| 欧美激情久久久久久爽电影| 一进一出抽搐gif免费好疼| av在线观看视频网站免费| 啦啦啦观看免费观看视频高清| 久久久久久伊人网av| 国产色爽女视频免费观看| 在线免费观看不下载黄p国产 | 美女 人体艺术 gogo| avwww免费| 精品人妻视频免费看| 变态另类成人亚洲欧美熟女| 国产精品一区二区免费欧美| 国产av一区在线观看免费| 亚洲欧美精品综合久久99| 亚洲综合色惰| 成人综合一区亚洲| 亚洲无线在线观看| 精品一区二区免费观看| 国产精品福利在线免费观看| 久久久久久九九精品二区国产| 欧美区成人在线视频| 日本熟妇午夜| 看黄色毛片网站| 婷婷丁香在线五月| 97超级碰碰碰精品色视频在线观看| 免费一级毛片在线播放高清视频| 桃色一区二区三区在线观看| 99久久精品国产国产毛片| 夜夜爽天天搞| 啪啪无遮挡十八禁网站| 91在线精品国自产拍蜜月| 九九热线精品视视频播放| 丰满的人妻完整版| 日韩精品有码人妻一区| 亚洲国产精品sss在线观看| 日韩欧美 国产精品| 免费一级毛片在线播放高清视频| 亚洲国产精品久久男人天堂| 久久九九热精品免费| 欧美成人性av电影在线观看| 日本精品一区二区三区蜜桃| 丰满人妻一区二区三区视频av| 无遮挡黄片免费观看| 一区二区三区高清视频在线| 中文亚洲av片在线观看爽| av天堂中文字幕网| 国语自产精品视频在线第100页| 亚洲av中文字字幕乱码综合| av黄色大香蕉| 男女那种视频在线观看| 亚洲久久久久久中文字幕| 最新在线观看一区二区三区| 99在线视频只有这里精品首页| 亚洲精华国产精华精| 毛片一级片免费看久久久久 | 亚洲专区国产一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 国产欧美日韩精品一区二区| 亚洲av成人精品一区久久| 99久久成人亚洲精品观看| 午夜福利成人在线免费观看| 免费看日本二区| 亚洲av免费高清在线观看| 97热精品久久久久久| 亚洲av一区综合| 黄色视频,在线免费观看| 久久久久久国产a免费观看| 亚洲国产精品sss在线观看| 夜夜看夜夜爽夜夜摸| 看免费成人av毛片| 日韩,欧美,国产一区二区三区 | 麻豆一二三区av精品| 日韩欧美国产在线观看| 成人二区视频| 桃色一区二区三区在线观看| 一进一出抽搐动态| 可以在线观看的亚洲视频| 成人av在线播放网站| 日本欧美国产在线视频| 毛片女人毛片| 国内精品宾馆在线| 午夜精品在线福利| 国产亚洲精品久久久com| 1024手机看黄色片| 美女cb高潮喷水在线观看| 两个人视频免费观看高清| 免费大片18禁| 欧美日韩乱码在线| 偷拍熟女少妇极品色| 精品久久久久久久久av| 日韩强制内射视频| 69人妻影院| 亚洲内射少妇av| 亚洲精品色激情综合| 亚州av有码| 香蕉av资源在线| 最新中文字幕久久久久| 无遮挡黄片免费观看| 国产三级在线视频| 一个人看的www免费观看视频| 欧美不卡视频在线免费观看| 久久精品国产亚洲av涩爱 | 熟女人妻精品中文字幕| 国产人妻一区二区三区在| 午夜精品久久久久久毛片777| 午夜精品在线福利| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久末码| 少妇人妻精品综合一区二区 | 久久久久国产精品人妻aⅴ院| 精品人妻视频免费看| 淫秽高清视频在线观看| 午夜福利在线观看吧| 亚洲成a人片在线一区二区| 搡老熟女国产l中国老女人| 三级国产精品欧美在线观看| 国产高清激情床上av| 狠狠狠狠99中文字幕| 久久精品国产亚洲网站| 成人综合一区亚洲| av天堂中文字幕网| 国产91精品成人一区二区三区| 欧美日韩乱码在线| 国产精品久久久久久久久免| 亚洲无线观看免费| 97碰自拍视频| 日本精品一区二区三区蜜桃| 精品欧美国产一区二区三| 精品一区二区三区av网在线观看| 成人特级黄色片久久久久久久| 99久久精品热视频| 国模一区二区三区四区视频| 又爽又黄无遮挡网站| 国产亚洲精品av在线| 亚洲乱码一区二区免费版| 国产精品日韩av在线免费观看| 麻豆成人午夜福利视频| 观看免费一级毛片| 国产毛片a区久久久久| 亚洲中文字幕一区二区三区有码在线看| 久久精品久久久久久噜噜老黄 | 观看免费一级毛片| av福利片在线观看| 成年女人永久免费观看视频| 国产亚洲av嫩草精品影院| 在线播放无遮挡| 日本免费一区二区三区高清不卡| 91麻豆精品激情在线观看国产| 性插视频无遮挡在线免费观看| 亚洲男人的天堂狠狠| 黄色配什么色好看| 97人妻精品一区二区三区麻豆| 欧美性感艳星| 中出人妻视频一区二区| 国产乱人伦免费视频| 午夜a级毛片| 日韩欧美精品免费久久| 亚洲精品乱码久久久v下载方式| 国产在线精品亚洲第一网站| 国产精品98久久久久久宅男小说| 男女下面进入的视频免费午夜| 日本 欧美在线| 真实男女啪啪啪动态图| 不卡一级毛片| 天堂动漫精品| 51国产日韩欧美| 欧美高清成人免费视频www| 99国产极品粉嫩在线观看| 亚洲七黄色美女视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲一区二区三区色噜噜| 精品午夜福利在线看| 国产成人aa在线观看| 亚洲av中文字字幕乱码综合| 老熟妇仑乱视频hdxx| 精品久久国产蜜桃| 日本免费a在线| 蜜桃亚洲精品一区二区三区| 日韩精品中文字幕看吧| 日日撸夜夜添| videossex国产| 国产 一区 欧美 日韩| 欧美日韩国产亚洲二区| 国内揄拍国产精品人妻在线| 国产精品久久久久久av不卡| 欧美国产日韩亚洲一区| 国产在线男女| 国产精品人妻久久久久久| 国产亚洲精品综合一区在线观看| 久久国产精品人妻蜜桃| 亚洲成人久久性| 国产精品三级大全| 国产成人aa在线观看| 欧美人与善性xxx| 久久婷婷人人爽人人干人人爱| 国产人妻一区二区三区在| 国产探花极品一区二区| 国产乱人视频| 深爱激情五月婷婷| 国产又黄又爽又无遮挡在线| 久久久久久九九精品二区国产| 18禁在线播放成人免费| 亚洲av不卡在线观看| 国产极品精品免费视频能看的| 波多野结衣高清作品| 非洲黑人性xxxx精品又粗又长| 白带黄色成豆腐渣| 日韩欧美三级三区| 久久久久性生活片| 国产探花极品一区二区| 日日啪夜夜撸| 69人妻影院| 国产高清三级在线| 97碰自拍视频| 嫩草影院入口| 国产激情偷乱视频一区二区| 91av网一区二区| 男人和女人高潮做爰伦理| av专区在线播放| 国产不卡一卡二| 给我免费播放毛片高清在线观看| 搞女人的毛片| 亚洲精品色激情综合| 两人在一起打扑克的视频| 网址你懂的国产日韩在线| 免费看光身美女| 日韩欧美一区二区三区在线观看| 18禁裸乳无遮挡免费网站照片| 午夜激情福利司机影院| 99热这里只有是精品50| 悠悠久久av| 国产男人的电影天堂91| 色视频www国产| 亚洲人成网站在线播放欧美日韩| 国产不卡一卡二| 禁无遮挡网站| 免费av观看视频| 久久精品久久久久久噜噜老黄 | 午夜免费男女啪啪视频观看 | 麻豆成人av在线观看| 九色成人免费人妻av| 在线播放国产精品三级| 此物有八面人人有两片| 免费不卡的大黄色大毛片视频在线观看 | 人妻夜夜爽99麻豆av| 制服丝袜大香蕉在线| 亚洲久久久久久中文字幕| 中文字幕av成人在线电影| 免费观看人在逋| 精品久久久噜噜| 3wmmmm亚洲av在线观看| 欧美色视频一区免费| 婷婷亚洲欧美| 欧美日韩中文字幕国产精品一区二区三区| 麻豆av噜噜一区二区三区| 亚洲经典国产精华液单| 综合色av麻豆| 一卡2卡三卡四卡精品乱码亚洲| 国产一级毛片七仙女欲春2| 国内毛片毛片毛片毛片毛片| 国产成人a区在线观看| 久久精品国产自在天天线| 国产淫片久久久久久久久| 内射极品少妇av片p| 免费高清视频大片| 国产日本99.免费观看| 亚洲成人免费电影在线观看| 国产精品自产拍在线观看55亚洲| 国产精品一区二区免费欧美| 久久人人精品亚洲av| 亚洲va在线va天堂va国产| 91狼人影院| 国产av不卡久久| 午夜福利成人在线免费观看| 国产一级毛片七仙女欲春2| 国产精品女同一区二区软件 | 小说图片视频综合网站| 嫩草影院精品99| 国产色爽女视频免费观看| 久久国产乱子免费精品| 熟女人妻精品中文字幕| 亚洲精华国产精华液的使用体验 | 女人十人毛片免费观看3o分钟| 午夜视频国产福利| 99久久中文字幕三级久久日本| 欧美激情在线99| 小蜜桃在线观看免费完整版高清| 一级a爱片免费观看的视频| 欧美色欧美亚洲另类二区| 国产视频一区二区在线看| 亚洲av第一区精品v没综合| 欧美最黄视频在线播放免费| 日韩欧美一区二区三区在线观看| 两人在一起打扑克的视频| 亚洲一区二区三区色噜噜| 狠狠狠狠99中文字幕| 国产av麻豆久久久久久久| 国产精品久久久久久精品电影| 欧美中文日本在线观看视频| 国产乱人视频| 成人午夜高清在线视频| 18+在线观看网站| 亚洲最大成人av| 国产免费男女视频| 成人午夜高清在线视频| 国产精品国产高清国产av| 欧美黑人巨大hd| 在线观看免费视频日本深夜| a在线观看视频网站| 看十八女毛片水多多多| 日本 欧美在线| 久久香蕉精品热| 日韩欧美精品免费久久| 欧美最新免费一区二区三区| 欧美性猛交╳xxx乱大交人| 可以在线观看毛片的网站| 久久精品国产清高在天天线| 亚洲人成网站在线播| 精品久久久久久,| 狂野欧美白嫩少妇大欣赏| 欧美日韩瑟瑟在线播放| 露出奶头的视频| 精品国内亚洲2022精品成人| 亚洲国产欧美人成| 国产色婷婷99| 久久久久久伊人网av| 久久久久性生活片| 老熟妇仑乱视频hdxx| 久久午夜亚洲精品久久| 国产亚洲精品久久久久久毛片| 久久6这里有精品| 亚洲中文日韩欧美视频| 十八禁网站免费在线| 久久精品国产亚洲av天美| 精品久久久久久,| 午夜激情福利司机影院| 亚洲性久久影院| 国产精品自产拍在线观看55亚洲| 国产色婷婷99| 婷婷六月久久综合丁香| 日韩欧美精品免费久久| 老熟妇乱子伦视频在线观看| 亚洲性夜色夜夜综合| a级一级毛片免费在线观看| 长腿黑丝高跟| 尤物成人国产欧美一区二区三区| 精品久久久久久久久亚洲 | 午夜精品一区二区三区免费看| 国产男人的电影天堂91| 亚洲三级黄色毛片| 国产 一区 欧美 日韩| ponron亚洲| 最后的刺客免费高清国语| 亚洲av五月六月丁香网| 国产精品,欧美在线| 久久久久性生活片| 身体一侧抽搐| avwww免费| 好男人在线观看高清免费视频| 麻豆成人av在线观看| 午夜亚洲福利在线播放| 国产探花在线观看一区二区|